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Abstract

In this paper, dynamic neural networks (single layer and
multilayer) are used for nonlinear system on-line
identification. Passivity approach is applied fo access several
new stability properties of the neuro identifier. The conditions
for passivity, stability, asymptotic stable and input-to-state
stable are established We conclude that the back propagation
algorithm with a modification term which is determined by
off-line learning may make the neuro identifier robust with

respect to any bounded uncertainty.
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Resumen

En este articulo, por la técnica pasiva, damos varios
algoritmos estables para multicapas y las solas capas de las
redes de neuronales, estos algoritmos nuevos han sido
exitosamente aplicados para muchos sistemas reales por si-
mulaciones. Las condiciones para la pasividad, estabilidad,
entrada para estado estable se establecen. Concluimos que
por medio de la técnica de pasividad se obtiene que el algo-
ritmo BP, en el proceso de identificacion neuronal, es robus-
to con respecto a todos los tipos de incertidumbres acotadas.

Palabras Clave: Identificacion, Redes Neuronales y Pasividad

Introduction

In manyapplication, «black-box» identification using neural
networks has emerged as a viable tool for unknown nonlinear
systems. This model-free approach uses the nice features of
neural networks, but the lack of model makes hard to obtain
theoretical results on the stability and performance of neuro
identifier. For the engineers it is very important to assure the
stability in theory before they apply in to a real system.

There are not many results on stability analysis of neural
networks in spite of their successful applications. The global
asymptotic stable (GAS) of dynamic neural networks hes been
developed during the last decade. Diagonal stability
(Kaszkurewics and Bhaya, 1994) and negative semi-
definiteness (Forti, et al., 1994) of the interconnection matrix
may make Hopfield-Thank neuro circuit GAS. Multilayer
perceptrons (MPL) nad recurrent neural networks can be
related to the Lur'e systems, the absolute stabilities were
developed by (Suykens, et al., 1999) and (Matsouka, 1992).
Input-to-state stable (ISS) analysis method (Sontag and Wang,
1995) is an effective tool for dynamic neural networks (Yu,
2001) stated that if the weights are small enough, neural
networks are ISS and GAS with zero input. Many publishes
investigate the stability of identification error and tracking
error of neural networks. (Jagannathan and Lewis, 1996)
studied the stability conditions when multilayer perceptrons
are used to identify and control a nonlinear system. Lyapunov-
like analysis is suitable for dynamic neural network, the signal-
layer case were discussed in (Rovithakis
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and Christodoulou, 1994) and (Yu and Li, 2001), the
high-order networks and multilayer networks may be
found in (Kosmatopoulos, et al., 1995) and (Poznyak,
et al., 1999). Since neural networks cannot match
the unknown nonlinear systems exactly, some robust
modifications (Ioannou and Sun, 1996) should be ap-
plied on normal gradient or backpropagation algo-
rithm (Jagannathan and Lewis, 1996)(Rovithakis and
Christodoulou, 1994)(Suykens, et al., 1999)(Yu and
Li, 2001). One of advantages of ”black-box” identifi-
cation is that the identification error can be regarded
inside the ”black-box”, so the gradient algorithm with-
out any modification maybe have robust properties.

In this paper, we will use passivity theory to analyze
the stability of the multilayer dynamic neuro identifier.
Passivity approach may deal with the poor define
nonlinear systems, usually by means of sector bounds,
and offers elegant solutions for the proof of absolute
stable. It can lead to general conclusions on the stability
using only input-output characteristics. The passivity
properties of MLP were examined in (Commuri and
Lewis, 1996). By means of analyzing the interconnected
of error models, they derived the relationship between
passivity and closed-loop stable. To the best of our
knowledge, open loop analysis based on the passivity
method for multilayer dynamic neural networks has
not yet been established in the literature. We will show
that a backpropagation-like learning law can make the
identification error stable, asymptotic stable and input-
to-state stable. A Simulations of vehicle idle speed
identification gives the effective of the algorithm of this

paper.

2. SYSTEM IDENTIFICATION WITH SINGLE
LAYER NEURAL NETWORKS

The nonlinear system to be identified is given as:

Ty = f(mt,ut), Y¢ = T¢, T € ?Rn, Uy € R (1)

We construct the following single layer dynamic neural
network:

Ty = ATy + Wi0(Z2) + Wa1d(Ze)v(ue) (2)

where Z; € R” is the state of the neural network, A
€ R™*" is a stable matrix . Wy € <", Wa € R™*7
are weight matrices of neural networks. The vector
functions o(z:) € R™ is assumed to be n—dimensional
with the elements increasing monotonically. The matrix
function ¢(-) is assumed to be R™*™ diagonal: ¢(z¢) =
diag(¢ (Z,)--- ¢, (Fn)). v(ue) € R™, uy is the control
input of the plant (1). Function (-) is selected as
ll7(us)||> < T The typical presentation of the elements
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Fig. 1. The structure of the dynamic neural network.
oi(-) and ¢;(.) are as sigmoid functions, i.e. o;(x;) =
Q ‘

1+e~l)/,3:r:,,~, — G4

The structure of the neuro identifier is shown in IMig.1.

Remark 1. The neural networks have been discussed by

many authors, for example (Rovithakis and Christodoulou,

1994), (Kosmatopoulos, et al., 1995), (Poznyak, et
al., 1999) and (Yu and Li, 2001). It can be seen that
Hopfield model is the special case of this networks with
A= diag{a,i}, a; = w1/.R¢(j¢, R; > 0 and C; > 0.
R; and C; are the resistance and capacitance at the ith
node of the network respectively.

Let us define identification error as A; = Ty — xt.
Because o(-) and ¢(-) are chosen as sigmoid functions,
clearly they satisfy the following assumption.

A1l: The function o() and ¢(-) fulfill generalized Lip-
shitz condition

FTAG < ATD A
~ T ~ T
(¢t7(ut)> Ag (%’Y(W)) <TUA; Dy Q

where 7 := a(T:) — a(zt), ¢ 1= (Te) — Ppxs), A1, Az,
D, and Dy are known positive constants, nonlinear.
Since dynamic neural networks are like black-boxes,
they can follow any nonlinear systems in any accuracy if
the neural networks are big enough (Matsouka, 1992),
we may represent the nonlinear system (1) with the
single layer neural network (2) plus a modeling error as
Ty = Ay + Wio(e) + Wid(zd)y(uw) — fr - (3)
where Wy and W3 are bounded unknown matrices
WIATIWT < Wi, WiAs'WsT <Wo  (4)

W, and Wy are priory known matrices, vector function
f: can be regarded as modelling error and disturbances.
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We may define matrix errors as Wy 1= Wy — W,

Wg;t := Wa,+—W3. The error dynamic is obtained from
(2) and (3)

A = AN, + Wl,t(r(@) + Wz,tﬂ@)’)’(ut) (5)

+We + Widy(u) + fi
If we define

R:=Wi+Ws, Q:=D,+uDs+ Qo (6)

and the matrices A and ()g are selected to fulfill the

following conditions:

(1) the pair (4, R1/2) is controllable, the pair (Q/2, 4)
is observable,

(2) local frequency condition satisfies

Tp-14_ Lo rp1  paa
ATRTA- Q= 7 [ATR TR -
R[ATR™' — R4

then the following assumption can be established:

A2: There exist a stable matrix A and a strictly
positive defined matrix Qp such that the matrix Riccati
equation

ATP+PA+PRP+Q=0 (8)

has a positive solution P = PT > 0.

This conditions is easily fulfilled if we select A as stable
diagonal matrix. Next theorem states the learning
procedure of neuro identifier.

Theorem 1. If the weights Wy and Wa; are updated
as

Wi = —K1PAwT (3)

9)
Wo = —KaPh(Ze)y(ue) AY

where P is the solution of Riccati equation (8), then

the dynamic of identification error (5) is strictly passive

from f; to the identification error 2PA,

Proof. Select a Lyapunov function (storage function)
as

S = ATPA, +tr {WﬂK;lﬁl,t} +tr {W{tKZ—lWZ,t}

(10)

where P € R™*" is positive definite matrix. According
to (5), the derivative is

Sy = AT (PA+ ATP) A, + 20T PW, 40(2¢)
+2AT PWa (T )v(us) + 28T P,
+oAT P [Wl &+ Widy(ur)
. T . T
+2tr {WHK;lWM} + 2tr {W“Kglfvﬁz,t}

Since AT PW;6, is scalar, using (20) and matrix in-
equality

XTy + (XTy)" < XTA7IX +YTAY (1)
where X,Y,A € ®"*F are any matrices, A is any
positive definite matrix, we obtain

oAT PW;i5, < ATPWFAT'WTPA,
+5{ M5e < AT (PW1P + Do) A, (12)
AT PW3 dv(us) < AT (PWoP +uDy) Ay
So we have
: PA+ATP+P (Wy+ W) P
< AT
= L + (Do + 1Dy + Qo) B
+2tr {Wl,thlwl,t} + 20T PW; 40(2) + 20T P
T
+-2tr W2’tK2_1W2’t} + 2A$PWQ¢(]§(§{)’Y(U,§)

—AT QoA

Since fVIV/l,t = Wl,t: if we use the updating law as in
(25) and Al, we have

Sy < —AT QoA + 24T P, (13)

From Definition 1, if we define the input as ﬁ and the
output as 2P A, then the system is strictly passive with
Vi = AT QoA > 0.

Remark 2. Since the updating rate is K;P (i = 1,2),
and K; can be any positive matrix, the learning process
of dynamic neural network (9) is free of P, the solution
of Riccati equation (8).

Corollary 2. If only parameters uncertainty present
(f+ = 0), then the updating law as (9) can make the

identification error asymptotic stable,
lim At = 0,

) t—oo (14)

Wl,t € Loo, W2,t S Loo

Proof. Since the dynamic of identification error (5) is
passive, the storage function S(xz;) satisfies

S(zy) < fE2PA, =0
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The positive defined S(x;) implies A, Wi+ and Woy
are bounded.

From the error equation (5) A; € Lo

S < —ATQoA; <0 (15)
Integrate (15) both sides

/ 1Adllg, < So = Soo < 00
0

So Ay € Ly N Ly,, using Barlalat’s Lemma we
have (14). As us, a(Z;), ¢(z¢) and P are bounded,

lim Wy =0and lim Wy, =0.
t—00 t—o0

Remark 8. For model matching case, Lyapunov-like
analysis can reach the same result as Corollary 1 and
Corollary 2 (Yu and Li, 2001). But in the case of
modeling error, we will give a new conclusion on neuro
identification: the gradient algorithm (9) is also robust
respect to unmodeled dynamic, bounded disturbance
and stochastic noise.

Theorem 3. Using the updating law as (9), the dynamic
of neuro identifier (5) is input-to-state stable (ISS).

Proof. In view of the matrix inequality
XTY + (XTY)" < XTAT'X +YTAY
2ATPf, < ATPA;PA + FFAF
(15) can be represented as
S, = —AT QoA +2AT PF, o
< ~Amin (Qo) 1 A¢ell” + AT PAsPAL + fEAG fo
< —ogag 1B+ 8) 7 Hft”

where
A = [(Amin (Qo) — Amax (PAJP)] | Al
817 = e (477) | 7]

We can select a positive defined matrix Ay such that

>\max (PAfP) S )\min (QO) (16)

So a and 3 are Ko, functions, S is an ISS-Lyapunov
function. Using Theorem 1 of (Sontag and Wang, 1995),
the dynamic of identification error (5) is input to state
stable.

Corollary 4. If the modelling error ﬁ is bounded, then
the updating law as (9) can make the identification
procedure stable

At € Lo, Wit € Lo, Wayt € Lo

086

Proof. TFrom Property 2 we know input-to-state
stable means that the behavior of the dynamic neural

networks should remain bounded when its input is
bounded.

Remark 4. Since the state and output variables are
physically bounded, the modelling error f; can be as-
sumed to be bounded too ( see, for example (Jagannathan
and Lewis, 1996)(Poznyak, et al., 1999)(Rovithakis and
Christodoulou, 1994)). The condition (16) can be es-
tablished if Ay is a small enough constant matrix. Un-
like robust adaptive laws, such as dead-zone (Poznyak,
et al., 1999) and o—modification (Kosmatopoulos, et
al., 1995), we do not need to know the upper bound of
uncertainties.

Remark 5. Tt is well known that structure uncertainties
will cause parameters drift for adaptive control, so one
has to use robust modification to make identification
stable (Ioannou and Sun, 1996). Robust adaptive meth-
ods may be extended to neuro identification directly
(Jagannathan and Lewis, 1996)(Poznyak, et al., 1999)
(Rovithakis and Christodoulou, 1994). But neuro iden-
tification is a kind of "black-box” method, nobody
needs structure information and all of uncertainties
are inside the black box. Although robust adaptive
algorithms are suitable for neuro identification, they
are not the simplest. By means of passivity technique,
we success to prove our conclusion: pure gradient al-
gorithm is robust with respect to all kinds of bounded
uncertainties for neuro identification.

3. SYSTEM IDENTIFICATION WITH
MULTILAYER NEURAL NETWORKS

We construct the following multilayer dynamic neural
network:

3, = ATy + W10 (ViaBt) + Ward(Va B (ug) (17)

where 7; € R" is the state of the neural network, A
€ R™*" ig a stable matrix. Wy, € R, Wy, € R
are weight matrices of output layers, Vi € R™*",
Vo € R™*" are weight matrices of hidden layers. The
vector field o(x;) : R — R™ is assumed to have the
elements increasing monotonically. The function ¢(-) is
the transformation from R™ to R™ ™. w(u;) € R,
is selected as saturation function: ||7(us)||® < @. The
typical presentation of the elements o;(-) and ¢;;(.) are
as sigmoid functions

oi(wie) = ai/ (L+e ") — ¢

Generally, dynamic neural network (17) cannot follow
the nonlinear system (1) exactly, it may be written as



W. Yu: Passivity Analysis for Dinamic Neuro Identifier

zy = Az + Wfo(Yloxt) (18)
W p(Voxe)m (us) — fi (Vlo, VZO)
Wi and W5 are optimal matrix which may minimize
modelling error f;, they are bounded as

WIATIWT <Wy, WiA7'W3T <W,  (19)

VY and V§ are prior given matrices which are ob-
tained from off-line learning. Let us define identification
error as A = Ty — x4, 01 = o(VPTy) — a(VPzy),
by = PV T (ue) = S(Vawe)m (we) , T 1= o (Va,6Z¢) —
-~ ~/ -~ -~ i
O'(Vlofﬂt), on = ¢(V2,t5€t)7r (ug) — qu\(/Vzoxt)W (ug), Vig:=
Y}/,t - V10> V2’,t = V2,t - Vzo, Wl,t = Wl,t e Wf,
Wai = Wa, — W5. Because o(-) and ¢(-) are cho-
sen as sigmoid functions, clearly they satisfy Lipschitz
condition

5T A5 < ATALA, qst Asd, STAT AN

~/ Ir o~ (20)
0, = Do V14T + Vg, (75,5 D(/>V2 2 + V¢

where

00" (Z) 2 = |2
Dy =—F-— |Z=V1,t;3\t’ ”VUHA]_ <l HVl’txtHAl

T T 87 -
A2 (u A
Dd} = _l_(__;Z(—t)] ‘Z=V2,1,2t7 ”V¢Hil S l2 ”‘/Z)txtHA2

I1 >0, i3 > 0, Ay, Ay, A, and A, are positive define
matrices. The identification error dynamic is obtained
from (17) and (18)

Ay = AN + Wl 20V, t/x\t) + Wz td)(V2 1) T (ut)

+Wie: + Wi, +W2¢t+W2¢t +ft (V1 :Vz)

(21)

If we define

R:=2W; +2Ws, Q:=D,+uDy+Qo (22)

and the matrices A and Qg are selected to fulfill the
following conditions:

(1) the pair (A, R'/?) is controllable, the pair (Ql/ 2 A)
is observable,

(2) local frequency condition satisfies
ATRT'A-Q > >
R [ATR—

ATR'—R'A
~Rr4]"
then the following assumption can be established:

A3: There exist a stable matrix A and a strictly
positive defined matrix (g such that the matrix Riccati
equation

ATP 4+ PA+PRP+Q=0 (24)

has a positive solution P = PT > 0.

This conditions is easily fulfilled if we select A as stable
diagonal matrix. Next Theorem states the learning
procedure of neuro identifier.

Theorem 5. If the weights Wy 4, Wa ., Vi and Vo4 are
updated as

Wiy = —K1Po(V1, %) AT + K PD,Vy ;7,AT

Way = —Eo P(Vo ) (ug) Af :
+K3PDyVa i &ym (ug) AT (25)

. . l -
Vis=—K3sPWy: Do AT — "1‘K3A1V1,t55t33;r
VQ;L - —K4PW2’th>§tA’tT - §2K4A2‘72’t/$\t§3\$

where P is the solution of Riccati equation (24) Vi ; =
Vie— VP, i = 1,2, then the dynamic of identification
error (21) is strictly passive from f; (V2, V) to the
identification error 2PA;

Proof. see (Yu, 2002)

Remark 6. Since the updating gainis K;P (i =1---4)
and K; can be any positive matrix, the learning process
of dynamic neural network (25) dose not depend on
the solution of Riccati equation (24). Wy DA, is the
error backpropagation for the hidden layer, z7 is the
input to the hidden layer; (V4 %) is the input for
the output layer, so the first parts KjPo(Vy @) AT
and —K3PW; :DyA+Z7 are the same as the backprop-
agation scheme of multilayer perceptrons. The second
parts are used to assure the passivate properties of
identification error.

Corollary 6. If V¥ and VJ are optimal values, and
only parameters uncertainty present (ﬂ == (), then the
updating law as (25) can make the identification error
asymptotic stable,

lim A, =0 , (26)

Theorem 7. Using the updating law as (25), the dy-

namic of neuro identifier (21) is input-to-state stable
(ISS).

Corollary 8. If the modelling error ﬁ is bounded, then
the updating law as (25) can make the identification
procedure stable

At € Loo: Wl,t € Loo: W2,t € Loo

Proof. From Property 2 we know input-to-state
stable means that the behavior of the dynamic neural
networks should remain bounded when its input is
bounded.
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For model matching case, Lyapunov-like analysis (Yu
and. Li, 2001) can reach the same result as Corol-
lary 1. But in the case of modeling error (ﬁ # 0),
robust modification terms have to be added in the
updating law in order to assure stability (Jagannathan
and. Lewis, 1996)(Poznyak, et al., 1999) (Rovithakis
and Christodoulou, 1994). Since the state and out-
put variables are physically bounded, the modelling
error f; can be assumed to be bounded too ( see,
for example (Jagannathan and Lewis, 1996)(Poznyak,
et al., 1999)(Rovithakis and Christodoulou, 1994)).
The robust modification usually depends on the upper
bound of modeling error f;. Unlike robust adaptive
laws, such as dead-zone (Poznyak, et al., 1999) and
o—modification (Kosmatopoulos, et al., 1995), the up-
dating law does not need the upper bound of uncer-
tainties.

Theorem 9. If the modelling error fe (VP,V3) is bounded

as ftTAfft <7 (Vlo, V), P in the updating law (25) is
the solution of following Riccati equation

ATP+PA+P(2W1 +2W2+Af)P
+(Dy+TDg+ Qo) =0

then the average of the identification error satisfies

(27)

: T
limsupjl;/o 1815, dt <7 (V?,V5) (28)

T—o0

Qo is any positive defined matrix.

Proof. Let define a Lyapunov function as (10), in view
of the matrix inequality

9ATPJ, < ATPA;PA; + AT fo
< ATPAsPA, +7 (VP V7))

and the updating law (25), the derivative of the Lya-
punov function (10) is

S, < AT[PA+ATP + P (2W, + 2Wa + Af) P
+ (D, +aDg + Qo)) At — AT QoA¢ 47
From (27) we have
St < -AT QoA+ 7 (V10: Vzo) (29)
Integrating (29) from 0 up to 7' yields
T
Ve—Vos~ [ ATQout 7T
0
So
, T A ‘
/ﬂﬁ%mﬁsw—w+wsw+w
© O .

(28) is established
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Remark 7. The learning law (25) is depends on prior
known matrices V¥ and Vi, these two matrices will
influence the modeling error ]?t in (18). The identifica-
tion error will convergence to the ball radium the upper
bounded of fi. So an off-line learning is required to
determine suitable V? and V7, after that the neuro
identifier may be used for nonlinear system on-line
identification.

4. SIMULATION

The engine operation at idle is a nonlinear process that
is far from its optimal range. Because it does not require
any large degree of instrumentation or external sensing
capabilities, the idle speed control is also accessible and
can be formatted as a benchmark problem for control
society. The process of engine at idle has time delays
that vary inversely with engine speed and is time-
varying due to aging of components and environmental
changes such as engine warm-up after a cold start. The
measurement of system outputs occurs asynchronously
with the calculation of control signals. We assume
that the occurrence of plant disturbances, such as
engagement of air conditioner compressor, shift from
neutral to drive in automatic transmissions, application
and release of electric loads, and power steering lock-up,
are not directly measured. The dynamic engine model
a two inputs and two outputs system (Puskorius and
Feldkamp, 1994):

P =kp (o —1ao) s N =k (Ti = T1)
mai et (1 + kn'LlQ + kmr202) g (P) 3
7ﬁao = —kp3N — kpa P+ kms NP + kaNP2

The engine model parameters are for a 1.6 liter, 4-
cylinder fuel injected engine

() = 1 P < 50.6625
I\ =19 0.0197/101.325P — P2 P > 50.6625

T, = —39.22 + 32502414, — 0.01126% 4 0.6356

2
+%g (0.0216 + 0.0006756) N — (26%) 0.000102N2
N\ .
= = 7
T = <m + Ty, Mgo = Mao(t — 7)/ (120N)
kp =42.40, ky = 54.26
k1 = 0.907, ko = 0.0998
Ems = 0.0005968,  kma = 0.0005341
ks = 0.000001757, 7 =45/N

The system outputs are manifold press P (kPa) and
engine speed N (rpm). The control inputs are thottle
angle 6 (degree) and the spark advance § (degree). Dis-
turbances act to the engine in the form of unmeasured
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g Mmanifold press(kPa)

time(second)
9 5 10 15 20 25 30 35 40

Fig. 2. Manifold press

accessory torque Ty (N-m). The variable m,; and mq,
refer to the mass air flow into and out of the manifold.
Mgo is the air mass in the cylinder. The parameter 7 is
a dynamic transport time delay. The function g (P) is a
manifold pressure influence function. 7} is the engine’s
internally developed torque, Ty, is the load torque. If we
define z = (P, N)*', w= (6, §)7, then the dynamic
oy . (ErY _ | filz,u)
of vehicle idle speed are z; = <x2> = (fg(ac,u)>
f1 and fo are assumed to be unknown and only =z
and u are measurable. In order to do the simulation,
t

we select input as 6 = 30sing, 6 is sawtooth wave

with amplitude 10, frequency %, T4 is square wave with
amplitude 20, frequency %, zo = [10, 5007 .

Let us select dynamic neural network as

Ty = AZy + W1,tf7(V1,t55t) + Wz,td)(Vz,tft)W ()

_02 _02 , Bo = [0,0]7, Wi, and Wa, €
R2*3, Vi, and Vo € R3*2. The sigmoid functions
are o(z;) = ‘1':;;%‘?, — 05, ¢(z;) = H_—eo—<2n';7 -
0.05. m(us) = us. Dy = diag[Dy,,DoyDes), Dy =
diag [D4,1,D¢2,D¢3] ; uz = 0,
de2%1
o+ 6522‘?"?)2 ’
04e V222, N
_0—0-‘6——2’“1‘; Za = (Vz tx)~
(1 + e—O.ZZzy:,;) ’ ’ *
We select K1P = KsP = K3P = K4P = 2I.
The learning law as (25). If we choose V¥ = V¥ =
0203
0.2 0.3 | ,. the identification results are shown in Fig.2

0.2 0.3
and Fig.3

where A =

Z1,i = (V1,4T),

a4

Dy, =

11
If we choose another V) = V¥ = |11}, the dash
11

lines in Fig.4 and Fig.5 correspond to the identification
error with these new matrices V° and V3. So we select

engilne speed rpm)

2500

tim e(second)
[ 5 10 15 20 25 30 35 40

Fig. 3. Engine speed

go —manifold press error (kPa)

60

40 -

S hidden nodes

z: Jr ). ]

U
-20 3 hidden nodes

tim e{second)
5 10 15 20 25 30 35 40

-40
o

Fig. 4. Manifold press error with different V;° and V,?

8op&ndine speed error {rpm)

laitate with o and J
1 '

tim e(second)
s 10 15 20 25 30 35 40

Fig. 5. Engine speed error with different V® and V0

0.20.3

0.20.3

0.2 0.3
networks as

as V{ and Vi .If we use signal layer neural

i‘\t = Ait -+ let(f(iﬁt) + Wz,tqﬁ(’x})w (ut)

all of conditions are the same as multilayer neural net-
works, the dash lines in Fig.6 and Fig.7 show the com-
pensation of the identification error with single layer
and multilayer neural networks. One can see that the
multilayer dynamic neural networks are more powerful
than single-layer dynamic neural networks, any they
are robust with respect to bounded uncertainties.
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80 Manifold press error (kPa}

60

40
Single layer NN
20

20 i

Time(second)
) B 10 15 20 25 30 35 40

-40

Fig. 6. Manifold press error with single layer and
multilayer networks

800 Engine speed error (rpm}

600 f:

Single luyer NN

a0 f:
2004 |

]

-200
Multi layer NN

-400

-600}

Time(second)
5 10 15 20 25 30 35 40

-800
0

Fig. 7. Engine speed error with single layer and multi-
layer networks

5. CONCLUSION

By means of passivity technique, we give some new
results on neuro identification with multilayer dynamic
neural networks . Compared with other stability anal-
ysis of neuro identifications, our algorithm is more
simple because robust modifications are not applied,
so the algorithm proposed in this paper is more suit-
able for engineering application. We success to prove
that even the simple gradient learning algorithm may
guarantee the identification error robust stable, and the
backpropagation learning algorithm may guarantee the
identification error robust stable.
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