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Abstract

In this paper a technique using the coordinated cluster
representation (CCR) is examined for recognition of binary
computer generated and natural texture images corrupted by
additive noise. A normalized local property histogram of the CCR is
used as a unique feature vector. The ability of the descriptor to
capture spatial statistical features of an image is exploited. The
evaluation criteria is the recognition performance using a simple
minimum  distance classifier for recognition purposes. The
experimental results indicate that the proposed technique is efficient
Jor recognition of textures deteriorated by high level additive noise.
Textures under test run through periodic up to random ones.

Keywords: Pattern recognition, binary texture analysis, image
representation, coordinated clusters.

Resumen

En este articulo se estudia una técnica, basada en la representacion
de imdgenes por cimulos coordinados (RICC), para el
reconocimiento de imdgenes binarias tanto de texturas naturales
como aquellas generadas por computadora, las cuales fueron
corrompidas por un ruido aditivo. El histograma normalizado de
RICC es usado como vector iinico de caracteristicas de la imagen.
Se explota la habilidad del descriptor de captar las caracteristicas
estadisticas espaciales de una imagen. Como un criterio de
evaluacion usamos la eficiencia de reconocimiento usando un
clasificador simple de distancia minima para el reconocimiento. Se
muestra que la técnica propuesta es eficiente para el reconocimiento
de texturas deterioradas por el ruido aditivo. Se prueba la eficiencia
del método en un rango amplio de ftexturas, siendo éstas desde
puramente periddicas hasta completamente aleatorias.

Palabras clave: Reconocimiento de patrones, analisis de texturas
binarias, representacion de imagenes, cimulos coordinados.
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1 Introduction

One of'the purposes of any pattern recognition technique is to
carry out the classification of test images using a set of
attributes extracted from pattern images. The problem is to
establish a set of significant attributes that can be efficiently
used in the classification. The set of features should obey the
following requirements: they should be independent and the
cardinality of the set should be minimal to facilitate computer
manipulation. Feature extraction techniques can be classified
into four major categories: statistical, model based, signal
processing and structural (Tuceryan and Jain, 1993). After the
attributes are chosen, textures can be classified using one of
the well-known pattern classification methods (Duda et al.,
2001; Kahil and Bongard, 1970; Chen et al., 1996; Fukunga,
1990; Servin and Cuevas, 1993)

Images of natural textures are difficult to classify or
recognize due to the presence of statistic component in the
intensity and/or color distribution of an image. In real
experiments, one can find both full-periodic and random
textures (Tuceryan and Jain, 1993; Haralick, 1979; Berry and
Goutsias, 1989; Ohanian and Dubes, 1992). The well-known
techniques of random, natural and artificial textures
classification are mainly based on correlation moments and
co-occurrence matrices, both approaches are time consuming
(Haralick, 1979; Berry and Goutsias, 1989; Ohanian and
Dubes, 1992; Elfadel and Picard, 1994; Soh and Tsatsoulis,
1999; Goon and Rolland, 1999; Chetverikov, 1999). Some
techniques are based on Markov random fields (Chellappa and
Chatterjee, 1987) and others on window transforms (Turner,
1986; Azencotty Wang, 1997; Wang and He, 1990; Ojala et
al.,1996; Valkealahti and Oja, 1998; Randen and Husoy,
1999).
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Recently a model for binary image representation called the
coordinated cluster representation (CCR) was proposed in
(Kurmyshev and Cervantes, 1996; Kurmyshev and Soto,
1996). In this model a binary image is characterized by a
histogram of the occurrence of pattern units. The aim of this
work is to evaluate the use of the histogram as a descriptor of
textures. A simple minimum distance classifier using the
unique attribute, a local property histogram generated by the
coordinated cluster transform, is examined. We report the
results when the CCK technique is applied to the recognition
of'a set of binary texture images degraded by noise. The CCR
technique is based on binary images and, thus, they are of
special interest to determine the limitations of the technique.
In addition, it is well known that the results obtained with
simulated images can differ from that for real images where
the texture can be irregular and a noise has to be estimated or
supposed. In experiments with simulated images we have total
control over texture and, in particular, over a noise. Thus,
experiments of this work have been implemented with binary
simulated texture images on purpose. The paper is organized
as follows. Section 2 describes briefly the coordinated cluster
transform of binary images and its mathematical background.
In Section 3 we outline an approach to binary texture image
classification and recognition. The classification setup and
experimental results for binary texture images are given in
Section 4. Conclusions and directions of future work are given
finally in Section 5.

2 Coordinated Cluster Transform

In order to avoid some complicated mathematical notations,
we describe coordinated cluster transform in an algorithmic

way. Let S =[s7] be a matrix of binary image intensities

(binary pixels) where [=12,.,L and m=12,...,M,

W=LxM and a=12,...2" is the binary image index. In

order to calculate the CCR of a binary image S one needs
first to establish a rectangular window of N =17xJ pixels
(/<L and J <M ) and then scan sequentially by means of

this window all over the image S* with one pixel step. Given

a binary image S¢, the coordinated cluster transformation
generates the histogram of occurrence of pixel patterns that
the scanning window has detected. The binary number of pixel
configuration is used as a code for the configuration found by
the window. Because pixels are binary units, the number of all
possible states of a window of the size N =1 xJ isequal to

2" . This number determines the "length" of a primary
histogram that can be reduced if one discards all the states
with zero of occurrence while scanning an image. Thus, the
coordinated cluster transformation assigns to each binary

image S“ a histogram Hﬁ‘l,)(b) that represents the

occurrence of window pattern, here o is the index of an

image, the subscript (I ,J) indicates the size of the scanning

window and the variable b = 1,2,...,2N is the code number of
window states. It is clear that the total number of occurrences,
that is the total area of the histogram, is equal to
A= (L -1 +1)>< (M -J+ 1). The coordinated cluster

transform belongs to the kind of window transforms with no
information preserved over the scanning window position.

When a histogram H (O,‘ ) J)(b) is normalized, it is considered as

a distribution function of occurrences

H(l
o (b)= _(’_Il(b) 1

(1.7) y

The distribution function can also be interpreted as an
image spectrum in terms of the texture units; those were
originally called coordinated clusters, in order to outline some
statistical properties of the transform. The texture units of
CCR are conceptually and mathematically different from those
introduced by Wang and He (1990) and Ojala et al. (1996)
where a binary code is used for the gray level pattern
description.

An example of 3x3 window patterns and their binary
codes are shown in Figure 1, where the binary coded decimal
(BCD) corresponds to the index in the CCR histogram (and
also in the distribution function).

Paftem  Binary Code BCD

m 000001011 11
m oo1011001 89
E o11o01000 200

Figure 1: Window binary pattern and its binary coded decimal
as the index of CCR histogram.

The fundamental properties of the CCR were established
in the two theorems (Kurmyshev and Cervantes, 1996;
Kurmyshev and Soto, 1996) that are given here in a modified
form. The first theorem establishes the structure of the CCR of
periodic images.

Theorem 1. If a texel (primitive cell) of a transnational
invariant binary image S has the size T, X T, pixels, 7; in
one and 7, in other direction, then any CCR distribution
function F(?’ J)(b) takes no more than 7 =7, X7, non-zero

values. If the CCR scanning window has the size equal to or
larger than the texel size, /> 7, and J =7, , then F(‘f),,)(b)

takes exactly T = 7, x 7, non-zero values.
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The second theorem establishes the relation between
H (",’ﬁ,)(b) and spatial correlation moments of #-th order (n-th
order statistics) of a binary image S“. According to the
second theorem, the histogram H(’}"l,)(b) contains all

information about the n-point correlation moments of the

image S% if and only if the separation vectors between n
pixels fit into the scanning window, that is a distribution

function F(;Z J )(b) provides sufficient information about »-

point joint probability functions.

Theorem 2. Let S“ =[s/;,] be the matrix of a binary image
and F(‘," ,)(b) be the CCR distribution function of'the image. If
max{/,} </ max{m;}<J (i=12,.,k-1) and
k <1 xJ ,then any autocorrelation function of k-th order

and

s (Lm)s* (L1 m+m )s(+1,_,m +my_ )> =

LM
. -1 o L\ a
/,,}VI}E@W /;ls (l, m)s (l + 1, m+my )s (l +1_,m+ mk_l)
can be uniquely reconstructed from F(?‘J)(b) , where
W=LxM is the L':L~max{l,-},
M'=M —max{m,} .

image  size,

It is well recognized that the second and higher order joint
probability density functions provide structural information
about a gray level image, being the correlation moments a set
of significant attributes for the classification of images (Liu
and Jernigan, 1990; Thomson and Foster, 1997). On the other
hand, there is a structural correspondence between a gray level
image and its binarized analog. A binarized image keeps quite
enough structural information about a primary gray level
image to be classified. Thus, the CCR of a binary image,
which preserves extremely well its structural information, is
highly suitable for recognition and classification of gray level
texture images having statistical properties in a wide range,
from totally periodic to totally random textures included
(Kurmyshev and Sanchez-Yafiez, 2001). The CCR of each
image can be implemented in a bitwise-oriented algorithm,
allowing a fast computation of each number representing the
local binary pattern.

In order to preserve structural information of an image it is
necessary to choose a CCR scanning window with a side
approximately equal to or larger than the correlation distance
between pixels. When a correlation distance is large, the
scanning window has to be proportionally large too. Then the
CCR histogram becomes rather large and complicated for
computer management. One practical way to reconcile the
two contradictory requirements (information preservation and
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manageability of CCR) is to reduce the scale of images to be
classified.

3 Texture Pattern Recognition

In this work a set of noisy binary texture images was used to
test the performance of the proposed recognition technique
(see also Liu and Jernigan, 1990). We proceed in the
following way. For a given set of binary texture images

SP =[s] (p = 1,2,...,P) , we generate a set of noisy images

Im
B ={S”(k,afp): ls,”,;(k,a[,)]} by adding a noise to these

pattern textures. In this work we use particularly a uniform
additive noise. Several images are generated for each k-th

noise level (SNR value). If Ais the difference between the
two nearest  noise levels, then  the images

S”(k,ap):[s,’:n(k,a},)] for the k-th noise level can be

calculated as follows:

P
S
P — J"Im
Sim (k,OCp ) {

_ P
1 Sim

if rand <1—-kA

otherwise

o)

where ¢, indicates the &, — 14 seedling of noise to be added

to S”, k=0,1,2,.,K <int(1/A) and rand is the random
number generator function with uniform distribution in the
range (0,1). When & = 0, the image generated by the Eq. (2)
coincides with the original pattern texture,S”(O,ap): ST,
After the set B is generated, the coordinated cluster transform
is used to calculate the histograms H(}ﬂ,)(k,ap;b)
corresponding to each S” (k,ap).

The closeness of the test texture to one of the pattern
textures is calculated using the Hamming distance in the CCR

space. The Hamming distance between two images S and
S# is defined as follows:

2V ‘
dy 557 )= 3 |HE ) b)-HE ) 0). 3)
b=0

where the index (Z,J) indicates the scanning window size of
the CCR and N =1IxJ. Given a pattern texture

SP :[Sl]r)n] (p =12,.., P), the class corresponding to the

texture S” is defined as the set of images S'% such that
g

d(,,l,)(S"‘,S”)= mpi,n [d(,‘,,)(S“,S”' )] (p'=12,...,P). (4)
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It is clear that the distance rule assigns an image S to the
pattern class S” if and only if the CCR histogram of S7 is
the most similar to that of S*. Thus, it is declared that the
noisy texture image S”(k,ap) belongs to the class S7 if the

following equation is valid:

dy s lea,)s?)=
min [d (57 (e, )57 (p=12.... 7).
P

If the noisy texture image S "(k,a[,) is assigned to the

®)

class S, then the recognition is considered to be correct.
When the noise level is high enough, the last condition is not
satisfied and the noisy texture is not recognizable.

4 Experiments

In order to test the technique we applied it to the recognition

of P=20 different binary pattern textures S°7
( p=12.., P) . Each pattern texture was computer generated

by reproducing a 5x5 random bitmap window (texel)
periodically. The image resolution was 100 x 100 pixels.
Consequently, the generated pattern textures are random
locally and periodical in total. A set of six computer generated
pattern textures is shown in Figure 2. :

The test texture database B was generated by adding to

each pattern texture S an uniform noise of different levels
k=0,,..,20, starting from 0 % noise until reaching the 100
% noisy image. For this purpose we take A=0.05 and

o, = 1,2,....10 (see Eq. (2)). Thus, in each recognition test

for a given noise level &, a set of 200 test texture images is
formed by P =20 groups of 10 noisy texture images

s (k).
Following the scheme represented in Section 3, we then

calculate the CCR histogram for each noisy test texture from
database B. A 3x3 scanning window was used, so that each

histogram H/, s\k,« ;b)) (p=12,..,20; k=0,1,...20;
33)V6%p p

a,= 1,2,.,10; b= ],2,...,29) demonstrates the occurrence of

273 =512 possible states of the scanning window. The

recognition was accomplished using Eq. (5). Figure 3 shows a
set of histograms corresponding to the sample texture 5767
degraded by different level noise. As an example, six different
texture images used for classification are shown in Figure 4.
In this case, the noise added to each sample texture is 30 %
(k=06 and A=0.05). These were classified successfully in
spite of high-level noise.
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Figure 2: A subset of six sample textures that were computer
generated by using a 5x 5 texel and the binary coded decimal of
respective texels.

We define the recognition efficiency, for a given noise
level k , by the following expression:

N
R=-%x100%, (6)
10P

where 10P is the total number of test textures with noise level
k, N, is the number of noisy textures with noise level k

that were correctly recognized. In terms of the recognition
efficiency, the final recognition results are shown in the figure
5. This graph shows the recognition efficiency against noise
level. From figure 5 we can see that, in the experiments
described above, 100% recognition was achieved in all cases
of textures degraded up to 30% by additive uniform noise.
In addition, figure 5 shows an interesting phenomenon of
recognition revival for textures with the noise level above
60%. The explanation of the phenomenon as follows. First,

note that each primary binary texture under the test S is the
periodic translation of a random texel. Second, from the
equation (2) we see that the additive uniform noise used in
this work changes the binary value of each pixel in accordance
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to the noise level k for a given A. A primary image is
slightly degraded and well recognized when k& < 6. Instead,
when noise increases, 6 < k <10, the image is degraded
strongly and recognition decreases to zero. Nevertheless, if
noise level is higher, say 10 < k& < 20, then for the kind of
noise used in this work most of pixels have to change their
values and some textures are reconstructed partially. The level
of reconstruction depends on the regularity of the primary
texture. For example, the chessboard image is reconstructed
completely. The CCR histogram senses this reconstruction,
giving rise to the recognition of the pattern. Note that 100%
noise means a negative texture that is not identical to the
original positive texture but can have certain morphological
similarity to that.

Occwrence Noise = 0 %%
1000 T T y T T T T

500F 1

L T JEIIE b

0 250 500
BCD of scanning window

Occurrence Noise = 18 %
1000 g T T T T T Y T T

250 500
BCD of scanning window

Occurrence
1000 ¢

Noise =15 %

T T T T T T T

500

X Oy X Xy X X A
250 500
BCD of scanning window

Occurrence
1000

Noise =20 %

500

500
BCD of scanning window

Occwrence
1000

Noise =25 0%

500

BCD of scanning window

Figure 3: A set of five CCR histograms corresponding to the
sample texture 5767 degraded by different level noise.

200

Figure 4: Texture images degraded by 30% noise, those
have been correctly classified by the CCR technique.

Recognition efficiency (%6}
100 T T 1 T T H T T

50

Noise (%o}

Figure 5: Recognition efficiency versus noise (computer generated
textures).

In the second experiment, just the same classification
technique was evaluated using ten binarized subimages from
the Brodatz album (Brodatz, 1966) corrupted by uniform
noise. To prepare prototype database we have scanned gray
level images D9, D16, D32, D68, D77, D78, D79, D92, D93
and D112. Ten binarized subimages of 100 x 100 pixels, S”
(p =1,2,...,10), are used in the experiment as the reference
set. They are shown in Fig. 6. A test texture database B is
generated by adding to each of ten binary textures S7 a
uniform noise by Eq. (2). In each recognition test for a given
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noise level £, a set of 100 test texture images is used. That is
formed by P =10 groups of 10 noisy texture images

Sp(k,ozp), where &, =1,2,...,10. A 3x3 scanning

window is used to calculate the CCR histograms.

Figure 6: Binarized Brodatz images used to evaluate the CCR
technique.

Figure 7 shows that the recognition efficiency of Brodatz
natural textures versus noise decreases as compared to that of
computer generated textures of Fig. 5. The 100% recognition
was achieved for all textures degraded up to 5 % by additive
noise. This is an expected result because artificial textures of
Fig. 2, being periodical, have a narrower statistical
distribution in the CCR feature space than that of Brodatz

textures. In addition, figure 7 shows the phenomenon of
recognition revival for textures with the noise level above
55%. The explanation of the phenomenon is just the same as
for the computer-generated textures. Note that images of Fig.
6 are ordered, from ieft to right in line order, to follow from
the best recognizable to the worse. That is the D92 has failed
first to be recognized at the 10% noise, D9 and D93 failed at
the 15% noise. Finally, the D16 have failed at 40% noise.
That means a particular texture can be extremely robust to the
uniform noise and can be recognized up to 35% noise.

Figure 7: Recognition efficiency versus noise (binarized Brodatz

Recognition efficiency (%)
100

0
() of
pay S

PR o

0

0 10 20 30 40 50 60 70 &0 90 100
Noise (%)

textures).

S Conclusions

A method for recognition and classification of binary texture
images has been discussed and its application to recognition
of texture images degraded by additive uniform noise has been
evaluated. One of the available classifiers is used in the CCR
feature space in order to assign an image to the category
whose prototype it matches best. The CCR histogram is used
as the unique attribute for recognition of a binary image. The
capacity of the coordinated cluster representation to capture
spatial statistical features of an image is exploited. In this
paper, the simple minimum distance classifier is used.

Two kinds of class prototype images were used, computer
generated and natural binary textures. Even though in this
work the binary textures, the small 3x 3 scanning window for
the coordinated cluster transform and very simple (minimum
distance) classification criteria were used in order to test the
method for recognition of noise degraded binary images, the
performance of the method is highly promising. 100%
recognition was achieved for some binary test images
degraded by uniform noise up to 30%. As shown in
(Kurmyshev and Sénchez-Yaiez, 2001; Sanchez-Yéafiez ef al.,
2003; Lopez and Castro, 2002), the combination of the
binarization and CCR of textures characterizes the gray level
images successfully. Thus, the technique exploited in this
work is expected to be adequate for the recognition of real
gray level images degraded by noise, for example, in medical
imaging where the images used to be noisy.

Future work should be done to extend the method for gray
level and color texture images, to analyze and improve the
performance of this recognition method when it is used with
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different size of scanning windows and other classifiers for
images degraded by different type of noise.
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