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Resumen

Existen multitud de aproximaciones al estudio de los
sistemas que evolucionan en el tiempo. Este art́ıculo
revisa trabajos previos relacionados con series tem-
porales y evalúa tres aproximaciones enfocadas a la
comparación de dicho tipo de series. Dos aproxima-
ciones están basadas en los principios del algoritmo
Dynamic Time Warping (DTW ) y una de ellas usa
representación cualitativa basada en episodios. Ambas
estrategias son discutidas y aplicadas en la diagnosis
de un sistema de tanques y en la recuperación de reg-
istros de perturbaciones obtenidos en una subestación
de distribución eléctrica. La tercera aproximación usa
un ı́ndice de similitud definido por etiquetas cualitati-
vas. Cada etiqueta representa un rango de valores que,
desde una perspectiva cualitativa, podemos considerar
similares. Esta aproximación se prueba con dos con-
juntos de datos. Este estudio se completa con un estu-
dio del ruido y de otros posibles etiquetados.

Palabras clave: Series Temporales, Análisis de
series temporales, Análisis Cualitativo, Programación
Dinámica, Formas, Conocimiento Cualitativo, Ruido.

Abstract

There are different approaches to the temporal study
of time evolving systems. This paper reviews previ-
ous works related to time series and it evaluates three
approaches focused to the comparison of these type of
series. Two approaches are based on the principles of
Dynamic Time Warping algorithm (DTW ) and one of
them uses qualitative representation based on episodes.
Both strategies are discussed and applied to a tank sys-
tem diagnosis and retrieval of registers of perturbations
gathered in a electric distribution substation. The third
approach uses a similarity index defined by qualitative
labels. Each label represents a range of values that,
from a qualitative perspective, we may consider sim-
ilar. This approach is tested with two datasets. This
study is completed with a evaluation of noise and other
possible labellings.

Keywords: Temporal series, Time-series Analysis,
Qualitative Analysis, Dynamic Programming, Shapes,
Qualitative Knowledge, Noise.

1 Introduction
There are different approaches to study time evolv-
ing systems (dynamic systems theory, temporal series
modelling, statistical analysis, etc.). The aim is to
compare sequences representing system behaviour in
order to identify similar situations. Although, the com-
parison of time series has been extensively treated in
different fields as signal processing, statistical analysis
or dynamical programming, it is still an open issue.

The identification of qualitative sequences for process
diagnosis offers the possibility to monitor complex sys-
tems using reasoning mechanisms based on knowl-
edge extracted from previous sequences. For instance
process diagnosis based on symptoms (described by
sequences) could be defined by reusing past experi-
ences; (association between sequences and its diagno-
sis). Typical tools used with this purpose are expert
systems or learning schemas built on the CBR (Case
Based Reasoning) concept. A more extended explana-
tion of CBR methodology and foundations can be con-
sulted in (Aamodt and Plaza, 1994), (Lenz M. et al.,
1998). The application of this approach to industrial
process suffers from the drawback that heuristic knowl-
edge is easily represented by symbols whereas process
acquisition systems provide monitoring systems with
numerical data. Consequently, knowledge based deci-
sion systems are usually forced to work in a higher level
of abstraction using symbolic variables instead of raw
data coming from sensors. Thus, the existence of qual-
itative representation strategies to interface systems
with decision systems is being treated in the literature
(Colomer et al., 1997), (Colomer J., 1998 ), (Struss P.,
2002). Assuming the existence of those qualitative de-
scriptions, next step is to define similarity metrics to
identify similar symptoms in order to fire rules or to
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retrieve cases representing similar behaviours in order
the assess the process behaviour.

This study considers both numeric and qualitative se-
quences and evaluates different criteria to measure the
similarity between sequences. Although, emphasis is
done in the evaluation of similarity algorithms, the con-
version of numeric times series into sequences of qual-
itative episodes is also treated because both concepts
are strongly tied. This is the case of the representation
language described in (Agrawal et al., 1995b) based on
the definition of a language (SDL) represent sequences
of data by means of shapes allowing a fuzzy retrieval.

Three main approaches are evaluated in this work in
order to deal with similarity problem in time sequences.
Two of them are based on the principles of Dynamic
Time Warping algorithm. Both strategies are dis-
cussed and applied to recognize behaviours in specific
domains: DTW is applied to a tank system diagnosis
and retrieval of registers of perturbations gathered in
a electric distribution substation. The third approach
defines a new index to deal with the problem of the
Longest Common Subsequence (LCS). The analysis
of a semiqualitative model of logistics growth with de-
lay is used to test this approach.

This paper is organized as follows: Related work
are described in section 2, special attention to Shape
Definition Language (SDL) and the problem of the
Longest Common Subsequence (LCS) is given. In sec-
tion 3, Dynamic Time Warping (DTW ) algorithm and
variations of it are summarized. In section 4, applica-
tions of DTW are presented. Section 5 introduces the
Qualitative Similarity Index (QSI), section 6 present a
theorical study of noise sensitivity and section 7 com-
putes this sensitivity in a practical sample. The last
section presents the conclusions and future works.

2 Related Work

There has been many works on comparison of time
series.

A time sequence 	x of length n can be considered a
point in a n-dimensional space. The natural approach
to the similarity problem is to apply existing multi-
dimensional indexing. But this techniques suffer the
dimensionality curse: only works when the number of
dimensions is low (usually 15). The normal length of
time series makes impossible to index the complete se-
quence.

To overcome this problem a popular solution is dimen-
sionality reduction, the sequence is replaced by a sub-
set of values. The distance between the new series rep-
resentations and the original series must be preserved.
An index with the subset of values extracted from the
original data is built. This index provide an efficient

comparison of time series.

One of the older techniques of dimensionality reduc-
tion is transform the series from the time domain to
frequency domain by means of a transform function,
based on the Euclidean distance preservation stated in
the Parseval’s theorem and the results of (Oppenheim
et al., 1975).

The indexation of the firsts coefficients of the Discrete
Fourier Transform, DFT, was the method, called F-
index, presented in (Agrawal et al., 1993) and (Rafiei
and Mendelzon, 1998). The index was constructed
with a R* -tree, (Beckmann et al., 1990). Some works
extend this technique to subsequence matching as
(Faloutsos et al., 1994).

From other perspective, there are papers that let the
user to define the concept of similarity. A set of geo-
metric transformations, as moving average, time warp-
ing or time scaling, are used in (Goldin and Kanellakis,
1995),(Rafiei and Mendelzon, 1997) and (Rafiei 1999).

(Chan and Wai-chee, 1999) propose using Haar trans-
form, from the Discrete Wavelet Trasform (DWT )
family, instead of DFT . There is no advantage of this
approach over DFT as was established in (Wu et al.,
2000).

Other great group of works propose the selection of
a set of the original values of the time series as rep-
resentation of the series. (Keogh and Smyth, 1997)
and (Keogh and Pazzani, 1998) select a piecewise lin-
ear segmentation. (Keogh and Pazzani, 2000) and (Yi
and Faloutsos, 2000) use an approximation to the orig-
inal series using constant segments, and finally (Keogh
et al., 2001) continues this work with an adaptative
method to compute the length of segments.

Applying the concepts from human perception the
landmark model identify the important points in a time
series. The method define a n-th order landmark as a
point where the n-th derivative is zero. Some land-
marks are removed from the set of representing values
if they are to close to other landmarks. This model
was introduced in the paper (Perng et al., 2000).

There is an important number of works based on Dy-
namic Time Warping. A deep review of these papers
is made in following sections.

In the paper (Cheung and Stephanopoulos, 1990), the
study of series with different time scales from a quali-
tative perspective is proposed.

(Jagadish et al., 1995) presents a domain independent
framework to manage similarity. The framework is
composed by a pattern language, a transform rules lan-
guage and a query language.

From a new perspective, (Shatkay and Zdonik 1996)
proposes to represent pieces of the time series by
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Bézier, polinomial and lineal functions.

(Kahveci et al., 2001) and (Kahveci et al., 2002) focus
their works on similarity of multi-attributes sequences.

There are other papers covering specialized versions of
the similarity problem from continuos queries to par-
allel algorithms. Here we have presented a short re-
view of papers related with time series similarity and a
deeper analysis can be found in (Cuberos et al. 2002).

In the next subsections well see the SDL language and
LCS algorithm due its key paper in the definition of
the QSI approach.

2.1 Shape Definition Language (SDL)

This language proposed in (Agrawal et al., 1995b) is
very suitable to create queries about the evolution of
values or magnitudes along the time. The method con-
sists of the conversion of the series into a string of sym-
bols.

Label1

Label2

Label3

t t+∆t

Figure 1: Sample of range division.

The fundamental idea in SDL is to divide the range
of the possible variations between adjacent values in a
collection of disjoint ranges, and to assign a label for
each one of them. Figure 1 represents a sample division
into three regions of the positive axis.

stable

down

Down 

stable

down

up

up
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0
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0,4

0,5

0,6

Figure 2: Time series and assigned labels.

The behaviour of a series may be described taking into

account the transitions between consecutive values. A
derivative series is obtained by means of the difference
of amplitude among the consecutive values of the time
series. The value of this difference matches in one of
the disjoint ranges, and therefore this definition of the
value produces a label of the alphabet. Figure 2 shows
an example of a translation using the set of symbols
(Down, down, stable, zero, up, Up).

Every string of symbols may describe an infinite num-
ber of curves.

2.2 Longest Common Subsequence
(LCS)

Working with different kinds of sequences, one of the
most used similarity measures is the Longest Common
Subsequence (LCS) of two or more given sequences.
LCS is a longest collection of elements which appears
in both sequences and in the same order.

The algorithms to compute LCS are well known and
a deeper analysis of them is detailed in (Paterson and
Danćık, 1994).

Our interest in LCS come from:

• The SDL language generates a string of symbols
from the original time series, so it is possible to apply
the LCS algorithm to find a ”distance” between two
time series, abstracting the shapes of the curves.

• The LCS is a special case of the Dynamic Time
Warping (DTW ) algorithm reducing the distance
increment of each comparison to 0 or 1 depending
on the presence, or absence of the same symbol. So
LCS inherits all the DTW features.

The first work applying LCS and transformations
functions to time series is (Das et al.,1997). Later, it
was extended to multidimensional trajectories in (Vla-
chos et al., 2002).

3 Dynamic Time Warp-

ing Algorithm and Vari-

ations

Most of algorithms that try to measure similarity be-
tween time use the Euclidean distance or some varia-
tion in order to provide a distance between sequences.
However, Euclidean distance could produce an incor-
rect measure of similarity because it is very sensitive to
small distortions in the time axis. A method that tries
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to solve this inconvenience is Dynamic Time Warp-
ing (DTW ), this technique uses dynamic program-
ming (Sakoe and Chiba, 1978),(Silverman and Mor-
gan, 1990) to align time series with a given template
so that the total distance measure in minimized (Fig-
ure 3). DTW has been widely used in word recognition
to compensate the temporal distortions related to dif-
ferent speeds of speech. Next, a brief notion of DTW
is described. Given two time series X and Y , of length
m and n respectively

X = x1, x2, ..., xi, ..., xm ;Y = y1, y2, ..., yj , ..., yn (1)

To align the two sequences, DTW will find a sequence
W of k points on a m-by-n matrix where every element
(i, j) of the matrix contains the local distance d(xi, yj)
between the points xi and yj . This is illustrated in
(Figure 4). The path W is a contiguous set of matrix
elements that minimize the distance between the two
sequences.

W = w1, w2, ..., wk max(m,n) ≤ k ≤ m+ n (2)

wk = [ik, jk] (3)

where ik and jk denote the time index of trajectories
X and Y respectively. In order to find the best path
W , some constraints on the matching process are con-
sidered:

• Constraints at the endpoints of the path, w1 = [1, 1]
and wk = [m,n].

• Continuity constraints, matching paths cannot go
backwards in time, this is achieved forcing ik+1 ≥ ik
and jk+1 ≥ jk.

The path is extracted by evaluating the cumulative dis-
tance D(i, j) as the sum of the local distance d(xi, yj)
in the current cell and the minimum of the cumulative
distances in the previous cells. This can be expressed
as:

D(i, j) = d(xi, yj) +min[D(i− 1, j − 1),D(i− 1, j),
D(i, j − 1)] (4)

Several modifications of this technique have been in-
troduced in order to apply the method in several sit-
uations. In (Keogh and Pazzani, 1999) a modification
of DTW is introduced to operate on a higher level of
data abstraction through a piecewise linear represen-
tation. (Keogh and Pazzani, 2001) consider a higher
level feature of shape considering the first derivative
of the sequences. (Caiani it et al., 1998) adapt the
DTW approach to the analysis of the left ventricular
volume signal for an optimal temporal alignment be-
tween pairs of cardiac cycles. (Vullings et al., 1998)
implement a piecewise linear approximation and seg-
ment the signal into separate heartbeats. DTW also
is used in (Kassidas et al., 1998) to synchronise batch
process trajectories in order to reconcile timing differ-
ences among them.

0 10 20 30 40 50 60 70 80 90 100
(b)

0 10 20 30 40 50 60 70 80 90 100
(a)

Figure 3: Two signals with similar shape. a) Euclidean
distance b)DTW

1 i m
1

j

n

Figure 4: An example warping path.

3.1 Derivative Dynamic Time
Warping-DDTW

The weakness ofDTW is in the features it considers. It
only considers a data points Y -axis value. For example
if we consider two data points (xi and yj) which have
identical values, but xi is part of a rising trend and yj

is part of a falling trend. DTW considers a mapping
between these two points ideal, although intuitively
we would prefer not to map a rising trend to a falling
trend.

To prevent this problem, in (Keogh and Pazzani, 2001),
a modification of DTW was proposed. It does not con-
sider the Y -values of the data points, but rather con-
siders the higher level feature of ”shape”. Information
about shape consists in the first derivative of the se-
quences; this algorithm was called Derivative Dynamic
TimeWarping (DDTW ). As before we construct an n-
by-m matrix where the (ith, jth) element of the matrix
contains the distance d(xi, yj) between the two points

4

D. Llanos, F.J. Cuberos, et al.



xi and yj . With DDTW the local distance measure is
the square of the difference of the estimated derivatives
of xi and yj . While there exist sophisticated meth-
ods for estimating derivatives, particularly if one knows
something about the underlying model generating the
data, we use the following estimate for simplicity and
generality:

Dx[x] =
(xi − xi−1) + ((xi+1 − xi−1)/2)

2
1 < i < m (5)

This estimation is simply the average of the slope of the
line through the point in question and its left neighbor,
and the slope of the line through the left neighbor and
the right neighbor. Empirically this estimation is more
robust to outliers than any estimation considering only
two data points. Note the estimation is not defined for
the first and last elements of the sequence. Instead
we use the estimates of the second and penultimate
elements respectively.

3.2 Combining DTW and Episodes
based Representations-EpDTW

Representations by means of episodes provide a good
tool for situation assessment. On the one hand, un-
certainty, incompleteness and heterogeneity of process
data make the qualitative reasoning a good tool. On
the other hand, reasoning not only with instantaneous
information, but with historic behaviour of processes
is necessary. Moreover, since a great deal of process
data is available for the supervisory systems, to ab-
stract and use only the most significant information is
required. The representation of signals by means of
episodes provides an adequate response to these neces-
sities.

The general concept of episode was introduced in the
field of qualitative reasoning by (Williams, 1986), who
defined an episode as a set of two elements: a time in-
terval, named temporal extent and a qualitative con-
text, providing the temporal extension with signifi-
cance. This definition allows defining an episode as
explicitly as the qualitative context.

The formalism described in (Meléndez and Colomer,
2001) extend previous formalism to both qualitative
and numerical context in order to be more general. It
means that allows building episodes according to any
feature extracted from variables. According to this for-
malism, a new representation allows to describe signal
trends depending on the second derivative, that can be
computed by means of a band-limited FIR differentia-
tor (Colomer and Meléndez, 2001) in order to avoid
noise amplification. The qualified first derivative at
the beginning and end of each episode is used in order
to obtain a more significant representation. Then, a
set of 13 types of episodes is obtained (Figure 5).

Other proposed modification of the DTW algorithm
consists on apply DTW not in original time series but
in its episodes based representations. The represen-
tation of a sequence as episodes reduces the calcula-
tion time by decreasing the amount of manipulated
data. Likewise, the qualitative character that defines
an episode avoids the problem of the variability in the
Y -axis. Therefore DTW can be used to align episodes
to obtain a global distance. The problem is to define a
local distance between episodes. In this sense, a chart
of distances has been defined where the 13 types of
episodes described above are related. Distances are
based on the qualitative state and auxiliary character-
istics that define the different types of episodes (Fig-
ure 6). However, these local distances could be sub-
ject to the criterion of the user, so one could give more
importance to some episodes concerning another ob-
taining a different global distance and preserving the
essential features of the process signal. This way, a new
approach (EpDTW ) of the DTW algorithm is created
using episodes as a higher level representation of the
signal.

\ — /
   A B C   D    E   F  G   H    I    J    K  L M 

Figure 5: Useful set of episodes

It is necessary to keep in mind that compared se-
quences could have different duration. This fact com-
plicates the generalisation of the proposed technique.
In the next example the length of the analysed se-
quences is different although not too dissimilar.

4 DTW/DDTW/EpDTW

Applications

As application examples DTW and DDTW have been
used in order to compare electric perturbations known
as voltage sags (see example 1). In a second exam-
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Figure 6: Local distances between episodes

5

Recognition of system behaviours based on temporal series similarity



ple EpDTW has been used in a laboratory plant for
diagnosis purposes (see example 2).

4.1 Example 1

Standard definition of sags is based on the minimum
rms value obtained during the event and its duration
is the time interval between the instant when the rms
voltage crosses the voltage sag threshold (usually 90%
of nominal voltage) and the instant when it returns to
normal level (Bollen, 2000). A three-phase voltage sag
is shown in Figure 7.
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a)      b) 

Figure 7: a)Example of a three-phase voltage sag b)
rms voltage

An important sag feature known as characteristic volt-
age (Arrillaga et al., 2000) can be obtained from the
voltage magnitude and the voltage phase angle of the
three phases. The characteristic voltage is the main
indicator of the severity of the event. The absolute
value (magnitude) of the characteristic voltage is com-
parable to the r.m.s. voltage for single-phase measure-
ments and should be used to determine duration and
retained voltage from three-phase measurements. In
this work, characteristic voltage has been used to ap-
ply the DDTW algorithm in order to find similarity
criteria among of a set of sag registers, see Figure 10.

The example shows the comparison between a new sag
(SALT18) and the stored sags in order to retrieve the
most similar one taking also into account the diagnostic
(location and origin) of previous sag. Figure 8 and Fig-
ure 9 show the results obtained after applying DTW
and DDTW respectively. Comparing both methods
it was concluded that DDTW finds more similarity
between the compared sag (SALT18) and the stored
ones.

Sag name Global distance DTW Location Origin

SALT 18 - Distribution Damaged conductor

SALT 2 2.46020E-05 Distribution Damaged conductor

SALT 4 2.78100E-05 Distribution Damaged conductor

SALT 5 3.01510E-05 Distribution Damaged conductor

SALT 1 4.09950E-05 Distribution Damaged conductor

SALT 3 5.29630E-05 Distribution Damaged conductor

SALT 9 5.23240E-04 Transmission Single phase trip. Successful reclose in one end line.

SALT 7 5.80530E-04 Transmission Single phase trip. Successful reclose in both end line.

SALT 10 9.65140E-04 Transmission Single phase trip. Successful reclose in both end line.

SALT 12 1.06890E-03 Transmission Single phase trip. Successful reclose in one end line.

SALT 17 1.30030E-03 Transmission Single phase trip

SALT 11 2.11770E-03 Transmission Single phase trip. Successful reclose in both end line.

SALT 6 3.85910E-03 Distribution Damaged conductor

SALT 13 3.94830E-03 Distribution Damaged conductor

SALT 14 6.13650E-03 Distribution Damaged conductor

SALT 15 2.17460E-02 Distribution Single phase trip

SALT 16 3.04110E-02 Transmission Damaged conductor

Figure 8: Similarity results using DTW

Sag name Global distance DDTW Location Origin

SALT 18 - Distribution Damaged conductor

SALT 2 3.92550E-06 Distribution Damaged conductor

SALT 4 4.52160E-06 Distribution Damaged conductor

SALT 1 6.40600E-06 Distribution Damaged conductor

SALT 3 7.48330E-06 Distribution Damaged conductor

SALT 9 7.98560E-06 Transmission Single phase trip. Successful reclose in one end line.

SALT 5 8.14680E-06 Distribution Damaged conductor

SALT 6 1.01270E-05 Distribution Damaged conductor

SALT 13 1.02760E-05 Distribution Damaged conductor

SALT 10 1.23390E-05 Transmission Single phase trip. Successful reclose in both end line.

SALT 12 1.27940E-05 Transmission Single phase trip. Successful reclose in one end line.

SALT 7 1.28730E-05 Transmission Single phase trip. Successful reclose in both end line.

SALT 11 1.71310E-05 Transmission Single phase trip. Successful reclose in both end line.

SALT 17 2.33520E-05 Transmission Single phase trip

SALT 16 2.78990E-05 Transmission Damaged conductor

SALT 14 6.57140E-05 Distribution Damaged conductor

SALT 15 7.98960E-05 Distribution Single phase trip

Figure 9: Similarity results using DDTW
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Figure 10: Voltage sag comparison a)DDTW b)DTW

Comparison between SALT18 and SALT4 has been
made; Figure 10 shows the DTW and DDTW applied
to both signals. As was explained before, each matrix
element (i, j) corresponds to the alignment between
the points xi and yj . This is illustrated in Figure 11,
where path W is a contiguous set matrix elements that
defines a mapping between X and Y . Look that path
taken by the DTW is longer that the DDTW path.

4.2 Example 2

As application example, the EpDTW approach has
been used in a laboratory plant for situation assess-
ment purposes. In this plant (See Figure 12), level in
tank A is controlled by means of a PID controller by
pumping water from a reservoir (tank B). Monitored
process variables are the level in tank A and the con-
trol signal (pump). Three valves (V 1,V 2 and V 3) can
be handled in order to simulate obstructions and leak-
ages. Then several situations are possible by appropri-
ate combination of opening and closing valves. Addi-
tionally, system dynamics can by slightly modified by
filling or emptying the reservoir with external water.
Then, input and output of external water in tank B
are also interesting situations to be detected.

The experiments have been developed under the as-
sumption that two situations can not be overlapped.
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Figure 11: DTW and DDTW warping path compari-
son
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Figure 12: Laboratory plant

Thus, changes in the configuration of valves are only
performed when process is in steady state. The moni-
toring system will be able to assess such situations and
diagnose about the origin of misbehaviours according
to the behaviour of measured signals described by se-
quences of episodes (Figure 5).

As example, a reduced set of registers has been built
by obtaining the sequence of episodes for the two mon-
itored variables in a time window of 70 seconds and the
corresponding description of the situation. An exam-
ple of an obstruction and its restoration for the level
signal is showed in Figure 13. After testing the most

   

Figure 13: Example of level signal and its representa-
tions

common situations this set is composed by 29 registers
(Figure 14). The assessed situation is divided in three
parts: part of plant, component and diagnosis. The
first field corresponds to the part of plant or operation
that is being affected, in this case input of water or out-
put of water. The second field points out the affected
component of the plant, and in the last field, the corre-
sponding diagnosis is indicated. In order to check the

End of Out.Ext. waterOut. B/——29

End of Out.Ext. waterOut. B——28

Out.Ext. waterOut. B—/—27

Out.Ext. waterOut. B——26

End of In.Ext. waterIn. B——25

End of In.Ext. waterIn. B\——24

In.Ext. waterIn. B—\—23

In.Ext. waterIn. B——22

Leak. Restoredpipe or pumpIn. A— \ ——21

Leak. Restoredpipe or pumpIn. A\ —\20

Leak. Restoredpipe or pumpIn. A— —— —19

Leak. Restoredpipe or pumpIn. A— \ —— \—18

Leakagepipe or pumpIn. A— ——17

Leakagepipe or pumpIn. A— / —— /16

Leakagepipe or pumpIn. A— / —— —15

Leakagepipe or pumpIn. A— / —— —14

End Obstr.pipeOut. A— / —— —13

End Obstr.pipeOut. A— / —— \ / —12

End Obstr.pipeOut. A— —— —11

ObstructionpipeOut. A— \ —— / \ —10

ObstructionpipeOut. A— \ —— —9

ObstructionpipeOut. A— —— —8

End Obstr.pipe or pumpIn. A— \ —/ —7

End Obstr.pipe or pumpIn. A— \ —— / —6

End Obstr.pipe or pumpIn. A— —— —5

End Obstr.pipe or pumpIn. A— ——4

Obstructionpipe or pumpIn. A— —— —3

Obstructionpipe or pumpIn. A— —— \ —2

Obstructionpipe or pumpIn. A— —— \1

FaultComp.Oper.

DiagnosisControlLevelCase

Figure 14: The set of registers

methodology, each one of the 29 registers is compared
with the other ones. Then, 841 similarity measures
are carried out considering the pattern composed by
the level and control signals. Similarity between symp-
toms (obtained by means of EpDTW ) gives a normal-
ized value where zero corresponds to identity. Then,
similarity between registers is obtained with the aver-
age of the similarity for the two symptoms since for this
process the two signals are considered with the same
weight. From a general point of view, if the 29 reg-
isters are analyzed by ordering the value of similarity
obtained concerning the rest of registers, it can be de-
duced that a threshold of 0.1 allows to obtain enough
cases to do a correct situation assessment.

In a detailed example (Figure 15) the retrieved cases
after comparing the register 15 with the rest are shown.
The first line shows the register number while the sim-
ilarity (less than 0.1) with respect to register 15 can be
observed below. It can be considered that the tested
register is a new register or that it already exists in the
set of registers.

In this example, the initial supposition is that it
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doesn’t exist in the set of registers. So, the register
15 yields 6 cases with an inferior distance to 0.1 as re-
sult. The two more similar registers (13 and 14) offer
different symptoms, nevertheless, the register 13 cor-
responds to a situation obtained by the restoration of
a previous obstruction. Considering the monitory pro-
cedure, this obstruction hasn’t existed previously and
therefore the registers (13 and 11) are discarded. Ana-
lyzing the frequency of the remaining cases, 3/4 corre-
sponds to pump leakage or input pipe leakage on tank
A, therefore this is the offered assessment. If previous
states are not kept in mind, the cases corresponding
to restoration of previous obstructions they must be
considered. Now, evaluating the frequency, 4/6 indi-
cates problems in input of tank A, while the remaining
2/6 points out problems in the output. From the cases
related to input, all cases indicate that the failure is
located in the pump or pipe. So, this would be the
proportioned diagnosis, with probability that the fail-
ure is caused for leakage.

0.08060.06810.06390.06390.03330.0333Dist.

31716111413Reg.

Figure 15: Retrieved registers and similarity for regis-
ter 15

5 Qualitative Similarity Index
(QSI)

The idea of this index is the inclusion of qualitative
knowledge in the comparison of time series. It is pro-
posed a measure based in the matching of qualitative
labels that represent the evolution of the series val-
ues. Each label represents a range of values that may
be assumed as similar from a qualitative perspective
. Different series with a qualitatively similar evolution
produce the same sequence of labels.

The proposed approximation performs better compar-
isons than previously proposed methods. This im-
provement is mainly due to two characteristics of the
index: it maximizes the exactness because it is defined
using all the information of the time series, although
there is always information loose in the process; and on
the other hand, it focuses the comparison on the shape
and not on the original values because it considers the
evolution of groups as similar. It is interesting to note
that we suppose that the time series are noise free and
with a linear and monotonic evolution between sam-
ples.

Let X = 〈x0, ..., xf 〉 be a time series. Our pro-
posed approach is applied in three steps. First, a nor-
malization of the values of X is performed, yielding
X̃ = 〈x̃0, ..., x̃f 〉. Using this series we obtain the diffe-
rences series XD = 〈d0, ..., df−1〉, that it is translated

to a string SX = 〈c1, ..., cf−1〉. The similarity between
two time series is calculated by means of the compar-
ison of the two strings obtained from them, applying
the previous transformation process, and then using
the LCS algorithm. The result is used as a similarity
measure between the original time series.

5.1 Normalization

Keeping in mind the qualitative comparison of the se-
ries, it is made a normalization of the original numer-
ical values in the interval [0,1]. This normalization is
carried out to allow the comparison of time series with
different quantitative scales.

Let X = 〈x0, ..., xf 〉 be a time series, and let X̃ =
〈x̃0, ..., x̃f 〉 be the normalized temporal series obtained
from X, as follows:

x̃i =
xi −min(x0, ..., xf )

max(x0, ..., xf )−min(x0, ..., xf )
(6)

where min and max are operations that return the
maximum a minimum values of a numerical sequence,
respectively.

Let XD = 〈d0, ..., df−1〉 be the series of differences ob-
tained from X̃ as follows:

di = x̃i − x̃i−1 (7)

This difference series will be used in the labelling step
to produce the string of characters corresponding to
X. It is interesting to note that every di ∈ XD is
a value in the [-1,1] interval, as a consequence of the
normalization process.

5.2 Labelling process

The proposed normalization in the previous section is
focused in the slope evolution and not in the origi-
nal values. A label may be assigned to every different
slope, so the range of all the possible slopes is divided
into groups and a qualitative label is assigned to every
group.

The range division is defined depending on the param-
eter δ which is supplied by the experts according to
their knowledge about the system. The value of this
parameter has a direct influence in the quality of the
results, therefore this is an open research area of this
paper that we will detail in future work.

Label Range Symbol
High increase [1/δ,+∞] H

Medium increase [1/δ2, 1/δ] M
Low increase [0, 1/δ2] L
No variation 0 0
Low decrease [−1/δ2, 0] l

Medium decrease [−1/δ,−1/δ2] m
High decrease [−∞,−1/δ] h
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Where the first column represents the qualitative label
for every range of derivatives, which is shown in the sec-
ond row. Last column contains the character assigned
to each label. The proposed alphabet contains three
characters for increases and three for decreases ranges,
and one additional character for constant range. It is
important to note that in our approach there is no ap-
plication of the constraints presented in SDL (Agrawal
et al., 1995b).

This alphabet is used to obtain the string of characters
SX = 〈c1, ..., cf−1〉 corresponding to the time series X,
where every ci represents the evolution of the curve
between two adjacent time points in X and it is ob-
tained from XD = 〈d0, ..., df−1〉 assigning to every di

its character in accordance with the above table.

This translation of the time series to a sequence of sym-
bols lets us abstract from the real values and focus our
attention on the shape of the curve. Every sequence of
symbols describes a complete family of curves with a
similar evolution.

Figure 16 shows a normalized curve with their deriva-
tive values and the assigned label to each transition
between adjacent values. This example has been ob-
tained selecting δ = 5.

L 0 L

l

L

l l

L

m m m
m

h

H

m m m l m m

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

Figure 16: Sample of translation

5.3 Definition of QSI Similarity

Let X,Y be time series where X = 〈x0, ..., xf 〉 and
Y = 〈y0, ..., yf 〉. Let SX , SY be the strings obtained
when X,Y are normalized and labelled.

The QSI similarity between the strings SX , SY is de-
fined as follows

QSI(SX , SY ) =
∇(LCS(SX , SY ))

m
(8)

where ∇S is the counter quantifier applied to string
S. Counter quantifier yields the number of char-
acters of S. On the other hand, m is defined as
m = max(∇SX ,∇SY ). Therefore, the QSI similarity

may be understood like the number of ordered symbols
that we may find in the same order in both sequences
simultaneously, and this value divided by the length of
the longest sequence.

5.4 Comparison with other approach

The QSI method has been compared with the algo-
rithm introduced in (Keogh and Pazzani, 1999), called
Segmented Dynamic Time Warping (SDTW ). (Keogh
and Pazzani, 1999) carries out a clustering process with
a set of time series.

The SDTW algorithm was tested with the Australian
Sign Language Dataset from the UCI KDD (Bay, 1999)
choosing 5 samples for each word. The data in the
database are the 3-D position of the hand of five sign-
ers, records by means of a data glove.

The result was 22 correct clustering from 45 for DWT
and SDTW . Next, we used the similarity QSI index,
proposed in this paper, over the string obtained from
the translation of the original values of the series. This
time, the result was 44 correct clustering of 45.

For a detailed description of this comparison and the
application of QSI to a logistics growth model with a
delay see (Ortega et al., 2001).

Open questions on QSI are the influence of noise in
the index and the importance of the labelling schema
in the results. We will try to answer these questions in
the next section.

The three basic ways to divide the range of the possible
slopes are:

• the values in an interval must be ”similar”,

• all the intervals have the same amplitude and

• every interval have the same number of elements.

The next three methods have been selected following
these basic ideas.

• CUM method. This method was developed and im-
plemented in (González and Gavilán, 2000). This
method makes a clustering of the initial values min-
imizing the average of the deviations, with the con-
straint that all the class marks be equally represen-
tative. This process is defined based on the statis-
tical sampling techniques and a complete study can
be found in(Cochran) and (González and Gavilán,
2000).

• Amplitude. The experience shows that the division
of a group of values into ranges, or intervals, with
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the same amplitude is the least noise sensitivity di-
vision. Selecting this method we want to verify this
hypothesis in labelling.

• Percentile. We look for the intervals that present
an approximate number of values. So every symbol
has the same representation power in the set of se-
ries. The ends of the intervals are selected as the
corresponding percentiles.

As the labelling methods have been presented, now we
will analyze the influence of noise in QSI.

6 Noise and alternative labelling

Clearly, the noise sensitivity of QSI depends on the
labelling process, but we can analyze the sensitivity
characteristic to any division.

Let x1, x2, · · · , xT be a normalized time series and a
set of values determining the ends of class intervals
L0 < L1, · · · < Lk (k class intervals, the ends can be
non finite values). First, the differences between two
consecutive values of the time series:

p(t) = ∆x(t+ 1) = xt+1 − xt, t = 1, · · · , T − 1

From this new series and the ends of the class intervals,
a new series is computed:

ε(t) = min
Li

{|p(t)− Li| , i = 0 · · · , k} , t = 1, · · · , T−1

This series verifies:

1. ε(t) is well defined and exists for all t.

2. ε(t) ≥ 0 for all t.

3. It comes true that:

ε(t) ≤ L =
1
2
max {Li − Li−1, i = 1, · · · , k} . (9)

This temporal series can be treated as a series of atem-
poral values. If a value 0 ≤ α < 1 is chosen and the
percentile of α order of the set {ε(t)}T−1

t=1 is calculated,
and indicated εα (see figure 17).

Associated with the differences series p(t) the number:

pα =
1
2
εα

is considered, which does not depend on t.

With the study of the noise sensitivity of the temporal
series xt being our target, a new normalized series is
considered, in the form:

x̂t = xt + u(t) · pα

✲︸ ︷︷ ︸0 L
ε(t)εα︸ ︷︷ ︸

✻ ✻

Contents α%
of series values

Contents (1 − α)%

series values

Figure 17: Percentile of series ε(t)

where
−1 ≤ u(t) ≤ 1, for alll t

and the corresponding labelling to this series is com-
puted. The differences are:

p̂(t) = ∆x̂(t+ 1) = x̂(t+ 1)− x̂(t)
= x(t+ 1)− x(t) + (u(t+ 1)− u(t)) · pα

= p(t) + v(t) · εα
where −1 ≤ v(t) ≤ 1 and t = 1, · · · , T −1. So we have:

−εα ≤ p̂(t)− p(t) ≤ εα

If we suppose p(t) ∈ [Li, Li+1] then p(t) − Li ≥ ε(t)
and Li+1 − p(t) ≥ ε(t)

p̂(t)− Li = p̂(t)− p(t) + p(t)− Li ≥ −εα + ε(t)
Li+1 − p̂(t) = Li+1 − p(t) + p(t)− p̂(t) ≥ ε(t)− εα

and by the definition of εα al least (1 − α)% is true
that

p̂(t)− Li ≥ 0
Li+1 − p̂(t) ≥ 0

}
⇒ p̂(t) ∈ [Li, Li+1]

Therefore, the labels assigned to the series p̂(t) match
in the same order with the the labels of p(t) series.

From this reasoning we can conclude:

• Let K be the normalization constant scale factor
used in the normalization of the original series x(t),
then instead of pα is defined

p1α =
εα
2K

.

• This way, we can assign to each labelling a value pα

of the noise level endured with a confidence level
1−α. If pα value is relatively high, then we will have
a great confidence in QSI labelling provided for the
series.

• As in statistics, we can determine, in a computer
program, the confidence level of α in 5%, and there-
fore the labelling would have a confidence level for a
level error p0.05 of 95%.

• If for α high values, the pα value took the value zero,
then the labelling QSI of the studied series would
be very sensitive to the noise level.

This is valid to study the noise level supported a time
series for a labelling scheme.

Now we will see the application of those different la-
belling to QSI.
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Original2 "-1,-.04,0,0,.04,1" 44
CUM "-1,-0.083,-0.026,0.026,0.081,1" 40
Amplitude "-1,-.6,-.2,.2,.6,1" 25
Percentile "-1,-.05,-.01,.01,.05,1" 39
DTW - 22

Intervals Clust. 
Success

Name

Figure 18: Different labelling

Percentage of symbols 
S1 S2 S3 S4 S5

Original2 26,40% 16,75% 13,87% 15,58% 27,39%
CUM 12,04% 19,84% 35,45% 20,75% 11,92%
Amplitude 0,00% 1,51% 96,88% 1,57% 0,04%
Percentile 21,04% 20,74% 16,42% 19,41% 22,39%

Name

Figure 19: Labels distribution

7 An example

The noise sensitivity depends on the original series and
on the intervals that define the labels too.

We will work with the Australian Sign Language
Dataset. From this dataset 10 words from the 95 words
in the database were selected. The noise is generated
randomly for every value by means of a normal distri-
bution.

The series are of different length and all shorter than
100 measures.

To see the influence of the labelling we will use the
division techniques presented.

Applying the techniques to the ASL subset the next
interval ends for the labelling definition are obtained.

From the original definition of QSI with a δ = 5 we get
the first set of interval ends. As in the series included
in the selected subset there are no values in the outer
intervals, we reduce the number of labels to 5 and the
ends of the intervals are (−1,−.04, 0, 0, .04, 1). In the
rest of this paper we will identify this set of intervals
as Original2.

As the Original2 includes 5 symbols, the rest of the
methods will be applied to obtain the same number of
symbols.

The CUM applied to the 50 series in the dataset
with a number of 5 classes computes the set
(−1,−.083,−.026, .026, .081, 1).

With the selection of intervals of equal amplitude
we have two options: to divide all the range (−1, 1)
or to divide only the zone in which values appear.
As the results obtained with the two possibilities
are very similar we will include only one of them,
(−1,−.6,−.2, .2, .6, 1).

% Labels
0 1 2 3 4

1% 83,75 15,91 0,338 0 0
2% 78,84 19,53 1,523 0,11 0
3% 75,22 21,53 2,562 0,656 0,023
4% 71,64 23,42 3,443 1,373 0,123
5% 69,55 24,08 3,915 2,154 0,302
6% 67,22 25,11 4,241 2,94 0,492
7% 65,09 25,74 4,668 3,541 0,966
8% 63,55 25,92 4,924 4,269 1,338
9% 62,54 25,8 5,424 4,717 1,518
10% 61,05 25,97 5,581 5,371 2,036
1% 94,57 5,426 0 0 0
2% 89,26 10,71 0,026 0 0
3% 84,46 15,12 0,415 0,004 0
4% 80,14 18,7 1,138 0,016 0
5% 76,58 21,32 1,971 0,13 0
6% 73,23 23,26 3,131 0,365 0,016
7% 70,98 24,29 4,124 0,574 0,026
8% 68,09 25,87 5,069 0,924 0,048
9% 66,3 26,65 5,716 1,246 0,088
10% 64,08 27,55 6,645 1,553 0,169

C
U

M

Error 
level

O
rig

in
al

2

Figure 20: Number of label hops in presence of noise

The Percentile method is applied for 5 regions, so
there is 20% of each symbol in the set of series.

For comparison purpose the data obtained with DTW
algorithm is included.

First we will present the average pα, explained in the
previous section, of the set of series in the ASL subset
for each labelling scheme in the table below.

α Original2 CUM Amplitude Percentile
0.5 0.0163 0.0163 0.1570 0.0132
0.45 0.0130 0.0150 0.1495 0.0110
0.4 0.0116 0.0133 0.1446 0.0102
0.35 0.0111 0.0123 0.1378 0.0093
0.3 0.0092 0.0113 0.1298 0.0075
0.25 0.0071 0.0091 0.1206 0.0062
0.2 0.0043 0.0075 0.1123 0.0054
0.15 0.0022 0.0063 0.0998 0.0043
0.1 0.0010 0.0052 0.0878 0.0038
0.05 0.0002 0.0045 0.0685 0.0034

Now that we have a set of labelling processes we can
check the quality of each one. As stated in previous
works, the quality is defined, for us, as the number of
correct clustering processes obtained with all the possi-
ble pairings of series representing two different words.
As we have 10 words, the total of pairs is 45. The
identification will be correct if the clustering process
ends with two groups of five elements and each group
contains series from the same word.

In figure 18 we present the number of correct cluster-
ings for each labelling technique.

An important information is the distribution of sym-
bols produced by every labelling method. This is
shown in figure 19.
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% Labels
0 1 2 3 4

1% 99,7 0,297 0 0 0
2% 99,49 0,51 0 0 0
3% 99,35 0,651 0 0 0
4% 99,01 0,995 0 0 0
5% 98,85 1,148 0 0 0
6% 98,47 1,527 0 0 0
7% 97,95 2,05 0 0 0
8% 97,52 2,478 0 0 0
9% 96,9 3,097 0 0 0
10% 96,37 3,631 0 0 0
1% 93,18 6,74 0,09 0,00 0,00
2% 87,06 12,17 0,754 0,015 0
3% 82,61 15,37 1,814 0,191 0,015
4% 78,55 18,09 2,748 0,556 0,051
5% 75,31 19,63 3,688 1,256 0,11
6% 72,77 20,69 4,551 1,799 0,197
7% 70,37 21,86 4,918 2,43 0,421
8% 68,06 22,99 5,236 2,994 0,72
9% 65,84 23,83 5,735 3,709 0,888
10% 64,63 24,07 6,098 4,126 1,08

Error 
level

P
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ce
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m
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Figure 21: Number of label hops in presence of noise
cont.

The first evaluation of the noise influence in the labels
can be achieved calculating the number of labels that
are different between the original and the noisy series.
But the magnitude of this change is important. So we
define several levels of hop for a label, depending on
the numbers of positions that differ the original and the
noisy label. So all the labels that remain unchanged
will have no hop, or a hop of level 0.

In the figures 20 and 21 the percentage of labels for
every level of hop for the noise levels are presented.
We use noise levels in the range from 1% to 10%.

We have to consider that the number of labels that
remain unchanged is about the 60% at a noise level of
10%.

As the experience dictates, the least influence of noise
is observed in the Amplitude labelling process.

But the number of the correct clusterings is more im-
portant for us that the change of symbols in the trans-
lated time series. So we will repeat the clustering for
every labelling scheme and every level of noise.

The figures 22 a) to e) show the number of correct
clusterings. As the noise is introduced in an aleatory
way, we present the maximum and minimum values
obtained for every labelling.

8 Conclusions and Further
Work

This work shows some approaches in order to measure
the similarity of time series. Since different patterns
belonging to the same class of situations could have dif-

a) Original2

30
35
40
45

0 0,02 0,04 0,06 0,08 0,1

MAX AVG MIN

b) CUM

30
35
40
45

0 0,02 0,04 0,06 0,08 0,1
MAX AVG MIN

c) Amplitude

15
20
25
30

0 0,02 0,04 0,06 0,08 0,1
MAX AVG MIN

d) Percentile

30
35
40
45

0 0,02 0,04 0,06 0,08 0,1
MAX AVG MIN

6

e) DTW

15

20

25

30

0 0,02 0,04 0,06 0,08 0,1
MAX AVG MIN

Figure 22: Clusterings success in the presence of noise

ferent time duration or magnitudes, two modifications
of DTW algorithm are presented to compare and clas-

sify similar patterns. A first modification ofDTW does
not consider the Y -values of data point. The second is
based on the integration of qualitative representation
based on episodes and Dynamic programming.

Furthermore, we have reviewed the QSI index to mea-
sure the similarity of time series depending on its qual-
itative features. Also the proposed method achieves
better results than previous algorithms with a similar
computational cost.

We have studied the noise sensibility and others possi-
ble labelling schemas.

As it was expected, the labelling scheme that concen-
trates a high number of labels on few intervals is not
very influenced by the presence of noise. This is shown
by the Amplitude method. The Original2,CUM and
Percentile methods are affected by noise in a higher
level. All these methods have similar behaviours with
noise.

We must conclude saying that the presence of noise
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in the clustering process has an influence similar to
the level of the noise, the reduction of the number of
correct clusterings is near lineal with the noise level.



We can remark this as a low influence of noise, as there
is no level above which the results drop firmly. We have
repeated the experiment with noise over 30% and the
lineal relation is verified.

The idea for future works is the automation and the
optimization of the division in ranges of the possi-
ble slopes to guarantee high quality clustering. When
there are no information about the system which orig-
inated the time series, the CUM method can be used
as a first approximation. Also, comparison between
methods using qualitative information (EpDTW and
QSI) should be done. Finally, it is necessary to ex-
tend these approaches to multivariate systems taking
into account relevance of variables over the others. The
inclusion of weights in this new approach must be stud-
ied to characterize this relevance.
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