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Abstract

This paper presents an application of artificial intelligence techniques for
the improvement of the operation of a thermoelectric unit. The capacity for
empirical learning gained from artificial intelligence systems was utilized
in the development of the strategy. A neuro-fuzzy model for the steam
generator startup process is obtained from experimental data. Ultimately,
the neuro-fuzzy model is combined with a predictive control algorithm to
produce a control strategy for the heating stage of the steam generator.
This provides the operators at the fossil power plant with the necessary
information to efficiently accomplish the heating process. The information
gained from the control strategy is not directly applied to an automatic
control scheme; instead it is presented to the operator who then decides on
its application. Therefore, in this way the information is used to develop a
strategy that takes into consideration the personal capacity and the
working routine of the operator. The simulation tests that were carried out
demonstrated the feasibility and the beneficial results that can be obtained
Jfrom-the application of any of the three variants of predictive control
proposed in this paper.

Keywords : Predictive  control,  optimization,
regressive model, steam generator, fossil power plant.
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Resumen

En este trabajo se presenta una aplicacion de técnicas de inteligencia
artificial al mejoramiento de la operacién de una unidad termoeléctrica.
El desarrollo llevado a cabo aprovecha la capacidad de aprendizaje a
partir de experiencias, que ofrecen los sistemas basados en inteligencia
artificial. Usando datos experimentales, se obtiene un modelo neuro-
difuso del comportamiento del arranque de un generador de vapor.
Posteriormente, este modelo se combina con un algoritmo de control
predictivo para construir una estrategia de control para la etapa de
calentamiento del generador de vapor, la cual permite ofrecer a los
operadores de la unidad termoeléctrica la informacién requerida para
llevar a cabo de manera eficiente el calentamiento. La informacion
generada por la estrategia de control no se aplica directamente en un
esquema de control automdtico, sino que se ofrece al operador y éste
decide en iltima instancia su aplicacién. Por la manera como es empleada
la informacion generada, la estrategia toma en cuenta las limitaciones y
las costumbres de los operadores. Las pruebas en simulacién llevadas a
cabo muestran la factibilidad de la estrategia y el buen desempeiio que se
obtiene a través de la aplicacion de cualquiera de las tres variantes de
control predictivo ofrecidas.

Palabras Clave: Control predictivo, optimizacién, ANFIS,
modelo auto-regresivo, generador de vapor, central termoeléctrica.
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1 Introduction

Improvement of the operations at the fossil power plants is
a constant concern of all instances involved in the process
of power generation because increase in production means
increased financial benefits and  general well-being.
Essentially, the heating process of the steam generator at a
fossil power plant is a problem of control. Traditionally
this problem is solved manually by experienced operators.
The main technical difficulty for an automatic control at the
startup stage at these power plants is the presence of a
significant transport delay which can cause instability and
problems in maintaining the temperature gradients within
controlled stages of change.

The conventional predictive control uses lineal
prediction models to estimate future output values in the
process (Clarke et al., 1987, Sousa et al., 1996). In general,
lineal models are not sufficiently representative of the
process in the case of non-lineal plants. Non-lineal models
based on the physical principles of conservation are too
complicated to be used in predictive control schemes and
involve high costs in computerization and time. On the
other hand, recent developments in artificial intelligence
such as fuzzy logic and neural networks offer alternatives
for models for non-lineal processes. The fuzzy inference
systems (Babugka and Verbruggen, 1996, Jang, 1993, Jang
and Sun 1995), as well as the neural networks (Haykin,
1999, Norgaard et al., 2000), have been demonstrated as
being universal approximators and therefore they can be
used for non-lineal input-output mapping with arbitrary
approximation. In this way, the fuzzy inference systems and
the neural networks can be used as process models with
more acceptable computational costs (Babuska, 1999). A
variety of control schemes use this kind of model, such as
inverse control, the internal model control and the
predictive control based on models (Babuska and
Verbruggen, 1996, Norgaard et al., 2000, Narendra and
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Parthasarath, 1990). In this paper we develop a variant
based on the last scheme, which we have called "predictive
control based on an auto-regressive neuro-fuzzy model"”
(Ruz, 2001, Ruz, et al., 2001), because the model
corresponds to a Fuzzy Inference System based on an
Adaptable Network (ANFIS) (Jang, 1993, Jang and Sun,
1995) which is capable of auto-regressive execution.

2 Problem Description

During most of the steam generator startup process, the
operator must not exceed certain limits in the gradient of
the ‘cemperaturel in the downcomers (Kramer, 1954, CFE
1994). The actions at the disposal of the operator to control
the heating of the fluid in the steam generator concern the
quantity of fuel that is consumed as well as the aperture of
the steam drains located along the length of the steam pipes.
However, for operative reasons these drains are handled
with caution because they are subject to a gradual closure
program and preferably should not be used as controls.
There are further restrictions at another heating and
pressurization stage at the steam generator. These no longer
apply to the temperature in the downcomers, but to the
difference between the temperature of the main steam and
the temperature of saturation in the drum. However, the
control is carried out in the same way, by simply
diminishing the gradient reference value to a level that, by
experience, the superheat is known to be within the limits
set by the design. After a certain period of heating, positive
pressure readings are registered in the pressure of the main
steam. This is another variable which should be considered.
There are no real, absolute restrictions on the evolution of
this one, but an increase must always be guaranteed. This
variable is affected by the position of the drains as well as
by the usage of the steam in the heating of the auxiliary
steam pipes and the turbine metals.

In the first instance, the problem to be solved can be
seen as the control of the internal temperature of the
downcomers. The maximum limit of the gradient is an
important factor in this variable. If the temperature is
greatly reduced, there will be regularly prolonged periods
of time in the startup of the steam generator, and this will
increase the operation costs due to a higher consumption of
fuel, demineralized water and energy from the National
Electrical Network. Therefore the faster the heating in the
startup process, the lower the consumption of the resources
mentioned, but at the same time there is an increase in the
thermal stress on the steam generator and, as a
consequence, the premature ageing of the pipes. For this
reason the operator needs to obtain the fastest possible
startup, without exceeding the gradient limits imposed by
the design.

With reference to the previous description, the problem that
is solved in this investigation is the design and the
simulation testing of the feasibility of a control mechanism
which allows the estimation of the optimal fuel flow

t Temperature gradient is the temperature change rate

required, taking into consideration the conditions

described for this process.
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Figure 1: Curves for Heating and Pressurization in the Steam
Generator.

3 Development of a Control
Algorithm

In order to solve the problem presented, a predictive control
algorithm based on an auto-regressive neuro-fuzzy model
was developed. The scheme is shown in Figure 2 and
involves the use of neuro-fuzzy identification to obtain an
auto-regressive model from empirical data on temperature
and fuel flow involved in the startup process of the steam
generator. The predictive model will be used in an optimal
control strategy to link the problem of numerical
optimization with the operational limitations of the
technical problem explained above. The principles on
which our control algorithm is based are the same as those
of the Generalized Predictive Control in (Clarke et al. ,
1987), except that we use a non-linear ANFIS model
instead of a linear model. Consequently we should use non-
linear numerical techniques to solve the optimization
problem.

Control Algorithm

Model

Optimizer

Figure 2: Strategy for Predictive Control Based on an Auto-
Regressive Neuro-Fuzzy Model.
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3.1 Development of the Model

In our case, the neuro-fuzzy identification was obtained by
using an ANFIS type system with a dimension 2 regressor;
4 membership functions of the Gaussian type for each
input; and 4 rules of the Takagi-Sugeno type (Takagi and
Sugeno, 1985), which requires the estimation of 16
antecedent parameters and 12 consequent.

e JTRINING Data

Temperature {°C]

Combustible [%]

o i) 2 3 16 50 50 70 &0
Time [min]

Figure 3: Input-Output data used to train an auto-regressive
neuro-fuzzy model.

For this purpose, several tests were run using two tables
with experimental data obtained from two independent
tests. The data was obtained using 10-second sampling
intervals, every test being initiated at the startup of the
fossil power plant. The data in the first table, plotted in
Figure 3, was used to train the ANFIS model. The data in
the second table, plotted in Figure 4, was used to validate
the ANFIS model. Different candidate feedback inputs
were tested in order to find a model to fit an auto-regressive
scheme as shown in Figure 7.

This selection criterion for the inputs is simple .and
produced satisfactory results (Jang, 1996). During the
training, the antecedent and consequent parameters were
synchronized according to the Algorithm of Hybrid
Learning which combines the Back Propagation Rule and
the Least Squares Estimator to finally select those that give
the least test error (Jang, 1993, Jang, 1995). Only 3 epochs
were required to obtain an acceptable model.

The expression that defines the network which achieved the
best results in the training using a parallel scheme (nonauto-
regressive) has the following structure:
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Validation Data

Temperature [°C]

Combustible [%)]

o 10 30 36 w 0 & 76 3
Time [min}

Figure 4: Input-Output fresh data used to validate the
obtained auto-regressive neuro-fuzzy model.
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Figure 5: Membership functions to input 1.
A
Tk~ (L) (D
where:

} (k) : Predicted value for the temperature in °C at the
sampling instant .

Tk_I : Plant temperature in °C at the sampling instant k-
1.

u,_,: Value for the fuel flow in M’/H in the sampling
interval £-3.

Subsequently, the model was tested in a series-parallel
scheme, to test the capacity of the auto-regressive version.
As aresult the model acquires the following structure:
A A
T(k)~ f(Ti-1,u,_3) (2)

where the symbols have the same significance as those
above (the hat represents predicted values).
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Membership functions for input 2
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Figure 7: Auto-regressive neuro-fuzzy model for a 10-
second sampling period

The obtained ANFIS model is defined by:

® The input 1 membership functions depicted in Figure
S.

e The input 2 membership functions depicted in Figure
6.

e  The consecuent parameters given in Table 1.

e The following four rules of the Takagi-Sugeno type: If
iny is in;mf; and in, is in,mf; then out, is mfout; where
i=1, ..,4.

s The input-output relationship described by (2) and
shown in Figure 7.

The comparison between the data on the temperatures at
the plant and the approximations with the auto-regressive
model is shown in Figure 8 by continuous and dashed lines
respectively, where it can be observed that both are almost
superimposed. This signifies that the model appropriately
represents the plant and can therefore be used to predict the
behavior of the plant required by the control algorithm.,

3.2 Numerical Optimization Applied to
the Control Synthesis

Concerning the problem of numerical optimization, the
following principal points were taken into consideration:

e Given that the operator has a numerical display
showing precision to a decimal, the fuel flow used in

the optimization to determine the optimal fuel flow
should be a multiple of:

A=0.1M>/H 3)

e The interval from which the values for the variable of
volume fuel flow are taken is:

0<u, <10M>/H @

e There is no existing mathematical model based on
physical principles for the process to be controlled,
neither are the derivatives known and therefore the
properties are unknown. We only have experimental
data on the subject with which we have constructed an
auto-regressive neuro-fuzzy.

Coefficient Coefficient Independent
Input 1 Input 2 Term
0.9956 _0.0916 0.6150
0.9956 0.0916 0.6150
0.9967 -0.0538 0.4156
0.9878 0.1359 1.1960

Table 1: Consequent parameter of the ANFIS model obtained.

We also need to consider the following existing operative
conditions in order to develop the control algorithm that
can be applied to any fossil power plant with similar
characteristics to those we have identified:

e The control signal u, will remain constant for 10
minutes.

e  Every ten minutes the operator will take a reading of
the temperature of the plant.

e The control signal will be updated every 10 minutes.

e The operator will close the control loop every 10
minutes.

Three operational variants were tested for numerical

optimization and are described below.

3.3 First Optimization Variant

This involves determining the optimum fuel flow u, under
the conditions described in the previous section, to
minimize the following performance index:

N
J)=a, (Tt va1~ k':FH,,*-L/—] ?

+ B, (u, —u,, )2

&)

where:

A
T k+H ,+d-1: Predicted temperature in °C for the instant
H,+d-1 sampling periods subsequent to the instant k.

T,;H v - Temperature reference in °C at the instant
»

H,+d-1 sampling periods subsequent to the instant .
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U, : Optimal fuel flow in M’/H to be applied in the
following Hp+d-1 sampling periods.

U, _,: Fuel flow applied to the plant during the previous
Hp-+d-1 sampling periods.

140 . . Model-Planta

1

Temperature [°C

Reproduction Error [%)]

3 3 20 % ) % E) 70 80
Time [min]

Figure 8: Comparative Graphs: (A) the approximation
obtained from the auto-regressive neuro-fuzzy model (dashed
line) and the output temperature of the plant (continuous line)

in °C. (B) the model reproduction error as a percentage of
the plant temperature at any given moment.

&, . Scalar corresponding to the weight of the quadratic
error of the temperature.

ﬂk: Scalar corresponding to the weight of the control
effort.

Hp : Prediction horizon in sampling periods.
d: transport delay in sampling periods.

Note that w44, =...= s, and d=3 according to the
obtained model.

This performance index contains two terms, the sum of
which should be minimized. The first is the square of the
error of the predicted temperature at the end of a prediction
horizon of Hp+d-1 sampling intervals, whilst the second is
the increment inthe control action. Both terms will be
weighed with the factors a; and S, respectively. The error
is defined as the difference between the predicted
temperature and its reference value. The minimization of
the first term aims at reducing the temperature tracking
error, whilst the second term aims at reducing the cost of
the applied control. The different usages of the factors ay
and B, aimed at testing the weight of the terms in the cost
function which is to be optimized. In this way a high value
in oy signifies that to achieve the result more importance is
given to the reduction of the tracking error than to the cost,
whilst a high value for B, signifies that cost is more
important to achieve the objective than the resulting error.
Therefore, @, and f, are design parameters and a
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compromise between both factors should be achieved in
order to obtain a good performance of the control. It should
be observed that the performance index is evaluated using
the value of the predicted temperature at the end of the
interval during which the control is maintained as a
constant; the intermediate values are not considered here. In
this way, if the temperature deviates considerably at
intermediate points in the prediction interval but finally has
a value similar to the reference, the index will show a low
value, which could be a disadvantage if the control variable
fluctuated around the regulation values.

The prediction horizon Hp in the performance index (5) is a
design control parameter and should be adapted to the
actual operating conditions at the fossil power plants. In
this application, the control signal will be updated every 10
minutes, thus Hp will be selected to be approximately 60.
With a 10 second sampling period, 60 sampling periods
will total 10 minutes. Simulation tests can be run to select
the best option.

In order to minimize the performance index (5), a search is
carried out to determine the optimal fuel flow. This is
achieved using a procedure of varying the fuel flow
according to the equation (3) in the interval given in (4)
and evaluating it in the performance index in such a way
that, by comparing each evaluation, the fuel flow necessary
to minimize the equation (5) can be determined. It is
necessary to make Hp-+d predictions because in the case of

(5) we need to find out 7'k+# ,+a-1, whereby evaluating the

auto-regressive  neuro-fuzzy model. The initial d-7
predictions involve the known fuel flow from the previous
Hp periods.

Tin=f(T,,u,_,)

Tiva = f(Ty, 458 y) ©

where:

T, : is the plant temperature in °C at the instant £.

A
Tiv1: where i=1, ..,d are the predicted temperatures
involving the previous fuel flow #,_, .

Once the initial predictions have been carried out, we must
calculate those in which the optimal fuel flow to be applied
during the period should be determined according to the
optimization procedure:

Tirant = f(T,,,u,)

A

Thrn, vast = f(Tk+Hp+zl—2 Uy ) Y,
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Note that the optimum combustion flow to be
determined is stated as u; because the quantity of fuel used
during the first d predictions is known, and corresponds to
the result of the previous optimization. These predictions
should be done iteratively for each variation in the

combustion flow every 10 minutes during the generator
startup process.
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Figure 9: Simulation results for testing the Variant 1. Note
that in Graph A the temperature and its reference are
overlapped, and in Graph C the gradient is depicted by a
dashed line while its reference is depicted by a continuous

line.
3.4 Second Optimization Variant

This consists in using the performance index of Variant 1,
given in the equation (5), but the restriction of finding the
minimum usage of fuel u,- that maintains the controlled
temperature below the given reference, has been added.

The aim of proposing this constraint is to indirectly find

an improved regulation of the temperature gradient using
the supposition that by maintaining the temperature below
that of the reference, the control stress will be less and as a
result the gradient will not have marked changes.
It is possible that there is no minimum for this situation.
However, if this should be the case, the fuel required will
be calculated on the basis of the first variant, although the
controlled output will be reasonably above the reference at
a minimum distance. We will denote the fuel needed in
these cases as w4+ . The restrictions can be written in the
following way:

We first define

U, = (uk /T, — f"kﬂ = Oj (®)

=
1

. (uk /T, "‘}kﬂ < 0) &)

From which we should note
Uy WU, =U,, Up.nNU,, =¢
where ¢ is the empty set.

Accordingly, the optimal fuel to be used will be calculated
in the following way:

(10)

u,_/Ju,_)y=minJandU, #¢
Uy, /J(u,,)=minJandU,_ =¢

uk =

an
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Figure 10: Simulation results for testing the Variant 2. The
positions and types of lines correspond
with those in Figure 9.

3.5 Third Optimization Variant

The two previous variants minimize a cost function that
does not involve temperature deviations corresponding to
intermediate samples at 10 seconds in each period of 10
minutes. Therefore we will now use the following:

Hp+d+1 N 2
J(uk):F > a{T(k+j+l)~T’(k+j—])} 12

p J=d

+ B, )’
where the symbols have the same meaning as described
above.

Note that here this performance index corresponds to an

average of Hp evaluations of the performance index (5) at
the sampling instants. The samples j=I, ..., d-I have not
been considered, because the fuel usage for determining
is not included here, as this information is available from
the previous period uy.;.
This performance index is more standardized in the
literature on predictive control. As this deals with the
average of the performance index of Variant 1 and to some
extent also of Variant 2, it is expected that there will be a
better performance of the control obtained by optimization
although the computational cost ‘is higher than the
evaluation of the other indexes. '

209



J.A. Ruz Hernandez, D. A. Suarez Cerda, E. Shelomov, A. Villavicencio Ramirez: Predictive Control Based on an Auto -

4 Simulation Results

This section contains the results obtained from the
simulation of the predictive control scheme shown in
Figure 2 and for the different variants of the optimization
procedure described in the previous section, using the auto-
regressive neuro-fuzzy model as a predictor as well as a
plant in the scheme.

Variant 3
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Figure 11: Simulation results for testing the Variant 3. The
positions and types of lines correspond
with those in Figure 9.

The value of oy at every instant k in the three optimization
variants is 1. The value of 0.1 is assigned to f§, at every
instant £ in the first and second variants. In the third variant
the value of 5, is 0.01 at every instant.

In all cases, the simulation tests were carried out by
programming the control algorithm in MATLAB for a
startup- with a reference signal of the conventional
temperature shown in Figures 9-11. With this reference an
initial startup gradient of 90°C/H, descending to 75°C/H,
down to 60°C/H is sought after.

The results obtained with the three variants are similar.
The temperature tracking curves, in all cases, almost
overlap with the temperature reference, Graphs A in
Figures 9-11. At the changes in gradient reference, we can
observe slight increases in the tracking error. The fuel
consumption is similar in all cases. In the some way, the
curves representing the behavior of the gradient show a
clear tendency to be the same as those of the gradient
reference, with slight deviations within acceptable
operational limits.

S Robustness Tests

Random noise with gaussian distribution average 0 and
variance | was added to the original predictive control
scheme shown in the previous section, with the aim of
simulating errors in the measurements of temperatures
taken in the plant, Figure 12.
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Given that the control algorithm is based on an auto-
regressive neuro-fuzzy mode] that provides temperature
predictions, the random noise is propagated through the
same channels. This procedure serves as a test for the
robustness of the constructed algorithm because the
optimization routines that were used will determine the
fuel flow at each updating stage. In the case of the previous
simulations, the robustness test demonstrate the same
tendencies observed in the three variants, as can be seen in
Figure 13-15, which corresponds to the control algorithm
for the variants 1-3, respectively.

Control Algorithm

Model

Random Noise

Plant

Optimizer

Performance Index

Figure 12: Proposed Scheme to Test Robustness.

Variant 1 with added noise
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Figure 13: Simulation results for testing the Variant I with
added noise. The positions and types of lines correspond with
those in Figure 9.

6 Analysis of the Results

According to the previous graphs the tracking of the
temperature reference is adequate in all the variants, even
when random noise is added to the measurements. We can
see that the temperature tracking error increases when the
change rate in temperature descends to 60 °C/H, which
causes transient instability in the behavior of the gradient.
In the case of the proposed optimization variants it was
observed that the control algorithm provides us with the
fuel flow to be used by the operator for each period. This
achieves a temperature tracking reference with very small
deviations. The robustness test applied to each of the
variants showed that in some fuel update periods the error
increases but in small degrees, and that they consequently
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have little effect on the temperature tracking. This indicates

that the temperature control of the fluid transported in the
downcomers is adequate.

Variant 2 with added noise
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Figure 14: Simulation results for testing the Variant 2 with
added noise. The positions and types of lines correspond with
those in Figure 9.

Variant 3 with added noise
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Figure 15: Simulation results for testing the Variant 3 with

added noise. The positions and types of lines correspond with
those in Figure 9.

7 Conclusions

From these results we can observe that the control
algorithm that has been developed fulfills the principal
design requirements to solve the problem and furthermore
it can be applied to the different fossil power plants in the
country. The neuro-fuzzy identification demonstrated the
efficiency of this type of technique to easily obtain from the
data reliable models of the process, and that they are useful
as predictors in control predictive schemes based on the
model. Tt is possible to improve the behavior of the
temperature gradient by adding a third term which
participates in the performance index to be minimized.

A control scheme based on an auto-regressive neuro-fuzzy
model is provided and this represents an improvement in
the operation of the fossil power plants.
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