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Abstract

A data structure useful for prefix search in a very large dictionary with an
unlimited query string is discussed. This problem is important for
morphological analysis of inflective languages, including particularly
difficult cases such as German word concatenation or Japanese writing
system that does not use spaces; similar tasks arise in DNA computing.
The data structure is optimized for locality of access: to find all necessary
records, access to only one block (page) of the main data storage is
guaranteed, which significantly improves performance. To illustrate its
usefulness, the algorithms of exact and approximate search are described,
with application to morphological analysis and spelling correction. The
algorithms for building, exporting, and updating the data structure are
explained.

Keywords: prefix search, approximate prefix search, approximate
string matching, morphological analysis, spelling correction,
natural language processing, DNA computing.

Resumen

Se presenta una estructura de datos que es util para la bisqueda de
prefijos en un diccionario muy grande con una peticion de entrada no
limitada. Este problema es imporiante para el andlisis morfologico de los
lenguajes flexivos, incluyendo los casos particularmente dificiles tales
como encadenamiento de palabras en el alemdn o el sistema de la
escritura japonés que no uliliza espacios; las tareas similares se presentan
en el procesamiento computacional de ADN. La estructura de datos es
optimizada para el acceso local: para encontrar todos los registros
necesarios, se garantiza el acceso a sélo un bloque (pdgina) del
dispositivo principal de almacenamiento de datos, lo que significadamente
mejora el rendimiento. Para ilustrar su utilidad, se describen los
algoritmos de la busqueda exacta y aproximada, aplicados al andlisis
morfolégico y.la correccion de ortografia. Se explican los algoritmos para
la construccion, exportacion y actualizacion de la estructura de datos.

Palabras clave: bisqueda de prefijos, busqueda aproximada de
prefijos, comparacién aproximada de cadenas, andlisis
morfoldgico, correccién de ortografia, procesamiento de lenguaje
natural, computacién de ADN.

1 Introduction

A typical database system is, basically, a device that can
answer a simple question: Which records have the key x
exactly equal to the given query string s? In some cases we
are interested in another question: Which records have the
key x that is a prefix of the given string s? By prefix, we
mean an initial substring.

Definition 1. By x < s, we denote the fact that the string
x is a prefix (initial substring) of the string s, i.e., 3 a string
y (possibly empty) such that s = x y. Here x is a finite-length
string and s, y are finite or infinite strings.

Thus, given a query string s, finite or infinite, and the
database D, we can distinguish the following tasks of
finding all records with the keys x such that:

Task 1. Exact search: {x € D|x = s}; s is finite.

Task 2. Approximate search: {x € D| x~s} for some
criterion of similarity ~; s is finite.

Task 3. Prefix search: {x € D|x < s}.

Task 4. Approximate prefix search: {x € D|dx'=x:
x’ < s} for some criterion of similarity .

In this paper, we are interested in the latter two cases,
prefix and approximate prefix search, and specifically when
the dictionary D is very large in terms of the number of
records.

Note that unlike classical database search-—Task 1, in
approximate prefix search the length of the key x looked for
is not known a priori. As we will see below, for a long
enough query string s even its length needs not to be
specified in the query, i.e., s can be considered infinite. This
task has some specificity and raises some technical issues
that the classical task of exact key matching does not
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face——specifically, the problems related to data access
locality.

In this paper, we will discuss these issues and propose a
data structure optimized with respect to them, along with
the basic operations and sample applications. The structure
proves to be a variation of a 2-level B-tree with slight
redundancy.

In Section 0, we explain the motivation for the task of
prefix search in very large dictionaries, formulate the
technical problem of access locality faced with by the
prefix search task, and discuss the related work. In Section
0, we explain the proposed data structure, step-by-step
improving the naive approach to the solution. In Section 0,
we give a sketch of the algorithms for the basic operations
with this data structure. Finally, in Section 0 we illustrate
its usefulness for morphological analysis of natural
languages, and specifically, for spelling correction, i.e.,
approximate string matching combined with decomposition
of the string by a set of dictionaries.

2 The Problem: Prefix Search
in Very Large Dictionaries

Existing algorithms for prefix search, unlike those for exact
search, require addressing different physical locations in the
dictionary, which causes very inefficient behavior with
block-oriented physical storage devices such as hard disks
or virtual memory mechanism.

Below we give more details on the prefix search and the
data access locality problem. The section 0 justifies the task
of prefix search in very large dictionaries. The section 0
explains the technical problem arising in the search in large
dictionaries. Finally, the section 0 describes the related
work found in the literature and some other approaches to
the mentioned problems.

2.1 Prefix Search in Very Large
Dictionaries: Motivation for
Morphological Analysis and DNA
Computing

One of the main sources of prefix search tasks are the cases
of analysis of the strings formed as a concatenation, without
any delimiter, of the substrings belonging to the same or
different dictionaries: s=s, ... s,, s; € Dor s; € D,

A typical example is the analysis of a DNA chain s as a
concatenation g ... g, of individual genes g; € D, while the
number of genes |D| can be very large.

Our main motivation, however, was morphological
analysis of words in highly inflective languages such as
Spanish, French, or Russian. In natural language
morphology, an example of the task is the following. Let us
consider a dictionary (a database) of Spanish stems!' like the
one shown in Table 1.

" The hyphen at the end of the stem is shown Just for readability
and is actually not a part of the stem.
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Table 1. A fragment of Spanish dictionary.

Key Value
clar- adjective claro
co- prefix co-
com- verb comer
con- preposition  con
concentr- ver concentrar
const- verb constar
constancia- noun constancia
constante- adjective constante
constat- verb constatar
constelacién- noun constelacion
constipad- noun constipado, -a
constru- verb construir
construccion-  noun construccion
constructiv- adjective constructivo
constructivismo- noun constructivismo
consult- verb consultar

In fact, the dictionary is much denser (Diccionario,
1992); we have omitted some lines for brevity. Spanish
words have highly inflected forms. For example, the stem?
constipad- gives rise to the wordforms constipado,
constipada, constipados, constipadas; the stem clar- to the
wordforms  claro, clara, claros, claras, clarisimo,
clarisima, clarisimos, clarisimas, claramente; the stem
constru- to about 700 wordforms such as Cconstruir,
construyo, construido, constriyanmelo®, etc. As we see,
finding the stem given a word form is the prefix search,
Task 3 above.

This task is ambiguous, since we need to find all prefixes
and not just the longest one. Indeed, here is an example
where the longest prefix is not the right one. Suppose the
Spanish dictionary contains such stems as ajen- for
(derecho) ajeno, moren- for (color) moreno, escalen- for
(tridngulo) escaleno, etc. Then, for the (subjunctive mode)
verb forms like ajen, moren, escalen, the stems mentioned
above are the longest ones, whilg the shorter stems aj-(ar),
mor-(ar), escal-(ar) are the correct ones. Since making any
linguistically meaningful decisions is not the business of
the string search mechanism, we conclude that the
dictionary search procedure should enumerate all prefixes it
found, starting from the longest one since usually they have
higher probability to prove to be the right one.

Though the examples of stem ambiguity are rather rare
in Spanish, they are much more frequent in languages with
more developed morphological inflection, such as Russian,
Finnish, Turkish, just to mention a few. What is more, in
German compound words are very frequent, so that one
word can consist of many stems: for example, the first stem
of kommunikationstechnik is kommunikation-. The extreme
situation is, say, in Japanese writing system which just does

2 The meaning of the Spanish wordforms is not important for the
discussion, so we do not give any glosses.

3 We will explain below how we deal with letter alternations such
as accents.
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not use spaces between words,* much like the situation with
DNA.

In such cases, when it is impossible to separate a single
word before addressing to the stem dictionary, the query
string s used to look for its stem (prefix) x is actually the
whole text, i.e., can be thought of as unlimited in length.

On the other hand, there is another good reason to
consider the whole unlimited text as the query string to
search the stems, even in the languages that do mark word
boundaries with spaces or other punctuation signs. In all
such languages, such word delimiters are sometimes
overused. For example, a Spanish preposition a través de
contains two spaces and thus looks like three words, though
there are no technical reasons to treat it so. Thus, even in
Spanish, like in Japanese or German, not always we can
easily detect the word boundaries!® Fortunately, in order to
use the search mechanism discussed in this paper, we really
do not need to: it is enough to include the word a_través de
in the dictionary, with its both spaces, as one record key.

Thus, morphological analysis of natural languages
requires prefix search in very large (stem) dictionaries.

2.2 The Data Locality Problem and its
Motivation for Morphological
Analysis

The second consideration contributing to the problem is of
purely technical nature—the way the block-oriented storage
devices process data access.

Data locality means access to a small region of data
storage per operation. Suppose you need to retrieve the first
name, last name, and age of a person from a file.

e If all you need to do is to read a line 1234 where this
data is stored, then this operation is local.

¢ On the other hand, if you need to read the name from
the line 678, surname from 901, and age from 2345,
then this way of data retrieval is not local since you
have to address several different regions of data storage
to fulfill a single operation.

With most of data storage devices currently in use, local
access is on average much faster than non-local access is.
The most obvious example is a tape where the access time
is proportional to the distance between the addressed
locations. Disk storage, be that a hard disk or a CD, is less
sensible to data locality but still sensible: in this case, the
access time is roughly proportional to the number of
addressed locations, so that in the example'/ above, the
second variant is trice slower than the first one. This is
because the data are exchanged with a disk storage device
by blocks, or sectors, of fixed size. Reading, say, a kilobyte

Though switching from Kana letters to Kanji hieroglyphs in
many cases indicates the word boundary, still the problem of the
text flow segmentation into words is more difficult in Japanese
than in, say, English.

English examples: in order to, each other, New York; Russian
example: vo chto by to ni stalo ‘by all means’.

of sequential data takes nearly the same time as reading one
byte, but repositioning the reading head to another location
takes significantly more time.

It might be argued that large amount of available
memory renders the data locality problem unimportant
since the cost of addressing to the random access memory
(RAM) is proportional just to the number of retrieved bytes
regardless to their location. However, this is not completely
true. Under the operating systems widely used nowadays,
like Windows 98 or NT, the large (virtual) memory is much
“less random access” than in good old times of DOS.

Indeed, most of the physical memory is occupied by the
active concurrent programs and the operating system itself,
while random parts of any data loaded in memory are
swapped out to the hard disk. Thus, under such systems,
loading a very large dictionary into memory makes little
difference from storing it on the disk. Simple experiments
show that data locality problem keeps its importance even
for a data structure that does “fit in memory”—i.e., has
such size that it could be stored in RAM if no operating
system nor concurrent processes existed.

On Intel processors, the quantum—called page—of
memory is four kilobytes. While sequential accesses to the
same page can be considered local, access to a different
page with a certain probability causes hard disk read and
write operations because of virtual memory swapping.

This, for an algorithm to work fast, it should mostly
address data within a four-kilobyte address window and
avoid random accessing to many addresses differing more
than four kilobytes.

The data locality problem is especially important for
natural language analysis applications that use huge amount
of information in parallel for the analysis of each phrase.
While each individual dictionary—a morphological
dictionary, syntactic dictionaries such as subcategorization
and lexical attraction (collocation) (Yuret, 1998)
dictionaries, a semantic network dictionary (Cassidy, 2000;
Fellbaum, 1998), world knowledge dictionaries (Lenat &
Guha, 1990), etc.—might fit in the physical memory, all of
them together will not. Meanwhile, the processing of each
phrase requires using of all of these resources in parallel,
before the processing of the next phrase begins, and with
tens of thousands of different words occurring in essentially
random order. Thus, natural language processing tasks are
unique in their highly intensive memory using that causes
intensive virtual memory disk swapping. With this, no
single large dictionary can be considered “completely
stored in RAM.”

However, only morphological analysis faces the problem
of data locality. All other dictionaries—syntactic, semantic,
and world knowledge ones—can be stored in a classical
database with exact search—Task 1 in the terminology of
Section 0, for which data locality problem can be easily
avoided. With this, not more than one data storage access
per word is necessary for each of the dictionaries but the
morphological one. Thus, the data locality problems with
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which the morphological analysis faces is the bottleneck of
the data access during natural language analysis.®

Returning to the search algorithms, let us consider an
example of a data locality-friendly one and an example of
one that is not.

e The classical hash table is data-local. To find the
record with the key construccién, its hash value is
calculated, which defines the address starting from
which (at this address or at some near one in case of
collision) the record is located. However, hash table is
good for exact search—Task 1, but it does not work for
prefix search—Task 3, for which a potentially infinite
number of hypotheses are to be tried.

e  Binary search in an alphabetically ordered list works
fine for prefix search task. The main search operation
in this case is that of finding the alphabetic place of a
given string in the list.” However, this structure is not
local: for a binary search in, say, a 1000 items, one
needs to address 10 different locations in the list, some
of which are quite far from each other, see Fig. 1.

With binary search, the problem is not only in a wrong
algorithm. Prefix search task for an alphabetically ordered
list is inherently non-local, at least if all possible prefixes
are to be found. Indeed, let us consider the search procedure
for the Spanish verb form consto. Its alphabetic place in the
dictionary in Table 1 is after constelacion-, while the true

answer is const-, and what is more, since the prefix search’

procedure should find all possible prefixes, the records
con-, co-, and c- are also to be retrieved. In (Diccionario,
1992), the distances between these locations are as follows:
c- ... (9327 words) ... co-... (2101 words)...
(1445 words) ... const- ... (95 words) ... constituyentes-
(consto), see Fig. 2. Since these are the results of the query
and thus any algorithm is to address these locations, no
algorithm based on this data structure can be local.

con- ...

In this paper, we will discuss a data locality-friendly
modification of alphabet search. Namely, at the cost of
slight redundancy, our data structure guarantees that after
retrieval of exactly one block (page) of data from the main
storage; all the records with the keys being initial substrings
of the given string are found.

2.3 Related Work

There is a vast literature on the prefix-matching data
structures, such as tries, B-Trees, Prefix B-Trees, B-+-Trees,
extendible hashing, etc. (Aho, 1990; Bayer & Unterauer,
1977; Comer, 1979; Gusfield, 1997). The theory of such
structures is developed in the context of the database index

Here we do not discuss the CPU time of analysis since it
depends solely on the speed of the CPU and not of the data
storage device.

By alphabetic place of a given string s in the alphabetically
ordered list D, we mean the position to which s could be
1inserted into D, see Definition 2 below.
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management rather than on dictionary application; thus,
these structures and the corresponding algorithms are
optimized with respect to efficient updating (insertions and
deletions) (Johnson & Shasha, 1993), which is rather
irrelevant for natural language processing. On the other
hand, these structures are not optimized for the access
locality (see the next section) that is the main topic of our
paper. Actually, what we propose is similar to a 2-level B-
tree (that we later extend to an n-level B-Tree) with the
additional feature of repetition of some keys, which
optimizes the structure with respect to data access locality.

Data locality is a well-known issue in programming and
computer science (Knuth, 1998). Recently there is no much
discussion of this topic since as the amount of the availabie
RAM increases, the problem looses its importance for many
applications. As we have shown, however, this is not the
case of morphological analysis module of a natural
language analysis system.

In computational linguistics, there are two major
approaches to morphological analysis, one based on
morphonological transformation and another on simple
dictionary lookup. The first approach is exemplified by the
two-level morphology (Koskenniemi, 1983). With such
methods, the program first guesses what the stem of the
wordform could be, and then checks each hypothesis
against the dictionary. E.g., for the wordforms like ladies
and caries, the hypotheses lady- and *cary- would be tried,
correspondingly. Thus, no prefix search is required.
However, the method is not data-local due to multiple
hypotheses: for the exampie above, the hypothetical stems
*ladies- and caries-, as well as many others, are to be
looked up in the dictionary, too.

The other, currently more widely used approach to
morphological analysis was called by Hausser (1999)
allomorph method. With this method, the wordform is
considered as a concatenation of substrings (allomorphs)
listed in separate dictionaries, as we discussed in the
Section 0. There are two variations of this method that can
be conventionally called right-to-ieft and left-to-right
analysis (Gelbukh, 1995). With the first method, a word is
separated from the letter string, then all possible affixes are
determined by the small lists of affixes, and then each
hypothetical stem is looked for in the dictionary (Sidorov,
1996). This leads to the same problems with multipie
hypotheses as with two-level morphology discussed above.
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Figure 1: Algorithm locality problem and the suggested solution.

Finally, the left-to-right analysis uses the whole word or
even the whole text from the current analysis point on, as
the query string s for the dictionary lookup procedure that
uses prefix search to find all hypothetical stems in one
search operation. We have discussed the advantages of this
method in the Section 0. In this work, we show that such
search can be made in a data locality-friendly way.

Thus, the main antecedents of our work are left-to-right
allomorph method of morphological analysis (Gelbukh,
1995; Hausser 1999) and the techniques of prefix search in
B-trees. What is new in our task is considering data locality
problem with respect to the prefix search, and what is new
in our solution is the repetition of some records in the data
structure, which guarantees one storage block access per
word, as explained in Section 0.

2.3.1 Motivation for Spelling Correction Task

In the Section 5.2 we will illustrate the usefulness of the
suggested structure on the spelling correction application,
which is known to be especially computationally expensive
and thus especially sensitive to performance of dictionary
lookup procedure.

There is extensive literature on spelling correction and
approximate string matching (Aho, 1990; Frakes & Baeza-
Yates, 1992; Gusfield, 1997). The spelling-related problems
can be classified into the following increasingly complex
tasks (Kukich, 1992):

1. Non-word error detection (*graffe for giraffe),

2. Isolated-word (or out-of-context) error correction (find
giraffe given *graffe), and

3. Context-dependent error detection and correction (*all
there apples for all three apples).

The solution to the former task can be obtained as a by-
product of morphological analysis: a word that cannot be
assigned any plausible morphological structure is a possible
error. In this paper, we argue for that the dictionary lookup
algorithms used nowadays for morphological analysis are
not optimized with respect to the data locality problem; we
show how the proposed data structure can improve its
performance.

As to both the second and the third problem, the
corresponding algorithms typically consist of two
sequential steps: (1) generating all possible spelling
correction candidates and (2) ranking these candidates
according to some criterion (Kernighan et al., 1990;
Jurafsky & Martin, 2000). For example, to correct the string
*acress, first the set of correction candidates is generated:
actress, cress, caress, access, across, acres; then for each
candidate, some estimation of its quality is computed, and
the best-scored variant is chosen. Thus, the task is broken
down into two nearly independent subtasks: generation and
scoring of the candidates.

Scoring is the more “linguistically-rich” task. Many
strategies have been suggested for scoring. For context-
dependent error correction, mostly probabilistic approaches
are. used, such as Bayesian inference: of all candidates the
one is chosen that maximizes the probability of the
surrounding N-gram (Kernighan et al., 1990). Other, more
linguistic coherence ; measures are possible, such as
semantic coherence (Hirst & Budanitsky, 2003) or
collocation detection (Bolshakov & Gelbukh, 2003a). In
many cases, however, a shallow parser is enough to judge
on which candidate results in a grammatical sentence.

For out-of-context error correction, the most popular
measure is the edit “distance: the minimum number of
operations (out of some inventory of operations) needed to
step by step transform one of the strings to another one.
Sometimes the following three operations are considered:
substitution, deletion, or insertion of one letter
(Levenshtein, 1966); in this case, the edit distance between
table and cables is 2: one substitution (¢ for f) and one
insertion (s). Other possible operations can include
transposition of two adjacent letters (Damerau, 1964) or
more complex transpositions, see Section 5.2. To measure
the edit distance between two given strings, dynamic
programming approaches are used (Wagner and Fisher,
1974).

In contrast to scoring, generation of possible variants is
usually less “intelligent” task. Some formal measure of
string similarity is assumed, and the strings are generated
that are close enough to the original string with respect to
this measure. Obviously, the string similarity measure and
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the threshold for the closeness of the generated variants to
the original string are to be coherent with the scoring
policy. In this paper, we consider only the edit distance
measure; thus, our approach would not be appropriate for,
say, substitution of near-synonyms (*#all school — high
school) or paronyms (*highly sensible detector — highly
sensitive detector) (Bolshakov & Gelbukh, 2003b). As the
inventory of edit operations we consider substitution,
omission, deletion, and two kinds of transposition (see
Section 5.2), though our discussion does not really depend
on the specific set of edit operations.

We consider the task of generation of correction
candidates, as opposed to their scoring or selection of the
best variant. We restrict the set of the generated variants to
those at the distance 1 from the original string. This is
sufficient for correction of single-letter errors (*shool,
*schol, *schooll), which cover at least 80% of the errors
people make (Damerau 1964). Our algorithm can be,
though, easily modified to generate the variants of the
distance 2, 3, etc., as well to other edit operations (e.g.,
*scholl).

Our discussion of spelling correction is not aimed at
proposing a new approximate string-matching algorithm
per se. Instead, we will show how the data structure used
for exact string matching within an integrated
morphological analysis system can be used for fast spelling
correction without any modifications that would slow down
the normal (exact) operation or require additional storage
space.

3 Data Structure

Hereafter we will speak of the keys or the records that have
these keys interchangeably, when this does not create any
confusion. For -example, we will say “list of keys”
implicitly supposing that attached to each key in the list is
some information (value) structure of which is not
important for our discussion.

We will start from a naive approach and then describe
two improvements to it. Namely, let us start from an
alphabetically ordered list of keys D that appears to be quite
natural data structure for the prefix search task. As we have
seen in Section 0, there are two locality problems with this
list.

First, even if we are interested in finding only the
alphabetic place of a string s in D, binary search is not a
local algorithm.

Second, if we are interested in finding the initial
substrings of s, especially all of them rather than only one,
then non-locality is an inherent property of such a data
structure, i.e., it does not depend on the algorithm used.

In this section, we will consider these two problems and
suggest the corresponding solutions. In Section 0, we will
describe a simple solution to the first problem, which
appears to be a kind of 2-level B-tree. In Section 0, we will
describe a solution to the second problem, which is our
novel contribution.
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3.1 Algorithm Locality: Index of Blocks

By a<b we will denote the alphabetic order on the letter
strings.

Definition 2. Alphabetic place D [s] of a string s in D is
the number of the records » & D such that <y, i.e., the
position of the key immediately before the place that s had
if it were inserted in D.?

In an appropriate context, we will understand by D [s]
the corresponding record itself rather than its number. This

‘should not cause confusion since it is always clear whether

we mean a number or a record. Note that the record D [s] =
s if and only if s € D.

Let us split D into segments, or blocks, B,
corresponding to the physical storage units such as disk
sectors, memory pages, network packages, etc.. D =UB,.
Such splitting can be done sequentially, from the first to the
last record. We add each record to the current block; if
adding a record exceeds the block size, we leave some
space in the current block unused, form the next block and
make the current record first in it. The system {Bi} can be

formally defined as the only system such that:

1. Each B; is a continuous segment of D which we will
denote by analogy with geometry as B, = [a, b] ={re
Dlasr<b},

2. D=UsB,

B,NB; = fori=j,

4. The total size of all records in each B, does not exceed
the required size of the block, and

5. No B, can be extended to the right without violating
this restriction on the size.

The uniqueness of such a system is obvious by induction
by the block number: the first block is defined uniquely,
then the second, etc.

Let us consider the task of finding the alphabetic place
D [s] of a given string s. Binary search is not a local
algorithm. However, it can be easily improved using an
index of the blocks.

Let us denote the first key of the block B, as b, and the

last key as ¢, so that the block is a segment B, = [5,,
e, ]cD.

Let us consider a set of keys 7 = {bi}, where b; is the
first key in B, . We call this set (first-level) index of the
blocks. ‘

Theorem 1. The alphabetic place of a string s in D is
located in the block with the number I [s]: D|s]e By

Proof: b, <s<b; -0

8 This notation is motivated by C++ programming language
where an array D of strings can be indexed with a string s,
which is denoted as D [s].
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Thus, the necessary block can be found by means of
search in the index 7. We consider 7 small enough so that
the data locality problem is not applicable to it. What is
more, it can be made even smaller by removing redundant
letters of some keys that do not change the alphabetic place
of any string. Namely, let us replace each element b, € I by

its minimal initial substring 5/ that is not an initial
substring of the last key of the previous block ¢,,: b/ <b,,
bi e, , and b is the minimal with this property (see
Definition 1 for the symbol <). Let 7' = {b}}.

Lemma 1. There do not exist x, y, z such that z<x,
zKy,z<y,and y<x.

Proof: Suppose the first three conditions hold. Since
z4y then z#y and from z<y it follows z<y. Then

from z <x, z &y by definition of the lexicographic order
it follows x <y . ¢

Theorem 2. The alphabetic place of a string s in I is the
sameasin I': I[s]=1"[s].

Proof: Let i = I[s], j = I'[s]. First, since b, <s and
b/ <b,, then b/ <s. Second, since s<e, <b, , b <b

irl ® i+l i+l 2

and b/, £ e;, then, by Lemma 1, s <5/, . Thus, b/ <s <
b!,,,that means that i = I'[s] =;. 0

i+l

Thus, we can use an even smaller index /' to find the
necessary block. First, the place of s'is found in I', then the
block B, with the corresponding number is retrieved, and
then s is found in B; by any suitable method. Ignoring the
problem of locality of search in a small list I, we can say
that this algorithm of finding the alphabetic place of s in D
is local.

In practical implementation, for speed and simplicity we
implemented the search for s in /' =1, by using a second
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level index: we split /; into blocks and compiled an index
I, of their first keys. We applied this procedure
recursively, splitting that second level index into blocks and
compiling a third level index 7,, which in our case

consisted in only one block and thus did not need in any its
own index. ’

3.2 Data Locality: Block Prefix

Though, as we have shown in Section 0, the problem of
finding D[s] is local, the problem of finding an xe D,

x <s is not. As it was discussed in Section 0, first, x can be
located far from D{[s]; second, if we are interested in

finding all such keys, they can be located quite far from
each other, as we have seen with the keys co-, con-, const-,
etc. Such keys are probably located in different blocks B, .
What we propose is to add to each block all keys that can
be necessary for any query addressing this block. As we
will show, the changes will result only in appending some
small amount of information at the beginning of the block.
We call this additional piece of information a block prefix.
Namely, for any s such that D[s]le B, for any xe D

such that x <s, we propose to duplicate the key x with its
corresponding record to the block B. Probably some records
of D will be moved to other blocks since the size of the
block is fixed; thus this operation can cause changing the
way D is split into blocks and increase the number of
blocks. However, with this operation we reach our goal: by
retrieval of only one block B,, namely, such that

D{s]e B;, we find in it, locally, all such keys x e D that

i

x=<s.

Does this cause a significant increase of the dictionary
size? Does this result in complicated algorithms of search
and of dictionary building? Let us examine closer the set of
keys x; that are to be added to B and the way D is now

split into {B,.} .

(IS 1DMO ANHVA NILHLEAIA S
Cabodal (S 11(MO ANGTVA ML (LEM:
b

= Dictionary

Solution

block

‘\read

o] —

Figure 2: Data locality problem and the suggested solution.
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Definition 3. A set of strings S ¢ D is closed if Vx e S
and Vy € D, if y<x theny e S.

Definition 4. The closure S of a set S ¢ D is the
minimal closed subset of D that contains S.

Lemma 2. Definition4 is correct, i.e., there exists

exactly one minimal closed subset of D that contains S,
namely, § ={y e D|3x € Ssuchthat y <x}.

Proof: Obviously, this set is closed and contains S, since
for any x, x <x. On the other hand, it is contained in any
other set with these two properties.

Now we can formalize our solution. Let us split D into a

set of segments B, (which are not necessary the same B,
- that we discussed before), such that each closure B, , rather
than the block B, itself, has the size corresponding the

physical storage unit. All the statements of the previous
sections hold for this segmentation of D.

Let this segmentation of D be minimal, i.e., splits D into
a minimal possible number of blocks. We propose to use

{B,} as our main data structure (instead of the original set
of blocks {Bi}). Now we will show that this structure is
only insignificantly larger than the original set D: £ | B, |~
D).

Lemma 3. For any s and any xe D, if x<s, then
x=<D[s].

Proof: By definition of D[s], if xe D and x<s, then
x<D[s].Ifx= DJs], then x < D[s], else, by Lemma 1,
x<D[s]. ¢

Lemma 4. For any block B ¢ D and anyxe D, the
following conditions are equivalent:

e s suchthat D[s]e B and x<s,
e daeB suchthat x<a.

Proof: By Lemma 3. ¢

Thus, the set of keys x; to be added to a block B is

exactly the set of all initial substrings xe D, x<a of all
keys ae B. What is more, the keys to be actually added
are just initial substrings of the very first key b€ B since
the other ones are already in B. By 5 <a we denote the
alphabetical order.

Lemma 5. Let b be the first key of a block B < D, x €
D, x¢ B . Thenif Jae B suchthat x<a,then x<b.

Proof: Since x € D, x<ae B, and x ¢ B, then x < b.
Since b<aand x~<a,then,by Lemmal, x<5b.0¢

Thus, finally, the only keys to be duplicated into the
block in order to guarantee access locality are the initial
substrings of the very first record of the block:
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Theorem 3. For any segment S =[b,e] =« D, § =Su
{veD|y<b, y<b}.

Proof: By Lemma 5. ¢

Thus, each closed block B, is obtained from the
correspondent block B, by adding before its first record all

records from D whose keys are initial substrings of only
one, namely the first one, key of B, . Clearly, there are not

many such records in D.

For example, for a block of Spanish dictionary starting
with the stem constat- for constatar, only the records with
the keys const-, con- and co- are duplicated into the block,
no matter how large it is.

We carried out the experiments with the AMORE
morphological analysis and synthesis system we have
developed (Gelbukh 1995). In the dictionary, together with
each stem, the morphological information of the size about
20 bytes on average was stored. The blocks were of 1
kilobyte and contained about 30 records each on average.

In our experiments, there were about 2 to 3 records in
average added to each block, so the redundancy was about
10%, and would be proportionally less if we used larger
blocks, say, of 4 kilobytes.

With such a small redundancy, we guarantee the
complete locality of data: any initial substring query is
processed with retrieving of exactly one block of the main
data storage.

4 Operations: Searching, Building,
and Exporting

To prove the practical usefulness of the proposed data
structure, we provide the algorithms of its building,
exporting, and searching. We do not provide, however, any
fast algorithm of insertion and deletion, since these
operations are rather irrelevant for linguistic dictionaries,
which are not updated very frequently, though they are
relevant for databases (Johnson & Shasha, 1993).

4.1 Search

We have already discussed the idea of the search algorithm
in the previous sections; here we formalize it. Given a
string s and a dictionary (database) D, our task is to find all
x € D suchthat x <s (Task 3 in Section 0),

Suppose we have an algorithm A4 to find the alphabetic
place B, [s] in a given block, see Section 0 below. Then,

we start from the highest level of index 7, . With A, we find
the number /, [s], and retrieve the block with this number
from 7, ,. Then we repeat the search in this block, extract
the corresponding block from 7, ,, etc., until /,, and
finally retrieve from the main storage the block 5, that

contains D [s] and thus all such x e D that x <s.

The description of the algorithm A is not essential for the
present paper. It does not affect the issue of locality since
all its memory accesses are within one block (physical
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memory page). However, we will discuss it briefly because
of its importance for the practical implementation of a
system based on the proposed data structure. The algorithm
depends on the internal representation and possible
compression of data in the block.

The following Sections 0 and 0 are not essential for
understanding the main topic of the paper.

4.1.1 Search in a Compressed Block

Data compression is important for our algorithms because
of the fixed size of the block. Really, as we have seen in the
Section 0, additional overload to each block—the block
prefix size—does not depend on the block size. Thus, the
percentage of redundancy depends on the size of block. If
the size of block prefix is comparable with the total block
size, our algorithms are rendered unaffordable.

In our blocks, data is ordered alphabetically, so that the
keys with common initial substring are located together. To
compress such data, Cooper compression works well
(Cooper, 1958): instead of an initial substring equal to that
of the immediately previous key, only the number of
common letters is indicated. For example, the keys in
Table 1 are compressed in the following way: 0/clar-, 1/0-,
2/m-, 2/n-, 3/centr-, 3/st-, Slancia-, T/te-, 6/t-, 5/elacién-,
Slipad-, 5/vu-, 7/ccidn-, 8/tiv-, 11/ismo-, 4/ult-. The first key
in the block always has the Cooper coefficient 0.

Such compression is especially useful for morphological
dictionaries since in many languages there are variants of
stems for the same word differing only in the last few
letters. English examples are lady — ladi-es, stop — stopp-ed,
Spanish traduc-ir — traduj-o — traduzc-a; indic-ar — indiqu-
en, alcanz-ar — alcanc-en, Russian prevozmo-ch® —
prevozmog-u — prevozmozh-esh’™ (Zaliznyak, 1987).

Here we will not give any detailed comments on the
search algorithm but only a short description; we again
ignore the complications caused by the records with equal
keys. The main personage of the algorithm is the common
initial substring length e with the meaning of the length of
the maximal common initial substring of the query string s
and the current key @, € B being processed.

The keys g, are examined one by one. Initially, i = 0 and
¢ = 0. Let the Cooper coefficient of the current key a, be c.
If ¢>e, the algorithm just proceeds to the next key a,,,.
Otherwise, starting from the position ¢, the string s is
compared with g, , and the new value for e is determined as
the first position differing the two strings. During this
comparison, two special situations can be found. If s < g,
or the block is exhausted, the search process is over.
If a, < s, one of the keys we are looking for is found. It is

added to the set of the search results. In our
implementation, the search results are stored in a LIFO
stack, and each found key is pushed onto this stack. After
the search is over, the results can be one by one popped out
of the stack and examined; with this, they are examined in

9 “To overcome,” ‘I will overcome,” ‘you will overcome.’

the order natural for most applications, i.e., from the longest
to the shortest ones.

Since the block B contains the prefix with duplicated
records, all the necessary records are found in this only one
block.

4.1.2 Substring Chains

The search method described above looks through all the
records in the block until the alphabet place of the query
string s is found. However, there are algorithms jumping
directly to this position B [s], for example, binary search.
By storing some additional information in the dictionary,
we can find all the initial substrings of s starting directly
from B [s]. For this, let us suppose that with each record in
a€ B, a pointer to, or just the length of, the maximal
a'e B such that &' <a ‘is kept in the dictionary. Let
C(a)= { <a"<a < a}g B be a chain of such maximal

substrings.

Lemma 6. Vs and then

xeCBIs).

VxeB, if x<s,

Proof: By Lemma 3. ¢

Thus, to find all the initial substrings of s, the chain
C (B [s]) is to be looked through starting from B [s] until

an element x € C (B [s]) found such that x <s. Then the
chain C (x) is the result of the query. For most applications,
this chain is to be examined starting from x.

4.2 Building

In spite of simplicity of the formula for the duplicated
records, its application sounds like vice circle. Really, the
duplicated records depend on the first records of the blocks,
while- the block layout itself depends on such duplication,
since now it is the size of B, that is fixed, not that of B;.

However, we propose a simple algorithm for building such
a data structure given an alphabetically ordered list of
records D. Note that the algorithm builds the complete
structure rather than updates individual elements in it.

Our task is to build the structure in the block format
discussed above, i.e., to split D into a-minimal set of blocks
B; so that D=UB, and for each block, the size of its

Bi

Let us first consider an auxiliary data structure that we
call a stack of initial substrings. This is not exactly a LIFO
stack, but is similar to it. The stack of initial substrings S
has an underlying LIFO stack S’ of records of D, and
implements one operation, a kind of push, with the
following behavior; see Fig. 3. When a record with the key
s is pushed onto S, then the records are popped out of S’
until the record with a key s" < s is found on the top of S’
or §' is empty. Then, the new record is pushed onto S'.

Let the records of the ordered list D are read one by one
from D and pushed onto S. At the beginning of the process,
S is empty.

closure

< C, where C is a constant, say, 4 kilobytes.
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Until Sis empty or S.fop < s
Pop it from S.
Push s onto S.

Figure 3: Updating stack S with record s

Create an empty block B.
For each input record s do:
If there is not enough space in B to add s then
Output B.
Make B empty.
Add stack contents to B.
Add s to B.
Update the stack S with s.
Output B if contains any new records.

Figure 4: Dictionary formation algorithm

Let the records of the ordered list D are read one by one
from D and pushed onto S. At the beginning of the process,
S is empty.

Theorem 4. At each step of this process, after se D
is processed, S is ordered alphabetically from bottom to top

and contains exactly all records whose keys are initial
substrings of s: S={xe D | x<s}.

Proof: First, since the new records are pushed onto S’
(after some pop operations), then for each record, only the
records that came before it are deeper than it in S’. Since
the records come in alphabetical order, S’ is ordered
alphabetically. Second, when a record is pushed onto S',
the key immediately below it is its initial substring; then,
S’ contains a chain of initial substrings; in particular,
VxeS' = x<s.0nthe other hand, if xe D and x<s,
then x < s, so that x has come at some step and was pushed
onto S'. However, at no step was it popped out of §'.
Really, if it were popped out by some record y that came
after x, then x< y, x&y, y< s, and x<s, which is

impossible by Lemma 1. ¢

The algorithm of formation of the dictionary works as
follows, see Figure 4.

e At the beginning of the process, an empty block B, is
created.

o During the work cycle, the records se D are read one
by one and pushed onto S. After that, an attempt is
made to append s to the block B, being currently

formed. If there is any block compression as discussed
below, it is performed. The new potential size of the

block is estimated. If still ‘,B,i < C, then the process
repeats with the next record of D.

e However, if with the new record the size !E‘ would
exceed C, then the block B;, without the new record s,
is ready. It is appended to the dictionary structure {Fk}
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being formed, and a new empty block B,,, is created.
The contents of the stack § is copied to B,,, from
bottom to top, thus making the block closed. With this,
s, which is currently on the top of S, becomes the first
record of the new “logical” (not closed) block B,,, , and

i+l >

B,,, contains all the records whose keys are initial

substrings of s and is ordered alphabetically. After that,
the process repeats with the next record of D.

In our implementation, at the moment of formation of
the new block B;, we dump the key b/ of its first record to

compile later the index 7'. The key is truncated according
to the definition of /" (see Theorem 2) since the last record
of the previous block e,_, is known at the moment of

formation of b, .

Also, with each block we kept a header containing only
two numbers: (1) the total number of the records in the
block and (2) the size of the block prefix, i.e., the number
of the redundant records duplicated into the block, which is

'Sl —1 at the moment of creation of the new block B,,, .

We did not mention here a special treatment for the first
and last blocks. Another complication is the special case of
records with equal keys. This case can be ignored if we
prohibit equal keys in D merging the values of such records
when necessary. Alternatively, special precautions are to be
taken for a group of records with equal keys not to be split
across block boundary.

The described algorithm is a single-pass one.

4.3 Exporting and Updating

Now let us consider the inverse task: given the block
structure {Bk}, restore the ordered list of records D. This

task is rather trivial. In our implementéfitmjeagb block B,
contains a header with the number r, of the redizdant

records in it, so that it is enough to dump out the contents of
each block, from first to last record, ignoring the first #

records of each block. Even if the number 7, were not kept

with the block, it would be easily restored by looking for
the first record b€ B, such that a>e where e is the last

record of B, ,. This procedure is also a one-pass algorithm.

As we have pointed out, in this paper we do not discuss
here any fast algorithm of updating the block dictionary
structure by adding, deleting, or changing a few records. In
the context of database indices management, there is much
literature on updating similar structures such as B-Trees
and their variants (Gusfield, 1997). However, unlike the
indices of the databases, the morphological dictionaries do
not change frequently, so that we do not need to develop
efficient algorithms for updating the block structure.

The simplest way of updating the structure is to export it
into a sorted list D, then merge in, remove, or change some
records, and then create a new block structure out of the
updated list. Since both the exporting and building
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the structure. Then adding new records will result in
reconstructing only a limited number of blocks. The
possible need in duplicating the new records into some
blocks complicates things, though in the case of minor
changes, the number of changing blocks still remains much
less than the total size of the dictionary. Here we do not
discuss this algorithm; see (Gelbukh, 1995).

S Applications: Morphological
Decomposition and Spelling
Correction. Approximate Prefix
Search

Decomposition and error correction—or approximate
matching—tasks arise in nearly any search application of
the type we consider. However, our main motivation here is
again natural language analysis. The close relatedness of
spelling  correction in inflexion languages with
morphological analysis and thus in the suffix and prefix
search was realized long ago (Bolshakov, 1991).

We will describe our algorithm of approximate prefix
search in tight integration with the decomposition
algorithm. This gives the solution to the task approximate
decomposition, i.e., approximate matching with a string that
can be decomposed by the given set of dictionaries.

The role of this section is mostly illustrative since it
shows how our structure can be used for typical tasks of
string processing. Because of the marginal role of this
section and relative complexity of the algorithms, the
description of the latter will be quite sketchy.

5.1 Decomposition of a String

Let us consider several string lists D,. By decomposition of

a given string s, we mean finding such a set of substrings
X, € D, that their concatenation is s: s = x; ... x,. If this can

be done in several different ways, all such sets are to be
found. Such decomposition is the main operation in
morphological analysis of natural languages: Spanish habl-
dba-mos, German kommunikation-s-technik. The specifics
of this task for natural languages is that at least one (and
usually exactly one) list of substrings D, is very large—

namely, the stem dictionary.

We view the decomposition task as sequential
application of the substring search algorithm discussed
above. First, initial substrings of s are found in D,. For
each of them, initial substrings of the rest of s are looked up
in D,, etc. After the last dictionary is analyzed, only the
variants of analysis are accepted covering the entire string
s. Actually, in natural language analysis, the latter condition
is slightly more complicated: the variants of analysis are
accepted for which after the last piece, a symbol goes in the
text that can be a word delimiter, such as a comma or

period.

This method—analyzing the rest of the string s for each
initial substring found in D,, ..., D,—in effect implements
a kind of backtracking.

5.2 Approximate Prefix Search.
Spelling Correction

By error correction, we mean solving the decomposition
task not for the given string s but for some another string s’
that differ from s in a specific way. To put it in other words,
the task is to find such strings s' that differ from s in a
specific way and that can be decomposed by the given set
of dictionaries D, .

Our algorithm does not heavily depend on the string
similarity criterion being used. In our implementation of a
morphological analyzer, we used so-called single letter
error (called also single-error misspelling by Damerau
(1 964)) which is defined as either substitution of one letter,
omission of one letter, insertion of one letter, or swapping
two neighboring letters. In addition, we took into account
some other types of errors such as transposition of two
vowels around one consonant or two consonants around
one vowel, as in *comtupational.

In the rest of the paper, we will rely on a possibility for
any given string s, position p, and letter / to generate all
strings similar to s according to the criterion being used,
such that all of them have the letter / on the position p and
coincide with s by the initial p —1 letters. For example, for

[33E T}

a string *comtupational, the letter “p,
criterion mentioned above, the following strings are
generated:  *compupational,  *comptupational,  and
computational (the latter one by swapping two consonants
around one vowel).

position 4, and the

5.2.1 Minimization of the Number of the
Hypotheses Tried

Since we consider the similarity criterion as a generating
procedure, our algorithm will form and try some hypotheses
for the variants of the string 5. There are several possible
ways to measure the performance of an error correction
algorithm. Let us consider the following task: to find all
possible variants of the given string s that can be
decomposed by the given set of dictionaries D, trying as
few hypotheses as possible. We will divide the sketch of
our algorithm here in three parts, starting from a simple
case and then adding more complications.

5.2.1.1 One Dictionary: Approximate Search

First, let us consider a simpler task: to find exactly the
variants of s in only one dictionary D. Our algorithm takes
advantage of the possibility for alphabetic place D [s'] of a
variant string s’ to predict the following position and letter
to be tried.

We try the positions p of the string s one by one, starting
from p=1, see Fig. 5. In the exhaustive search, at each
position p the letters from a to z would be tried to form the
hypotheses s by our generative similarity criterion.
However, in our algorithm not all letters have to be really
tried. For a hypothesis s, let us consider a= D [sT+1:

the key following the alphabetic place of the current
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Let limit = 1 + length of maximal common initial substring of s and D[s] + 1.
For each position p starting from 1 up to limit do:

Set letter to “a”.

Repeat while letter is less or equal to “z™:

Form a set of hypotheses s’ that have the lefter at the position p.

Order this set alphabetically.
For each hypothesis do

If D[s"] = s' then report a possible variant.

If this is the last hypothesis then

Let ' = D{s'] +1.

If ' (1,p—1)# s' (1, p—1) then break the loop and go to next p.
If ' (p)# 5" (p) then set letter to a' (p), else increase letter by 1.

Figure 5: Simplified algorithm of error correction.

position p the letters from a to z would be tried to form the
hypotheses s’ by our generative similarity criterion.
However, in our algorithm not all letters have to be really
tried. For a hypothesis s’, let us consider a= D[s'] + 1:
the key following the alphabetic place of the current
hypothesis.'® Let us denote by w (&, v) the substring of a
string w starting at the position # and ending at v, and w (u)
the letter in w at the position u. We will count the positions
from 1, so that w (1, v) is the initial substring of w with the
length v.

Lemma7a. If a(l, p-D=s((1, p-1) and
a(p)# s" (p), then there is no such xe D that x (1, p—
D=s"(I,p—1Dand s (p)<x @) <a).

Proof: By definition of alphabetic order, for the
hypothetical xe D, s' <x<a= D[s'T+ 1,ie, s’ <x<
D[s'], that implies s° < D[s"], which is impossible by the
definition of D[s]. ¢

Thus, in the case of a (1, p—1)=s" (1, p— 1), there is
no reason to try all the letters until a (p), so the next set of
hypotheses s” is formed with s” (p)=a (p). - This
significantly decreases the number of hypotheses to be

tried.

Lemma 7b. Ifa (1, p—1)# s (1, p— 1), then there is no
such xe D that x(1, p— 1)=5"(1, p— 1) and s (p)<
x (p).

Proof: The same as for Lemma 7a, since s’ <a. ¢

In this case, the entire rest of the alphabet can be
skipped. Finally, if a(1, p)=s' (1, p), there is no
information to skip any letters. For best results, the
hypotheses generated by the similarity mechanism for a
particular position and letter are to be tried in alphabetical
order. In this case, the hypothesis that satisfies the

10 To avoid too complicated notation, we use interchangeably the
index of a string in D and the string itself when this does not
cause any confusion.
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conditions of the two lemmas is with a greater probability
the last one; this simplifies the algorithm.

When the process stops? So far, we considered s
unlimited, so there is no last position in it. This problem is
easy to solve. The last position p to try is one plus the
length of the maximal initial part common for s and
D[s] + 1. By Lemma 7a, there are no strings in D having a

larger initial part in common with s.

5.2.1.2 Many Dictionaries: Approximate Decomposition
The described procedure works with only one dictionary.
Now we can return to the case of decomposition of a string
by several dictionaries D, ... D,. We will not discuss the
algorithm in detail, but the idea is as follows. If in a
dictionary D,, the next key a is an initial substring of s’
and therefore the conditions of no lemma above are
satisfied, then the decomposition algorithm normally

proceeds to the next dictionary D etc., until some

i+l 2
difference between a, = D, [s'] + 1 and the correspondent
rest of s' is found. The position p is considered relative to
s" rather than to g, ; the rest of our algorithm remains the

same. Effectively, a Cartesian product HD,. is considered

as a single dictionary D, and the algorithm described above
is applied to it.

5.2.1.3 Block Boundaries

Finally, let us discuss one more complication. As we have
proposed in a previous section, for locality of access, each

of the dictionaries D, is stored in the form of blocks B

such that only one such block is fetched from the main
storage device when the dictionary is searched. What to do

then if the next key a, = D, [s'] +1 is not located in this
block, but in the next block B,,,, ? Fetching that next block

is not desirable. Fortunately, it is not necessary.
Namely, the necessary information can be found in the
index I', or, more precisely, in the index /; of some level

t. Really, if D[s'] is located at the boundary of the blocks,
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Set stringa= D|[s] + 1.

Set number start = 1 + length of the maximal common initial substring of s and a.
For each position p starting from start down to 1 do:

Set letter to a (p).
Repeat while letter # s (p):

Form a set of hypotheses s' that have the letter at the position p.

Order this set alphabetically.
For each hypothesis do:

If D[s] = 5" then report a possible variant.

If this is the last hypothesis then
Set o' = D[s'] +1.

If o' (1,p—1)= s (1, p— 1) then reset letter to “a”.
If o' (p)# s’ (p) then set letterto a' (p), else increase letter by 1.

Figure 6: Improved algorithm of error correction.

then the initial part of 7;[s"] +1 of just the necessary
length'! is equal to that of D[s'] + 1. If, in its turn, /] [s']
is located at the boundary of the blocks in I/, then
I [s'] +1 can be used, etc. until the last level index that

has no block boundaries. Note that neither Figure 5 nor
Figure 6 below reflect the complications just discussed.

Thus, we have discussed an algorithm of decomposition
of a string by a set of dictionaries with error correction. The
number of the hypotheses tried is substantially less than
exhaustive search. For each hypothesis, only one block is
fetched from the very first dictionary, which in natural
language analysis is the very large stem dictionary). For
other dictionaries D, ...D,, only one block is accessed at

each corresponding the
decomposition process.

step  of backtracking in

5.2.2 Minimization of the Median Number of
Storage Accesses

Now let us discuss a different parameter being minimized.
Suppose we have a procedure (or just a human user) that,
for each hypothesis, can decide whether a corrected string

s" for the string s is to be accepted and the search process
is to be stopped. We will minimize the time of the work of
the algorithm until it finds the correct variant.

We do not make any assumptions about the nature of the
mechanism that causes the errors in the strings s and thus
about the nature of the procedure that tests the variants.
Instead, we will just organize the search in such a way that
most of the variants are found at the very early stage of its
work, and the most of the work that is scarcely result in
new variants is done at the later stage.

For a mathematical measure of grouping the variants, we
chose the median: the time when half of the total number of
variants is generated. For example, let first 10 variants of
error correction in s are generated in the first second and
then other 10 variants in 5 minutes. Then the total time of

"' This can be easily proved by analysis of the definition of the

indices /] .

work of the algorithm is 301 seconds, average is 15.05
seconds, but the median time is 1 second. This is the
behavior that we want, in comparison with an algorithm
that produces a variant each 15.05 seconds; the median time
of such an algorithm being 150.5 seconds. In fact, the
algorithm described in the previous section has the latter
type of median time.

In accordance with the data locality principle, we
suppose that the most time-consuming operation is fetching
a block from the dictionary. Thus, what we want to
minimize is the number of blocks fetched until the correct
variant is found. For this, we should try to first examine the
block in which the most variants are located. Fortunately,
with our dictionary structure, most of them are located in
the block B containing D[s]. What is more, this block

probably is already fetched into memory at the moment of
error correction, because to find that error correction is
necessary, first the string s was searched for (and not found)
inD.

Only a minor correction to the algorithm described in the
previous section is necessary, see Figure 6. To look in B
first, we start trying the hypotheses not from the first
position p =1, but instead from the last position in s, and
advance in decreasing order. More precisely, since we
consider s unlimited, really the first position p to try is the
first position that is different in s and the string at the
position D[s] + 1 in D, as it was discussed in the previous
section (there it was the last position to try).

For even better locality, the letters in each position p are
tried not in the order from a to z, but from s (p) + 1 to z and
then from a to s(p)—1. This increases a little bit the
chances to find the correct variant in the same block where
D[s] is located.

With this modification of the algorithm described in the
previous section, practically without any increase of the
number of the hypotheses tried, the median number of the
blocks accessed during the search decreases dramatically.
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such as English and Spanish, e.g., in Medialingva’s
Multilex system (Multilex, 1996).

Russian is a highly inflective language with multiple-
morpheme word structure and many fusion effects (internal
sandhi) discussed above, such as prevozmo-ch’
prevozmog-u — prevozmozh-esh’ '* Our dictionary consisted
of 100 thousand lexemes, which resulted in about 200
thousand dictionary entries (records). Each record consisted
of a compressed stem and the corresponding morphological
information. In decomposition, we used one general stem
list and up to four (for verbs) short lists of endings. The
main stem list was indexed in three levels of /,, as

described in Section 0.

A typical result of error correction is as follows: for the
mutilated form *prevosmozhesh’, the complete search
process took 5 seconds, while the only variant
prevogmozhesh® was found in 0.05 second.

Conclusions

A data structure that guarantees one memory block access
per prefix search query with a very large dictionary was
introduced.

The following tasks have been discussed:

1. Prefix search in a very large dictionary: finding all
records in the database whose keys are initial substrings
of a given unlimited string s,

2. Given the unlimited text string s, separating its [eftmost
“word” w that is defined as an initial substring of s that
can be decomposed into concatenation of substrings w =
Xy ... X5, X; € D; for a set of dictionaries D, ... D, .

3. Actually decomposing w into concatenation of elements
(allomorphs) belonging to D, ... D,

4. Approximate search and decomposition: solving the
above tasks approximately, for a given criterion of
similarity between strings.

These tasks constitute the main part of the morphological
analysis and spelling correction algorithms. Since with our
algorithm, the leftmost word (stem) is found automatically,
a stream of letters without boundaries between words, like
Japanese text or DNA structure, can be thus decomposed
into words.

Our variants of alphabetic search and spelling correction
algorithms are optimized for data locality requirement that
arises when data are accessed in chunks (blocks: disk
sectors, memory pages, or network packages) and the cost
(time) of data access is proportional to the number of
chunks accessed rather than number of bytes used. In
particular, this is the situation with virtual memory under
the widely used operating systems such as Windows and
UNIX.

The structure of dictionary was discussed, which is
similar to a 2-level B-tree. At the cost of slight redundancy
of storage, it was guaranteed that only one bloek of

2 We do not provide any glosses since the meaning of the words
is irrelevant for our discussion.
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dictionary is fetched per query, in spite of the inherent
unlocality of the task.

As an illustration of practical usefulness of the proposed
structure, algorithms of its building, exporting, searching,
and searching with spelling correction were sketched.

The mentioned duplication of a very small percentage of
records for sake of guaranteed one memory block access
per prefix search query is a novel technique not previously
discussed in the theory of B-trees.
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