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Abstract. The miniaturization or nanotechnology 

applied in control systems, redesigning various areas of 
science and technology wherein researches requires 
using nanoforms improving the local responses, and at 
the same time, working in parallel and sequential 
nanosystems. These studies, name MEMs' Control, 
requires knowing the control parameters and ranges 
operation. Commonly used in classical control applied 
now, to the nanostructures to be controlled. In our case, 
we present an example consisting in a modern analysis 
control not yet realized; observing the evolution process 
trajectory control, and simulation of nano-displacements 
in a specific case viewed throughout linear and nonlinear 
evolution concerning parallel plates described as a 
system to be controlled.  Operating ranges considered 
the mechanical forces in transition and deformation 
plastic region. Therefore, we propose a nonminimum-
phase control technique because it is efficient, precise, 
and high-performance technique. Under these 
considerations, the control parameters selected going to 
embedded in a nano control device that adjusting the 
digital nanodevice used in nanofluids precision. 

Keywords. Parallel-plate characterization, phase 

advance control, nanotechnologies. 

1 Introduction 

The actuators and sensors technologies at the 
nano levels require nanotechnology 
considerations, although in reality developed as 
microtechnology also named as 
Nanotechnology [1]. 

As an example considered in this paper is the 
parallel-plates process operates through voltage 
source in a direct current; charging the plates, 
generating an electostatic field. Considering the 
Coulomb Law generating the internal force 

between the plates resulting is an actuator and in 
the same time, the internal reaction in the device is 
a capacitance, and is proportional to the voltage 
source and inverse to the charge applied. A 
mechanical system driven by an electrical source 
considering as an electromechanical actuator or 
transducer, used as a sensor. The mechanical 
movement between the plates loads energy and 
forces, the displacement generated is directly 
proportional to the square of the electric charge 
originated by the applied voltage, constituting a 
nonlinear process. While as a sensor measures, 
the capacitance originated between the two plates, 
approaching or moving away from the movable 
plate two stability regions. The capacitance 
constitutes a nonlinear process, directly 
proportional to the square root displacement [2, 3] 

Works carrying out the displacement variable 
characterization determining an equilibrium point 
have led the two study areas: linear and nonlinear  

The equilibrium point named as "pull in" 
describes the input voltage and relates the electric 
charge with the displacement (𝑄𝑒(𝑡), 𝑋(𝑡)). The 
displacements inside the linear section are one-
third of the squared electric charge, while the 
remaining two-thirds are the nonlinear zone [4]. 

Nonminimal-phase control applied to the 𝑋(𝑡) 
displacement allows better stability, precision, and 
reliability. However, there are few developed 
results in this area serving as a reference to 
others [5]. 

Then, this paper presents the control analysis, 
design, and simulation concerning parallel-plates, 
within the nonlinear area in a simple form [6]. 

The objective is to find the operating ranges and 
parameters control in each point of interest going 
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to used in the intelligent control for a 
displacement variable [7]. 

This work includes, in the first, a description of 
the displacement process; in second, the transfer 
function obtained, after that, the control and 
finished with specific results, shown in tables and 
graphics based on MATLAB® and 
Simulink® modules. 

2 Parallel Plates Process Models  

2.1 Process of Parallel-Plates 

The parallel plate’s process represented in Figure 
1 is an nanoelectromechanical process. In one 
hand, the electrical process is a direct voltage 
source 𝑉𝑠(𝑡) that feeds two plates where the 

positive pole connects the moving plate and the 
negative, to the nonmoving [8]. 

The mechanical process constituted by two 
metal plates separated a nanodistance 𝑋(𝑡), one 
fixed in the low, embedded in a no viscous medium 
serving as a dielectric media; and another mobile 
plate, which supported by a nanospring with elastic 
coefficient 𝑘 inside a medium with nanoviscosity 
coefficient 𝑏, making the movement smoother and 
more delicate. 

2.1 Electromechanical Model 

The electromechanical model is a quadrupole 
compound by an nanoelectrical capacitance 𝐶(𝑡), 
expressed in nanofarads as seen in Figure 2, 
leading the two electrical meshes, represented by 
a directly input voltage source 𝑉𝑠(𝑡) and by an 
electrical output grid using electromechanical 
equivalences, in nanovolts.  

The output voltage of the capacitor represents 
the nanoelectrostatic force 𝐹𝑒(𝑡) [𝑛𝑁], the 

nanomass 𝑚 of the moving plate is the 

nanoelectric inductance 𝐿 [𝑛𝐻], the volume of the 
viscous medium is regarded as the nanoelectrical 
capacitance 𝐶(𝑡) [𝑛𝐹] , and the nanodisplacement 

𝑋(𝑡) [𝑛𝑚]  of the spring as the nanoelectrical 

resistance viewed as 𝑘. 
The input mesh is feed with a direct 

nanovoltage source 𝑉𝑠(𝑡) conducting an 

nanoelectric input current 𝐼𝑖(𝑡) loading the plates 
with a charge 𝑄(𝑡) and generating an nanoutput 

voltage 𝑉𝑐(𝑡) and current 𝐼𝑐(𝑡).  

The nanoelectric accumulated charge 𝑄(𝑡) in 
the plate surface 𝐴, the distance 𝑑 = 𝑔0 − 𝑋(𝑡) 
between plates considering 𝑔0 as the initial 
distance between them and the nanodielectric 
permittivity factor ∈, leads the nanoelectrical 

capacitance 𝐶(𝑡) depending on the 
plate’s geometry. 

The Second Kirchhoff Law allows 
characterizing the mesh described through the 
Equations (1, 2): 

𝑉𝑠(𝑡)  = 𝑅 ∗
𝑑𝑄(𝑡)

𝑑𝑡
+ 𝑉𝑐(𝑡), (1) 

𝑅
𝑑𝑄(𝑡)

𝑑𝑡
+
(𝑔𝑜 − 𝑋(𝑡))

∈ 𝐴
𝑄(𝑡) = 𝑉𝑠(𝑡). (2) 

 

Fig. 1. Parallel-plates process 

 

Fig. 2. Electromechanical model of parallel-plates 
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The output mesh represents the 
nanomechanical force source causing the 
displacement 𝑋(𝑡) through the mechanical 

components 𝑚, 𝑏 and 𝑘, being analogous to the 
nanoelectric circuit including the nanoelectrostatic 
force 𝐹𝑒(𝑡) based on the nanocapacitor voltage 
𝑉𝑐(𝑡) generated between the plates [9]. 

Figure 3 shows an equilibrium diagram 
representing the principal forces involved in the 
parallel plates system, accomplishing to the Nano-
Newton, Pascal, and Hook laws. Where 𝐹𝑚 is the 
nanomechanical force from the accelerated plate 
nanomass, 𝐹𝑐, the nanoforce from the damping 
material viscosity and the nanomoving plate 
velocity, 𝐹𝑥, the force due to the spring and  the 
plate displacement, 𝐹𝑒 the electrostatic force, 

which is the stored electrostatic energy change 
𝑈𝑒(𝑡) in the moving plate [10]. 

To obtain 𝐹𝑒(𝑡) from the variation of 𝑈𝑒(𝑡), it is 
considered that the nanoenergy in 𝑡  is defined as 

the integral of the nanoelectric potential 𝑃𝑠 stored 

in the moving plate in a differential time 𝑡 , as seen 
in Equation (3): 

𝑈𝑒(𝑡) ≅ ∫ 𝑃𝑠(𝑡)𝑑𝑡 = ∫ 𝑉𝑠(𝑡)𝐼𝑠(𝑡)𝑑𝑡 
𝑡

0

𝑡

0
. (3) 

This expression depends on the nanodistance 
𝑋(𝑡), the nanoelectric charge 𝑄(𝑡) and the 
nanoplate geometric characteristics, as presented 
in Equation (4): 

𝑈𝑒(𝑡) =  
1

𝑐
∫ 𝑄(𝑡)𝑑𝑄 =

𝑥(𝑡)

2𝜖𝐴
 𝑄(𝑡)2

𝑡

0

. (4) 

From Equation (4) and considering the changes 
of 𝑈𝑒(𝑡) respect the nanodisplacements 𝑋(𝑡) we 
obtain Equation (5): 

 𝐹𝑒(𝑡) ≅ (
𝑑𝑈𝑒(𝑡)

𝑑𝑋(𝑡)
) =  

𝑄(𝑡)2

2𝜖𝐴
. (5)  

Substituting the corresponding equations 
viewed in Figure 3 diagram, and also we have the 
equilibrium Equation (6), which is a second order 
differential equation: 

𝑄(𝑡)2

2∈𝐴
= 𝑚

𝑑2𝑋(𝑡)

𝑑𝑡2
+ 𝑏

𝑑𝑋(𝑡)

𝑑𝑡
+ 𝑘𝑋(𝑡). (6) 

3 Parallel-Plate Transfer Function 

The nanoelectromechanical process model is 
described by two differential equations of the first 
and second order, obtaining the system 
transference function. It is necessary to normalize 
the differential equations within the equilibrium 
point; then, a linearization should be performed, 
followed by a description in state variables and 
after all, a description in the Laplace domain [11]. 

3.1 Variables and Parameters Pull-in  

In this initial stage, the first transformation is 
carried out using the equilibrium nanovoltage 𝑣𝑝𝑖 

named as "pull-in". 

 

Fig. 3. Parallel-plates equilibrium model 

Table 1. Pull-in variables and parameters 

Variables Parameters 

𝑣𝑝𝑖 = √
8 ∗ 𝑘 ∗ 𝑔0

2

27 ∗ 𝐶0
 𝐴 = 

𝑔0 ∗ 𝐶0
∈

 

𝑞𝑝𝑖 =
3

2
∗ 𝐶𝑜 ∗ 𝑣𝑝𝑖 𝑅 =

𝑟

𝑤𝑜 ∗ 𝐶0
 

𝑉𝑠(𝑡) = 𝑣𝑝𝑖 ∗ 𝑣𝑖(𝑡) 𝑡 = 
𝜏

𝑤𝑜
 

𝑉𝑐 = 𝑣𝑝𝑖 ∗ 𝑣𝑖(𝑡)  

𝑋(𝑡) = 𝑔𝑜 ∗ 𝑥(𝑡) 

𝑄(𝑡) = 𝑞(𝑡) ∗ 𝑞𝑝𝑖 
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By this transformation, the normalized variables 
and parameters mentioned in Table 1 are 
obtained. Here ζ and ω0 are the damping and 
oscillation frequency [12]. 

Variables and parameters from Table 1 are now 
applied to Equation (2) to obtain Equation (7): 

�̈�(𝑡) +
1

𝑟
[1 − 𝑥(𝑡)]𝑞(𝑡) = (

2

3
) (
1

𝑟
) 𝑣𝑖(𝑡). (7) 

Moreover, then, according to Equation (6) we 
are obtaining (8): 

�̈�(𝑡) + 2𝜁 �̇�(𝑡) + 𝑥(𝑡) =  
𝑞2(𝑡)

3
. (8) 

3.2 State Variable Transformation 

The state variable transformation obtained is 
necessary to describe the Equations (7, 8) in first 
order equations. The variables of interest are the 
nanodisplacement 𝑥(𝑡), the nanoelectric charges 

𝑞(𝑡) in the plates, and the nanospeed plates 𝑝(𝑡) 
around the equilibrium point (𝑋𝑒𝑞, 𝑄𝑒𝑞 , 𝑃𝑒𝑞). From 

this equilibrium point, a transformation in 𝑡 has the 

corresponding deviations 𝑥(𝑡), 𝑞(𝑡), and 𝑝(𝑡), 
that leads to the state variables in Equations (9, 
10, 11) [13]. 

𝑑𝑥1(𝑡)

𝑑𝑡
= 𝑥2(𝑡) = 𝑚1(𝑡), (9) 

𝑑𝑥2(𝑡)

𝑑𝑡
= −𝑥1(𝑡) − 2𝑥2(𝑡) +

1

3
𝑥3
2(𝑡) =  𝑚2 (𝑡), (10) 

𝑑𝑥3(𝑡)

𝑑𝑡
= −

1

𝑟
(1 − 𝑥1(𝑡))𝑥3(𝑡) +

2

3𝑟
𝑣𝑖(𝑡)

= 𝑚3(𝑡). 
(11) 

3.3 Taylor’s Linearization Method 

The state variables viewed in Equations (9, 10, 11) 
represent a matrix equation containing the three 
nanostates 𝑚1(𝑡), 𝑚2(𝑡) and 𝑚3(𝑡), which are 
linearized using the Taylor method through partial 
derivatives, obtaining Equation (12) [14]: 

[
 
 
 
 
𝑑𝑥1(𝑡)

𝑑𝑡
𝑑𝑥2(𝑡)

𝑑𝑡
𝑑𝑥3(𝑡)

𝑑𝑡 ]
 
 
 
 

= [

0 1 0

−1 −2
2

3
𝑥3(𝑡)

1

𝑟
𝑥1(𝑡) 0

1

 𝑟
(𝑥1(𝑡) − 1)

] [

𝑥1(𝑡)

𝑥2(𝑡)

𝑥3(𝑡)
]

+ [

0
0
2

3𝑟

] [𝜕𝑣𝑖(𝑡)
𝜕𝑥𝑖(𝑡)

𝑑𝑥𝑖(𝑡)

𝑑𝑡
] ,

𝑑𝑦(𝑡)

𝑑𝑡
= [1    0    0]

[
 
 
 
 
𝑑𝑥1(𝑡)

𝑑𝑡
𝑑𝑥2(𝑡)

𝑑𝑡
𝑑𝑥3(𝑡)

𝑑𝑡 ]
 
 
 
 

}
 
 
 
 
 
 

 
 
 
 
 
 

. (12) 

3.4 Laplace Description 

Equation (12) is a linear state equation containing 
differential terms with which is no possible to 
operate. A normalization process and the 
application of the Laplace transformation, to 
factorize the differential terms, lead to an algebraic 
equation that allows obtaining the transfer function 
𝑇(𝑠) of the parallel plates process in Equation (13): 

𝑇(𝑠) =
𝑋(𝑠)

𝑉𝑖(𝑠)
=

4𝑄𝑒𝑞 

9

(

 
 

𝑟𝑠3+
(1−𝑋𝑒𝑞+2 𝑟) 𝑠

2+

(𝑟+2(1−𝑋𝑒𝑞)𝑠+

(1−3𝑋𝑒𝑞) )

 
 

, 

(13) 

where 𝑟 is the normalized source resistance, 𝜁, the 

spring nanodamping constant and 𝑋𝑒𝑞, the moving 

plate displacement from the equilibrium point. 
Having 𝑀 = 4𝑄𝑒𝑞, 𝑁 = 𝑟, 𝑃 = 1 − 𝑋𝑒𝑞 + 2𝜁𝑟, 𝑄 =

𝑟 + 2𝜁(1 − 𝑋𝑒𝑞) and 𝑅 = 1 − 3𝑋𝑒𝑞 , Equation (14) 

can be expressed as in Equation (14):  

𝑇(𝑠) =
𝑀

9(𝑁𝑠3+𝑃 𝑠2+𝑄𝑠+𝑅)
, (14) 

for this project, the considered parameter values 
are 𝑟 = 0.8, 𝜁 = 1.8, which are obtained 

experimentally, and 𝑋𝑒𝑞 = [0.4, 0.9], defined from 

the moving plate displacement range above the 
equilibrium value or nonlinear zone [15] 

4 Nonminimum Phase Control 

The transfer function (14) describes a non-linear 
process called nonminimum phase process. 
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Due to the parallel plate displacements make 
the system being out of the equilibrium point, it is 
necessary a control block stabilize the system 
considering the equilibrium point as a reference.  

A proposal for this problem is a classical control 
approach with a PI controller feedback applied to 
the process for each 𝑋𝑒𝑞 input as indicated in 

Figure 4, adjusting both parameters of control [16].  

The complete system represented in the block 
diagram shown in Figure 5 is applying the 

PI controller. The controller parameters Ai, Bi, Ci, 

and Di, as well as the parallel plates process 

parameters, Ei,  Fi, Gi, Hi, and  Ii, described for 

each input {𝑋𝑒𝑞𝑖} in Tables 1 and 2, respectively, 

remembering that a PI structure requires a different 
adjustment for each input. For Table 2, 𝐸𝑖 = 𝑋𝑒𝑞𝑖. 

 

Fig. 4. PI controller application to nonminimum phase process 

 

Fig. 5. Parallel-plate process viewed as a block diagram including the nonminimal phase control 

Table 2. Nonminimum phase PI control parameters 

𝑿𝒆𝒒𝒊
 Ai Bi Ci Di 

0.4 4.0 4.0 4 0.010 

0.5 3.5 3.5 4 0.009 

0.6 3.0 3.0 4 0.007 

0.7 2.7 2.7 4 0.005 

0.8 2.5 2.5 4 0.004 

0.9 2.3 2.3 4 0.003 

Table 3. Nonminimum phase parallel plates process parameters 

𝑿𝒆𝒒𝒊
 Ei Fi Gi Hi Ii 

0.4 1.0376 2 3.6495 0.0556 0.0556 

0.5 1.0351 2 3.6313 0.1400 0.0400 

0.6 1.0329 2 3.5972 0.2256 0.2256 

0.7 1.0309 2 3.6138 0.3122 0.3122 

0.8 1.0291 2 3.5812 0.3999 0.3999 

0.9 1.0276 2 3.5661 0.4883 0.4883 
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5 Nonminimal Phase Process Control 
Simulation and Results 

A simulation to analyze the control performance is 
carried out considering the block diagram of Figure 
5 as a submodule, having six in total, one for each 
displacement of interest. All of them are 
encapsulated in a system with six inputs and one 
output, as seen in Figure 6. 

Figure 7 shows the simulation results in where 

each value of the set {𝑋𝑒𝑞𝑖} , 𝑖 = 1,2,3, viewed as 

the reference is possible to appreciate the 
controller effects when approximate to the 
reference in time. 

Figure 8 presents the results in the bode 
diagram considering the frequency domain. 

6 Conclusions 

It was possible to characterize the nonlinear 
variable displacement of the parallel plate’s 
process movements through a transfer function 
using Laplace transformation concerning (13, 14).  

The nonminimum phase pole of the system was 
annulated using classical control techniques, 
allowing the adjustment the displacement variable 
within the linear region, having no overshoots in 
the results, as seen in Figure 7. 

With this proposal now is possible to take 
advantage of a bigger range of movement for the 
moving plate, using the non-linear region of the 
process functioning. Besides, we are defining 
performance intervals that allows constructing the 
fuzzy application control for future works. 
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