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Abstract

A new method for learning probabilistic grid-based maps
of indoor environments by a mobile robot is described.
We contribute in two subjects of map learning, namely,
sensor data fusion and exploration. In particular, new
models of sensors and a way of sensor data fusion that
takes advantage of multiple viewpoints are proposed.
The exploration approach merges a local strategy, sim-
tlar to wall following to keep the robot close to obsta-
cles, within a global search frame, based on a dynamic
programming algorithm. This method is tested using a
stmulated and a real mobile robot with odometer, ultra-
sonic and laser range sensors (implemented with a laser
line generator and a camera) with promising results.

Keywords: Map Building, Exploration, Sensor Data
Fusion, Mobile Robots.

Resumen

Se describe un nuevo modelo de aprendizaje de ma-
pas de malla probabilistas pera robot mdviles en am-
bientes interiores. Las contribuciones se ubican en
las dreas de fusidn sensorial y exploracion. En par-
ticular, se proponen nuevos modelos de los sensores y
una forma de fusion que aprovecha mailtiples puntos de
vista. El enfoque de exploracion combina una estrate-
gia local, similar ol seguimiento de pared, para man-
tener al robot cercano a los obstdculos, deniro de un
marco de biusqueda global, basado en un algoritmo de
programacion dindmica. Se presentan resultados pro-
metedores con un robot simulado y otro real que utilizan
odémetro, sonares y un telémetro ldser (implementado
con un generador de linea ldser y una cdmara).

Palabras clave: Construccién de mapas, Exploracion,
Fusién sensorial, Robots méviles.
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1 Introduction

This paper presents an approach for an indoor mobile
robot using its sensors, to learn a Probabilistic Grid-
based Map (PGM) (Elfes, 1989; Thrun et al., 1998) of
an environment. A PGM is a two dimensional map
where the environment is divided in square regions or
cells of the same size that have occupancy probabilities
associated to them. A PGM is appealing because it can
be easily used to fuse sensor data (Lee, 1996).

This work considers a mobile robot with a ring of
ultrasonic range sensors, or sonars for short, a common
arrangement used in other previous research {Thrun,
1998). The robot has as well a laser sensor, which mea-
sures proximity of nearby objects using a combination
of a laser line generator and a camera. The laser line is
parallel to the floor. Distances to objects can be esti-
mated considering the height of the laser points within
images.

Building a PGM can be described by three major
components:

1. Sensor data fusion. Multiple sensor data are
mapped and integrated over time to occupancy
probabilites of grid cells. We present a new way
to fuse data from different sensor types and a new
laser range model! (specifically for the combination
of a laser line generator and a camera).

2. Exploration. The robot explores its environment
trying to reach the nearest unexplored grid cell
minimizing the travel cost. A novel approach to
merge local strategies, like wall following, within a
global search frame, based on a dynamic program-
ming algorithm, is given.

3. Position estimation. The position of the robot is
continuously tracked, minimizing odometric errors.
This approach estimates the position of the robot
based on correlations between laser range data and
the map.
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The remainder of this paper is organized as follows.
Sections 2, 3 and 4 describe each of the three compo-
nents for building a PGM. Experimental results using
a mobile robot simulator and a real mobile robot are
presented in section 5. Finally, some conclusions and
future research directions are given.

2 Sensor Data Fusion

The environment is modeled as a set of cells arranged
in a regular two—dimensional grid. The occupancy of a
cell at location (z,y) is measured by the state variable
O(z,y) which can have one of two values: oce (occupied)
and free. For each cell, the probability that O(z,vy) =
occ, denoted shortly by P(O), is estimated using the
sensors of the robot. In this work it is considered that
the robot has three types of sensors:

Ultrasonic range sensors. In this case, let P(O,) be
the occupancy probability of the cell (x,y) detected
only by sonars.

Laser range sensors. In the same way, let P(O;) be
the occupancy probability detected only by this
type of sensors.

Maneuverability. The mere fact that a robot moves
to a location (x,y) makes it unlikely that this lo-
cation is occupied. Let P(Q,,;) be the occupancy
probability detected by this type of sensor.

We apply the main idea of sonar data fusion given in
(Howard & Kitchen, 1996) to fuse data from sensors
of different types. We consider a cell as occupied if
it is detected occupied by at least one sensor. In this
way, the probability that a given cell is occupied can
be estimated using a logical OR operation among the
occupancy states detected by each type of sensor:

P(0) = P(Oy ORO; OR Oy) (1)

To expand the right hand side of (1), it is assumed that
the events O;, O, and O,, are statistically independent.
With this assumption, and after some algebra, equation
(1) becomes:

PO)y=1~- [] a-P©y) (2)

i=s,l,m

This expression can be used to compute the probabil-
ity that a cell is occupied once we have determined the
probability that a cell is occupied by each type of sen-
sor. The prior probabilities P(Q), are initially set to
0.5 to indicate ignorance. This implies that the prior

probabilities for the variables associated to each type of
sensor ¢ (i = s,1,m) for every cell are given by:

Pprior(03) =1 — (0.5)/3 (3)

A description of how to compute the probability that
cells are occupied using each type of sensor is given in
the following sections.

2.1 Ultrasonic Range Sensors

There are two main difficulties using sonars: 1) they
have a wide beam, like a 30 degrees cone and 2) a
specular reflection occurs whenever an ultrasonic pulse
encounters a smooth extended surface. In ordinary
office environments which contain smooth walls and
glass doors specular reflection is common (Howard &
Kitchen, 1996). Elfes (1989) and Moravec (1988) de-
scribe an occupancy grid approach in which range mea-
surements from multiple viewpoints are combined into
a PGM. Each cell in the PGM is assigned a single value
indicating the probability that the cell is occupied. In
the occupancy grid approach, this occupancy probabil-
ity is conditioned on all sensor readings and it is es-
timated using Bayes’ rule, assuming independence of
the noise in different readings. Unfortunately, the oc-
cupancy grid approach does not work well in specular
environments (Howard & Kitchen, 1996). Howard and
Kitchen (1996) propose an improvement of grid-based
approaches by introducing the concept of response grid.
The basic idea is that a cell may generate a response
(e.g. appears to be occupied) when viewed from one
direction, but will not generate a response when viewed
from another.

Following the approach described in {(Howard &
Kitchen, 1996), when an ultrasonic pulse entering a cell
with some direction is reflected back to the detector,
the cell is said to have a response in that direction. The
occupancy value of the cell is determined by assuming
that any cell that generates a response in one or more
directions must contain at least one surface and there-
fore it is occupied. The response of a cell (z,y) in some
direction ¢ is measured by the variable R (res means
response): R(z,y,¢) = res. The full interval [0, 360°] is
divided into n intervals. Let R;, be the proposition that
a given cell (z,y) generates a response for the direction
interval ¢;. The probability that the cell is occupied
using sonars is given by:

P(O,)=P(R; OR --- OR R,) (4)

To expand the right hand side of (4), it is assumed
that the events R; are mutually independent. With this
assumption, (4) becomes:
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n

P(0,) =1-T](1 - P(Ry)) (5)

i=1

The prior probability P(R;) can be computed from
equation (2):

Porior(B) = 1= (1= Pprion(0))*  (6)

We propose the following sensor model to estimate
the probability of a response given a measurement r,
P(R;|r). Let s be the distance between the cell (z,y)
and the sensor. P(R;|r) for all grid cells under the
sonar cone are estimated by:

P(R;|r) = (7)
1- (1_1)177“507‘(‘R'i))(l_-I('sma,:c)x}E Zf s<r
Bprior(R:) if s>r
Pprior (&)Ksmzn I}'E Zf s=7r

where K'sy,,, is a constant close to 1, K8, is an-
other constant close to 0, and Nc is the number of grid
cells (Ne¢ >= 1) at range s covered by the sonar. In
this way, the probability of a cell whose distance s is
greater than the sonar reading r is not changed; when
s = r short sonar readings tend to significantly increase

the probability of occupancy, while long sonar readings ‘

tend to slightly increase it; and when s < r short sonar
readings tend to significantly decrease the probability
of occupancy, while long sonar readings tend to slightly

decreage it. The main difference with the sensor model
given in (Howard & Kitchen, 1996) is that they con-

sider a fixed probability value for the case when s < r.
To compute P(R;) given m sensor readings, denoted
r,r@), . ™) we assume conditional independence
between r(®) and r(4) (3 # j) given that (Ri(z,y) = res)
is true. In other words:

P(r(i) [Rs,r ™, PG~ RO+ , r(m)) = P(r(i)IRi) 8)
With this assumption, a probabilistic update rule for
P(R;) can be deduced (Thrun et al., 1998), (Thrun,

1998):

P(R; e, pmy =1 — 1+ l—f%%(ili—-)PMdl]—1 ©
where m
u P(R;|r) 1 - P(R;)
Prody = H[l _P(R,-lr(j))][ P(R;:) ]

Gt

2.2 Laser range sensor

A camera, together with a laser line generator paral-
lel to the floor, are aligned to implement a laser range
sensor. This arrangement can rotate to cover the whole
area around the robot. In the following analysis we con-
sider the laser line generator as a set of laser pointers
in a radial arrangement.
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Figure 1: Laser model. (a) Laser range sensor imple-
mented with laser pointers and a camera. (b) Types of
cells within the laser model.

Let us now consider the uncertainty in the estimated
distances due to image resolution. Let A be the distance
between the x-axis of the image and the laser point
within the image, H be the height of the laser point
(a constant), f be the camera focal length and Z be
the distance from the camera center to the laser point
(see Fig. 1 (a)). The relative error of Z due to image
resolution (Ah) is given by (Shigang et al., 1992):

=4
Z
Considering similar triangles, the absolute error E; =
|AZ|, for a given distance Z, can be expressed as:

E(2Z) =K, Z? (11)

1
= 7 |Ah] (10)

where K; = ?—}’} is a constant that depends on the spe-
cific camera (f and Ah) and the vertical distance be-
tween the camera and the laser pointers (H). In order to
update the probability P(O,) given a set of laser range
data, the proposed model considers the laser data in
consecutive pairs'. Three types of cells (see Fig. 1 (b)),
for two consecutive readings are considered:

1. Cells associated to each reading,.

2. Cells between cells of type (1), considering a linear
interpolation.

! That is, adjacent laser points on an angular sequence.
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3. Cells inside the polygon formed by the camera and
the two readings.

For each type of cell, the probability P(0;), given
two consecutive readin%s ZMW,Z® is updated in the
following way. Let Z() be the reading associated to
one cell of type (1). Then, the probability that this
type of cell is occupied given the reading is given by:

P(OYZD) =1 = (1 = Porior(O))(1 = Klmas) 17 (12)

where Kly,,; is a constant close to 1. This expression
takes into account the absolute error associated to the
reading, and assigns high values to short readings and
low values to large readings. The update rule for cells
of type 1, chooses the minimum value between the old
and the new probability values. In this way, short laser
readings overwrite probabilities due to longer readings.
To update cells of type 2, if the minimum of P(0;)|Z()
and P(0;)]Z®) is greater than the old value, then
the minimum value between P(O;)}(Z(") + Kl,) and
P(O)|(Z® + Kl,) is choseen. This means that short
readings, as before (considering the minimum of both
readings), overwrite probabilities due to longer read-
ings. Kl, depends on the belief that these cells are
occupied. This value could be a function on the dis-
tance between the two laser points. To update cells of
type 3, if the minimum of P(0;)|Z(M)) and P(0,)|Z(®)
is greater than the old value, then we multiply the old
value by a factor Kl; in the interval (0,1). KI; depends
on the belief that these cells are free.

This is a much simpler approach than that of equa-
tion (9) which can be used in this case since laser range
data are less noisy than sonar data.

2.3 Maneuverability

In this case, we use a simple update rule. To update
P(O,,) given the position of the robot, all the cells un-
der the robot are decreased by a factor K, in the in-
terval (0,1). ‘

3 Exploration

Research on exploration strategies has developed two
general approaches: reactive and model based. By far
the most widely—used exploration strategy in reactive
robotics is wall following. Model based strategies vary
with the type of model being used, but they are based
on the same underlying idea: go to the least—explored
region (Lee, 1996). A critical issue while exploring the
environment is to estimate the robot position. There
are several successful localization methods that can es-
timate the robot’s position using its sensors (Gutmann
et al., 1998). However, most localization methods fail

when the sensors of the robot are beyond its perceptual
capability (Roy et al., 1999) (i.e. the robot is too far
from obstacles). This paper introduces a novel approach
to explore a static indoor environment. The idea is to
reach the nearest unexplored grid cell minimizing the
travel cost. The travel cost takes into account the per-
ceptual limitations of the sensors and tries to maintain
a fixed distance to obstacles while the robot is moving
(wall following). The concept of travel space is intro-
duced to assign costs to grid cells. The motion policy of
the robot is computed using a dynamic programing al-
gorithm that includes the costs associated to the travel
space. This approach merges local or reactive strategies
with a global or model based strategy.

The general idea for exploration is to move the robot
on a minimum-~cost path to the nearest unexplored grid
cell (Thrun, 1998). The minimum-cost path is com-
puted using value iteration, a popular dynamic pro-
gramming algorithm. In (Thrun, 1998) the cost for
traversing a grid cell is determined by its occupancy
value, while in (McKerrow, 1991) the cost is determined
by the distance between cells (see chapter 8 in (Lee,
1996)). This paper proposes an approach that com-
bines local search strategies within a modified version
of value iteration described in (McKerrow, 1991). When
the robot starts to build a map, all the cells have the
same probability of occupancy P(O) = 0.5. A cell is
considered unezplored when its occupancy probability
is in the interval (close to 0.5) defined by two constants
[Pemin, Pemaz] (Pemin < 0.5 < Pepa;) and explored
otherwise.

Cells are defined as free or occupied. A cell is consid-
ered occupied when its P(O) reaches a threshold value
Popq: and continues to be occupied while its P(O)
does not fall below a threshold value Po,;, (where
Popin < Pomas). It is considered free in other case.
This mechanism prevents changes in the state of occu-
pancy of a cell by small probability changes. We assume
that Pepay < Pomin, S0 an unexplored cell is also a free
cell. In this way, the PGM becomes a binary map when
cells are classified as occupied or free. This binary map
will be called occupied—free map.

In this work, a cylindrical (circular base) robot was
used, so the configuration space (c—space) (Latombe,
1991) can be computed by growing the occupied cells by
the radius of the robot. In fact, the c-space is extended
to form a travel space. The idea behind the travel space
is to define a way to control the exploration by a kind of
wall following strategy. Wall following is a local method
that has been used to navigate robots in indoor envi-
ronments, but unfortunately it can easily get trapped
in loops {Lee, 1996). The travel space together with a
dynamic programming technique has the advantages of
both, local and global strategies: robustness and com-
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Ocuppied cells,
‘Warning cell
Travel cell

Far cells

Real
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Figure 2: Travel space due to a single occupied cell

pleteness.

Consider the travel space due to a single real occu-
pied cell in the occupied—free map (see Figure 2).

The travel space splits the free cells of the occupied—
free map in four categories:

1. Occupied cells. These cells are inside the circle
given by the radius of the robot (as in the c-space)
with center in the real occupied cell. After this
expansion, the robot is considered as a single cell.

2. Warning cells. Cells close to an occupied cell. Let
D, be the maximum distance between a cell of this
type and its closest real occupied cell. These cells
are called warning cells because their purpose is to
warn the robot about its closeness to an obstacle.
The value of D,, takes into account the perceptual

. limitations of the sensors.

3. Trawvel cells. Cells close to a warning cell. Let D;
be. the maximum distance between a cell of this
type and its closest real occupied cell. These cells
are called travel cells because their purpose is to
suggest to the robot a path to follow.

4. Far cells. Any free cell (in the occupied—free space)
that is not a warning or a travel cell.

In order to assign a higher cost to warning cells closer
to obstacles, each warning cell must record, besides its
type, the distance to the nearest occupied cell dpin,. For
travel and far cells it is enough to record the cell’s type.
A linear function is used to get the cost of a warning
cell depending on the distance to the nearest occupied
cell.

The travel space can be computed incrementally af-
ter each change of state of a cell in the occupied—
free map while the robot is exploring the environment
(Romero et al., 2000). An example of a travel space is
shown in Figure 3.

A policy to move to the unexplored cells following
minimum-—cost paths is computed using the travel
space and a modified version of value iteration. The
algorithm uses two variables, V' and M, associated
to each cell. V{(z,y) denotes the travel cost from
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Figure 3: A travel space. From darker to lighter: occu-
pied cell (black), warning cells (dark gray), travel cells
(light gray), and far cells (white)

cell (x,y) to the nearest unexplored cell. M(z,y)
represents the optimal movement to choose, given
that the robot is in that cell. We consider 8 possible
movements of the robot, one per cell in its vicinity. If
M(z,y) = (dz,dy), where dz is the change in z and dy
is the change in y, the set of valid movements is M, =
{(17 0)7(17 1)7(17 0)7(_17 1))(_1: 0)7(_17 _1)’(0» _1)7
(1, -1)}. The idea is to associate costs to cells depend-
ing on its type. If warning cells and far cells have costs
higher than travel cells, then a wall following strategy
for exploration is taken into account.

For simplicity, cells of type warning, travel or far,
will be call free cells in the travel space. Using the
variables M and V, the algorithm has two steps:

1. Initialization. Unexplored cells (z,y) that are free
in the travel space, are initialized with V (z,y) =0,
all the other explored cells that are free in the travel
space are initialized with V(z,y) = oo. All the
free cells in the travel space are initialized with an
undefined value to M.

2. Update. Let (2., y-) be the position before the last
movement of the robot. For all the explored free
cells (z,y) # (zr,yr) in c-space do:

V(z,y) < min(,a)em, 1V (@ + de,y + dy) +
Cost((z,y), (dz,dy)}

M(z,y) « arg-min gz ay)em,{V (@+de,y+dy)+
Cost((z,y), (dz,dy)}

where Cost((z,y), (dz, dy)) measures the cost of moving
from the cell (z,y) to the cell (z+dz, y+dy). This func-
tion punishes changes in direction and takes the value
Clz +dz,y +dy) + Dist{(z,y), (x + dz,y +dy)) + Kp..
Where Dist(p1,p2) is the distance between cells p; and
pa (1 or v/2), and Kp, represents the cost of the rotation
of the robot to reach the next cell. C(z,y) represents
the cost associated with cell (z,y) in the travel space,
based on its type. This assignment that punishes direc-
tion changes of the robot makes sense if we consider that
rotation changes become a major source of uncertainty
about the position of the robot.
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The update rule is iterated, and when the values
(V(z,y), M(z,y)) converge, the robot executes the
movement indicated by M.

Exploration ends when V = oo for the cell where the
robot is placed, which means that there is no way to
reach an unexplored cell. Each time the value itera-
tion algorithm is called, only the V values around the
robot are initialized, in a similar way to the bounding
boz described in (Thrun, 1998).

There are two related works. In (Roy et al., 1999), a
coastal navigation method is described, once the PGM
has been built. That approach is based on the concept
of entropy and introduces some assumptions to reduce
the complexity of the method. Our approach generates
a similar form of coastal navigation with a simpler and
more efficient method. The incremental algorithm de-
veloped in this paper also fits the time requirements for
the exploration task. In another related work (Thrun,
1998), the probability of occupancy of the cell is used as
a cost associated to the cells. The motion policy, given
by the value iteration algorithm, needs to be postpro-
cessed in order to keep the robot near to the center
of narrow passages (but they do not describe how to
do that). In our approach there is no need to modify
the policy given by the value iteration algorithm. The
motion policy is optimal given the costs associated to
cells.

4 Position Tracking

Position tracking is the problem of estimating the robot
position while it is moving, using its sensors. As noted
in (Thrun et al., 1998), position tracking is particularly
difficult to solve if map learning is interleaved with lo-
calization. A recent survey in (Borenstein et al., 1996)
dedicated to this topic illustrates the importance of lo-
calization and the large number of existing approaches.
See also (Thrun, 1998; Castellanos & Tardos, 1999;
Gutmann et al., 1998) for recent approaches. The ap-
proach used in this paper is a simple version of the
techniques described in (Weib et al., 1994). The posi-
tion tracking algorithm computes the actual location of
the robot in two steps:

1. Rotation. From the last position of the robot a
laser visibility view is computed from the map, using
only the probabilities associated to the laser range sen-
sors (P(O;(z,y)). For reference, this view will be called
a map view. Then, the map view is converted to a polar
map view taking the robot position as the center, and
using linear interpolation to get a smooth curve. In a
similar way, a polar sensor view is obtained from the
current laser range data (sensor view). The rotation
between the last position and the new position can be

Figure 4: The real mobile robot

estimated using a correlation between the polar map
view and the polar sensor view.

2. Traslation. The position of the robot can be es-
timated using a correlation between the map and the
sensor view, once the sensor view has the same orien-
tation that the map view. In this correlation only the
sensor readings above some threshold value Kd are con-
sidered

5 Experimental Results

This section presents the results obtained using a mobile
robot simulator and a real mobile robot. The mobile
robots have odometer, ultrasonic and a low cost laser
range sensor (about 300 US$ vs 8000 USS$ of laser—based
time of flight range sensor). We use a Super Scout Mo-
bile Robot with a ring of 16 sonars, a camera and a laser
line generator (see Figure 4). See (Romero & Morales,
1999) for details about the sonar model implemented
in the simulator. Figures 5 and 6 illustrate the laser
range sensor operation. Fig. 5 (a) and (b) show images
taken from the camera before and after the laser line
generator is turned on. If we subtract image (a) from
image (b) and apply a median filter (to deal with the
noise), the laser points are emphasized, as it is shown
in the Fig 5 (¢). To get a single laser point per column
of the image, we compute the center of mass of every
column of the image, considering the gray level as the
mass of each pixel (black pixels have no mass). The
result of this operation is shown in Figure 6(a) (con-
sidering only points with a total mass above a given
threshold value). Finally, Figure 6 (b) shows the map-
ping from the laser points in (a) to a map of obstacles
in front of the mobile robot. Note the uncertainty as-
sociated to long readings. In fact, this behavior of the
laser range sensor makes difficult the comparison of our
map building method with other methods. Most works
use laser-based time of flight ranging systems where the
uncertainty associated to readings does not depend of
the distance to the obstacle.

Figure 7 (a) shows the PGM built by the simulated
robot without using the travel space (i.e. assigning null
costs to warning and travel cells). The grid cells are
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Figure 5: Laser range sensor operation. From left to
right: (@) Image from the camera. (b) Image with the
laser line generator turned on. (¢) Image of (b) - (a)

Figure 6: Laser range sensor operation (cont.). From
left to right: (e) Image with a single laser point per
column. (b) Obstacles in front of the robot

10x10e¢m? and the map is 10x10m?2. The simulator in-
troduces an uniform random error on displacements of
+10% and a uniform random orientation error of about
+7 degrees, per movement. The lighter trace on the
map is given by the odometer and it shows the path
followed by the robot. Note that sometimes the robot
gets very close to obstacles. Figure 7 (b) shows the map
built using the travel space and Fig. 7 (c) shows the
map built using the real mobile robot within an office
environment with desks, chairs, bookshelfs, etc. (note
the effect of a glass door in the lower right corner).
In these cases, warning cells have costs in the interval
[13,1] (a linear function was used to estimate costs de-
pending on the distance from the cell to the nearest
occupied cell), travel cells bave a cost of 0.001 and far
cells have a cost of 6. The warning cells form a layer
of 100 cm. and the travel cells form a layer of 20 cm.
These cost values implement the wall following strategy
to explore the environment, as can be observed in the
map. Also the robot does not get too close to obstacles
even in narrow passages. Instead, in narrow passages
(where there are only warning cells) the robot tends to
maximize the clearance between the robot and the ob-
stacles. The map of the Fig. 7 (b) is also more accurate
than the map built without using the travel space (Fig.
7(a)). This is because the travel space approach tends
~ to move the robot to positions where the sensor read-
ings are more reliable and hence the position tracking
algorithm gives better estimations.

Some experiments were performed to evaluate the
changes due to Kp., the cost of making orientation
changes in the robot movements, during the exploration
phase using the simulator. In these experiments we as-
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Figure 7: PGMs. White areas represent cells with oc-
cupancy probabilities near to 0. From left to right: (a)
Using the simulator without the travel space. () Using
the simulator and the travel space. (¢) Using the real
mobile robot and the travel space

sign a cost of Kp, for rotation of 45 degrees, 2K p,. for
90 degrees, and so on. Table 1 shows the results, con-
sidering the length d (in cm.) of the path followed by
the robot, the total number of movements made by the
robot (n), the amount (8) of orientation changes (in 45
degrees units) made by the robot, and the ratio (8/n).
These results suggest that higher Kp, values tend to
decrease the number of movements that change the ori-
entation of the robot.

Kp, | d n [ 6/n

0 3352 | 284 | 162 | 0.5704
1 3640 | 310 | 163 | 0.5258
2 3596 | 304 | 155 | 0.5098
3 3536 | 306 | 145 | 0.4738

Table 1: Some experimental results for different costs
of orientation changes ( Kp,)

6 Conclusions

A new method for map learning for indoor mobile
robots using ultrasonic and laser range sensors was pre-
sented. This paper extends the approach described in
(Howard & Kitchen, 1996) to fuse ultrasonic range data,
gives a new probabilistic model of laser range sensors,
and presents a method for integrating sensor data of dif-
ferent types. The experimental results show that this
approach is adequate for sensor data fusion.
Additionally, a new approach for a mobile robot to
explore in an indoor environment that combines local
control (via cost associated to cells in the travel space)
with a global exploration strategy (using a dynamic
programming technique) has been described. As the
experimental results confirm, the exploration follows a
kind of wall following technique to reduce uncertainty
in terms of localization, as well as to guide the robotis.
through narrow passages maximizing the distance be-*
tween the robot and the obstacles. This combination
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of local and global strategies takes the advantages of
both: robustness of local strategies and completeness
of global strategies. Also a heuristic to minimize the
number of orientation changes, trying to minimize the
accumulated odometric error, is also introduced.

We plan to explore some dynamic extensions to the
travel space approach considering the specular degree
of cells captured by the sonar model.
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