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Abstract

In this paper we propose an implicit linear control law
for a two degree freedom manipulator whose aim is to
stabilize and match a linear model. We show that for
any finite initial condition there exists a sufficient small
control parameter, ¢, such that the model matching is
exponentially achieved.
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Stability, Implicit Systems, PD control law.
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1 Introduction

Control of the closed kinematic chain mechanism “Par-
allel Robots” based on the Lyapunov approach, has been
the subject of sustained interest for, both, mechani-
cal and robotics engineering. This area is considered
a challenging field for potential applications in future
developments for many industries. For example, we
could mention the manufacturing car and aerospace in-
dustries and applications such as fast assembly lines,
flight simulators, robotic matchines (see : [Fither,1986],
[Nguyet et al 1993], [Merlet,1990] and [Dunlop and Gar-
cia, 2002] ). The main feature of these manipulators
is that the links are connected in series as well as in
parallel combinations, forming one or more closed-link
loops. Besides, not all the joints of parallel robots are
actuated (see [Merlet, 2000] and [Dunlop and Jones,
1998]). The advantages of using Parallel Robots should
be stressed, since, they present high precision position-
ing capabilities and non cumulative link errors due to
their high structural rigidity. Additionally, they have
higher strength-to-weight ratios in comparison with con-
ventional series manipulators (see:[ Lebret and Lewis
1993] and [Nguyen, Pooran, and Premack, 1998]). How-
ever, their dynamics analysis presents an extremely dif-
ficult theoretical problem. For its mathematical mod-
els are very complex to analyze and to manage. For
instance, we mention the well-known Stewart Platform-
based manipulator with 6 freedom degrees whose mathe-
matical model includes several nonlinear differential or-
dinary equations and many internal algebraic restric-
tions [Merlet, 1990 and 2000]. To overcome this over-
whelming complexity, it is common to despise the non-
linear dynamics (Coriolis acceleration or dynamical in-
teractions between loops) and the restrictions are not
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considered (see see [Lebret and Lewis 1993] , [Nguyen,
Pooran, and Premack, 1998] and [Dunlop and Jones,
1998]). Consequently, the control laws design have been
barely developed.

In this paper we propose a simple linear implicit con-
trol law for the most elemental but fundamental closed
kinematic chain ( CKC ), namely a “triangle chain”
(see Figure 1). The main feature of the presented closed
loop system is that it allows to stabilize and to match
a linear model in an exponential fashion. The used im-
plicit control law is based on the previous results pre-
sented in ([Aguilar and Bonilla, 1998 and 1999, and
Bonilla and Malabre, 1992 ). These authors synthe-
sized pure derivators by means of the desing of implicit
control laws. It is worth mentioning that the funda-
mental CKC permits to understand and to model more
complex manipulators such as the Stewart Platform.

The rest of this paper is organized as follows ; Section
2 is dedicated to the study and overview of some me-
chanical properties of the CKC . In Section 3 we present
the control law. Section 4 is devoted to the study of as-
ymptotic stability and exponential stability of the close
loop system. Section 5 analyses the exponential model
matching. In Section 6 we give some conclusions about
Theorems 1 and 3. Finally, in Section 7 we present the
Appendix.

Let us finish this section setting the following
notation: Ay {X} and A, {X} stands for the maxi-
mum and minimum eigenvalues of the symmetric matrix
X, and

C; =cosh;,S; =sinb;,i =1, 2.

Figure 1, the CKC.

2 Mechanical Properties Of The
CKC

This section studies basic mechanical properties of the
fundamental CKC. Also, we introduce the kinematic
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chain and a dynamical model. Finally, some important
properties of the CKC are introduced.

2.1 Fundamental CKC

Let us consider the following basic triangle chain :

It is basically constituted by two electrical pistons
linked to each other at one extremity by a ball-and-
socket joint; the other extremities of the pistons are
linked to a fixed beam which is the base of the plat-
form, each end of the actuator link being mounted on
the platform base by a rotatory joint whose axes are par-
allel to each other. There is a mechanical load (a mass
M,) at the ball-and-socket joint. The left piston can
move around the fixed point 0; and the right can move
around the fixed point 02, and L is the fixed separation
between 07 and 02 (length of the base platform). The
origin of coordinates is chosen at the left piston beam
joint 01 , the x — axis lies at the base of the platform
and the y — axis points upward to the base. To define
the Cartesian variables we proceed to assign two inde-
pendent coordinates z(t) and y(t). The f; are the forces
supplied by pistons, r the length of the main body of
the piston having a mass M, (we have assumed that
the mass is concentrated at r/2 and we have neglected
the piston rod mass), J is the inertia moment of each ac-
tuator, and [;(t) are the variable lengths of the pistons
satisfying I;(t) > r.

Let us express the angles 6; and the lengths [; in
Cartesian coordinates:

Yy .
L— ac> ’

Va2 +y%l = /(L —x)? + 32

01

arctan (2> ;05 = arctan (
T

ly

2.2 Dynamical Model

The following model has been obtained in [Bonilla and
Salazar]:

M(q)q+®(q,q)q +G(q) = [y (1)

where ¢ is the coordinate vector ¢ = [z y]7, f, is the
force vector f, = [fz f,]T, with

fo=f1iC1— f2Ca 5 fy = f151 + f25%;

M(q) is the symmetrical inertia matrix

2 2
s aep-o)

B 3 B

M(q) = 2 2
Cs S C1 S C C
7(_??2__%%_1) MP""](T% +_l2§)_

and ®(q, ¢) is the Coriolis matrix

5253 6157 55055, _ 61015y

= vt —p
2 1 2

) — 1
q)(q7q) - J 02055  6:1C1S) 5203 + 61012 ’
2 2 2 2
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01 and 0o are auxiliary variables
l .
61 = 711' )

and G(q) is the gravity vector:

Mlg?” (_0151 _|_C2S2)
Glq) = o (C? L G
Myg+ Mo (S 4 €2

2.3 Dynamical Properties

We mention the following properties:

P.1) (5] <Ll ana g, < 2l
P.2) Inertia matrix is upper and lower bounded as:

0 < p < A {M(q(®))} < [M(g@®))] < 55 where
2
W= J\i[f and i = 2M, +i‘,].
P.3) Conhs matrix is bounded, i.e.,
J(a(0) 00| < Ko (0] wore Kn — 2422
P4) N M(q) —2®(q, g ) is a skew symmetric matrix

and hence the expression ¢” Nq is identically zero for
all ¢ € R?.

P5 ) ||IG(z) - Gw)|| < Kgl|z—w|, were Kg =
GMUQ.
P.6 ) Let E be a matrix such that E(q) = uM~1(q) —

I where p=ap for 1 < athen A\, {E(q)} =a—1>0.
The reader is referred to revise [Aguilar and Bonilla,

1999] to check the previous properties.

2.4 Energy Equations

Now, we introduce the potential and kinetic energies,
which permit us state a Lyapunov function.

Let Vi be the kinetic energy created by the transla-
tional motion of load mass M, plus the kinetic energy
produced by the rotational motion of each actuator:

Vi(q) = iITJ\g(q)iI.

Let the potential energy F, of the load mass plus the
potential energy stored in each actuator:

1 1
E,(q) = Mygy + §Mygr51 + —QMvgrSg.

3 Control Law

Consider the following linear implicit control law:

fe= l—; { ,)fll ] — pkoq — pkicq + pkoeRg + G(Ry), (2)
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(o ]=an]es]Y]

| =k 1| | —ko -0
A‘[-%O(J"B‘[—mﬂ wo—mm}’

here R, is the constant reference vector defined as R, =
T
[ re 7y | and

kle — 14¢eky

koe :w ) —_ (3)

where 1 , € and § are three positive constants and kg and
k1 are the positive coefficients of the Hurwitz polynomial
Ak + ko

Notice that this control law can also be expressed as
follows:

fo = —wkoc(q —

where Q = [x; +8(z—r;) v1+B(y—r,)]T is the solution
of the following vectorial ordinary differential equation:

Ry) — phizq + 20+ G(R,) ()

Q+ k1 Q+ ko) =

Clearly, the above differential equation can be written
as':
wQ = AQwQ (5)

where

Q
'LUQ:|:Q:|, where AQ:|: 02 Iy }

—kols —kils

Remark 1: Due to the fact that kg and kjare positives,
we can guarantee that Aq is Hurwitz, therefore, there
exist a positive definite matrix P such that the following
Lyapunov equation is fulfilled ALP + PAq = —14.
Remark 2: It can be easily seen that

[ < coe () wg (B[] < cowoe

wo = [[ua(0)]], (6)

holds.

4 Asymptotic Stability

In this section we study the stability of system (1) when
it is feedback by the implicit control law (2). Using
Lyapunov ’s second method we show that if the positive
coefficient ¢ of the I.C.L. is chosen less than a specific
bound, we can guarantee that the closed loop system is
asymptotically stable.

LI, and Oy stand for the identity and the zero square matrices
with n rows.
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Substituting the control law (4) into system (1) we
get the following closed-loop description,

M(q)g+®(q,0)q +Gla) = 22 + G(Ry) ()
—pkoe(q — Rq) — pikicq.

Now, we define the state w as:

w = { (¢—R)T ¢ wh }T-

Theorem 1 The closed loop system (7) is asymptoti-
cally stable (AS) if

1 Kg—pko 1—pko
> max{ e s

B

(®)

Proof:
First, the following function is proposed
Va(w) =

Va(q) + Bo + Vi(g) + Va(g) + Va(wa)  (9)

where Vi is the potential gravity energy,

Vala) = Eyla) = Ep(Ry) = GT (Ry)(a — a(0))-
and
Vi) = g Vala) ol (1),
Vs(wa) = frwg Pw.

Clearly, Vig(q) satisfies the following property (see
[Aguilar and Bonilla, 1999] fore more detail)

2
lg — Ry

—Bo — 5 < Va(q)

where 8y = 2M,gr + K, | Ry — q(0)] + 22050 By

another hand, if we select pko. > 1 then V4(w) > 0 for
any w # 0 (also, see relation 33 of [Aguilar and Bonilla,
1999)).

Next we compute the derivative of V4. From (7) and
P.4, we obtain after some algebraic manipulations the
following relation (recall definition of wgq)

TQ /’L

Va(w)

— ke ||g]|* t2 jwal*.

Thus, the above relation can be bounded as

Va(w) < L) g)? — el

7(,“]{;15 -

From (3) it follows that ki >
Va(w) < 0.

Since V4 is positive definite and V 4 is only nega-
tive semidefinite, we have only proved stability in the
sense of Lyapunov, namely, that the error and velocities

, hence, we have that
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are bounded. To complete the proof, we invoke, next,
LaSalle’s Theorem.
Define the set:

S—{=[Vam 0}~ {mle=[ & 0 0]},

with de/dt = 0. Now, taking any trayectory w(t) be-
longing to S, we have

Ry)ll = [|G(e) = G(R Rl

evidently, if uko. > Kg we must have ¢ = R,. There-
fore, we conclude that the largest invariant set con-
tained inside the set S is constituted by the point,
we = (¢" = RE,q = 0,w = 0). According to the
LaSalle’s Theorem all trajectories of the closed loop sys-
tem asymptotically converge towards the invariant set
contained in S, which is constituted by the equilibrium
point w, = 0.

[ikoe [|(c — Il < Ke (e

5 Exponential Model Matching

The objective in exponential model matching is to de-
sign an input control law for a given system so that the
response (behavior) of the closed-loop system asymptot-
ically exponentially matches that of a prescribed, driven
model and so that the closed-loop system is internally
stable ? (see: [Di Benedetto and Grizzlle, 1994], [Hui-
jberts and Nijmeijer, 1990], [Byrnes et. al. 1998], [Di
Benedetto and Isidori, 1986]. Another form to see it is
to render the closed-loop response of the CKC provided
that follows a exponentially stable invariant linear sys-
tem (ESILS). Evidently, if a non linear system behaves
as an ESIL then we can claim the closed-loop system is
robust to external perturbations and non modeled dy-
namics. However, to achieve this it is required to design
a high gains controller causing the actuator to do a big
effort.

Thus, considering again the closed loop system de-
fined by equation (7), and, we show that the closed-loop
response of the CKC follows a ESILS, when the para-
meter € is chosen less than a specific bound.

To carried on this, we proceed as follows:

1) We first present an error state space realization of
the closed loop system. 2) We next study some useful
properties of the error equation to be used in a Lya-
punov equation. 3) We finally present in Theorem 3,
a sufficient condition which guarantees the exponential
model matching.

Before proceeding, consider a dynamical trajectory ¢
solution of the differential equation:

C(8) + B = Ry) = Q1) (10)

2In this case we desired to follow a Hurwitz invariant linear
system.
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Notice that the above equation satisfies the following
inequalities:

6(6) = Byll < a0e™, [¢(0]| < ane™,

. 11
o] <o u
were (recall (6)):
A =min {8, \p};
a0 = /I60) = R|l® + (g2 12

a1 = /2(cowo)? + 2(Baw)?;
Qg = \/2(60(.00)2 + 2(ﬂa1)2.

It should be mention that if all the initials conditions
are selected such that ((0) — R, = 2(0) = 0 then the
constants ap, a1 and as are equal to cero.

5.1 Error State Space Realization

The closed-loop behavior (7) can be also expressed as
follows

M(q)g+ © = —pki.q — pkoe(q — Rq) + %

(13)
where © = ®(q,¢)q + G(q) — G(Ry).
Defining the tracking error as

() =[a-0" -0

substituting the tracking error into equation (13) and
using P.6 , we have

0

e(t) = Ace(t) + { —E(q)K.e(t)

0
]+[A@],(M)
where K. = [ko-I2 ki1-I2] and

A(t) = =M~10 = (= M~ (ko(¢ — Ry) + k1€)
o) I
A = [ —kozb —k12512 ] '

Remark 3: Since ko and k;. are positives we can guar-
antee that A. is a Hurwitz matrix. Hence, there exist
P. and @Q.,

P = 2k05k15] kOEI :| .
° kOEI klz—:] ’
T 221 0
Q=1 (k2. — koe)I ] ’

satisfying the following Lyapunov equation: A.P. +
P.A. = —Q., where P., and Q. are positive definite
matrices when k7, > ko..
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5.2 Properties of the error equation

In this subsection, we give some useful properties of the
perturbations terms F(q) K.e and A of (14). In Lemma
1 we give an important identity and in Lemma 2 we find
an upper bound for the non linear term A. We will use
these Lemmas for proving the boundness of the tracking
error.

Lemma 1: The following identities are satisfied:

{ 0 ]Tpe+erp 0 }
—E(q)K.e € | —FE(q)K.e
= —2e"KI'E(q)K_.e;
and
o 1" rp [0 T T
[A} Pge—&—ePE{A}:%KsA

Proof: (It is trivial.)
Lemma 2: The following inequalities are satisfied

*t

1A < Kalel*+Kcalle|+Koe™ >
= W

Q]| < aze™t,

where

Sy

0[1)2.

1=l

Qg = \/304% + 3(1“—; ap)? + 3(%
Ky = K@CM% + Kgag;

Proof: (We also omit the test.)
It is important to stand out that if all the initial condi-
tions are equals to cero then az = Ky = 0.

We need the following definition [Lewis et. al., 1993].
Definition 1: Let x, and x¢o = x(0) be the equilib-
rium state and the initial condition state of the nonlin-
ear system x(t) = f(x(t),t). We said that x. is expo-
nentially and decreasing bounded ( EDB ) if for each
d > 0, such that ||x. — x| < J, there exist positives
constants T', K(T,d) and 8 such that ||x(¢) — x| <
K(T,8)ePt=-T) vt >T.

Theorem 2 [F V(x) is a Lyapunov function for any
given continuous-time system with the following proper-
ties:

Me®I* < V(e(t) <Xlle(®)] (15)

Vie(t)) < —klle(®)|* + Z(e(t)) (16)
where k > 0, Z is a continuous function of e which
satisfies the following

<0 if f(t) < |le(®)] <z and
=0 if e(t)=2(t) V te0;00),

Z@a»{
) (17)
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and z satisfies

z(t) < zo exp(—at), (18)

for > 0. If

z> 2 and |e(0)]| < 2o (19)

Ree

then for a value sufficiently large of T' > 0, we have
_2 ~
Ol < = (Mewp (~alt—1)) ¥ T <t <o

where
2(t) 2 % exp(—ozt)\/gv t € [0; 00) (20)

with « = min {k/)\, 204}.

This Theorem is based on Theorem 1 of [Lewis et. al.,
1993] and it is proved in Appendix .

5.3 Exponentially and
Boundness of Energy

Decreasing

In this subsection we present sufficient conditions for the
parameters ko and ki. in order to guarantee the expo-

nentially and decreasing boundness of the error equation
(14).

Theorem 3 The closed loop system (14) is exponen-
tially and decreasing bounded for fized v s.t. 0 <y < 1,

if

k)%s > k’og (21)
'wmﬂk}>%fﬁ+m%/ﬁfé (22)
— Ks+ K§74K¢:ga4
)\‘"L{PE} - B
)\ZVI‘}PEF ch < 2Kgpke (23)

w

with Kg = yAm {Q:} — 2"5—:(‘?, then for some T > 0 we

have
—\*T
He(t)||2 < /\m{Pa}&e—u(t—T) vV T <t< oo
— )\1\41PEF Ko =
where

+2(03 + (% )2),

— DA {Q¢ *
St

K3 lle(0)]”
ay = \/f‘ﬁ m

v zimin{ O 2
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Proof: This Theorem is proved in four steps.
First Step: We propose the following Lyapunov equa-
tion?

Vie) = _é e’ P.e, (25)
from Remark 3, we have that V satisfies:
2l el < Vie) < 282 Jlef® . (26)

Second Step: Let us compute the derivative of V. Us-
ing Lemma 1, we have:

V(e) _ —eTQEe+QeTnKETE(q)KEe—|—eTK€TA. (27)

Now we proceed to find an upper bound of V. To do
this, we need to take into the account Lemmas 1 and 2,
property P.6 and definition of a4 given in (24). This
yields after some manipulations the following inequality:

V(e) < -2l le|® +

ke el (be\lel\ +Kg|lel + a4€—)\*t)

with k. = max {koc, k1 } -
In order to use Theorem 2, let’s separate V in two
terms:

V(e) < V. (e)+V.(e) (28)
where ‘
Vy(e) = =005 94 g ? (29)
Vs(e) _ Kere|e|?® + (reKe _ MAm{Qety (162
a 2 ) el (30)

+reage N e

Third Step: We need Lemma 1 of [Lewis et. al., 1993],
recalled hereafter:
Lemma 3: For some arbitrary z, if
B3 > C1 + /4CoCo
then
Coz+ (¢ —PB3)z+ (o <0 for 2z <z< 2z,

where (), (;,(y and 35 are positives constants

_ (B3—C1)—+/(B3—C1)?>—4(oCs
- 2C, ’

(B5—C1)++/(Bs—C1)2—4CoCo

2C;

zZ1

z9 =

In view of (22) we have:

P {Qe} >2ucKe 4oy, [Keawe X0

(31)

3To simplify the notation, we write e instead of e(t).
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then from the above Lemma we get:

Korelle|? K Am {Qc
phelle| _'_(H#Gf’Y 2{ })

< e
H " . (32)
+agk.e Nt <0,
for e1(t) < |le|]| < € . Namely
V.(e) <0 for e <|le]| <@ (33)
whereKg = YA {Q:} — —QKEMKG
Ko+t K§74K¢~§a4
I
€= S— (34)
i
Ro- fr T
e = S (35)
T
Fourth Step: Let us first note that
0 if /et < e <@
. < 1 =€ T <|e||<e
=0 if |e||=e(t) V te€]0;00).

Indeed, considering Pythagorean Theorem in (35) ( A <

VAT =AC +2/C ) we get:
o <\t (37)

and thus, from (33) and (37), we have (36).

Let “s mention that the Assumptions of Theorem 3 are
held for the Lyapunov function V. Indeed:

A) (15) follows from (26). B) (16) follows from
(28),(29) and (30). C) (17) follows from (36). D) (18)
follows from (37).

Now, from inequality (23) and definition of oy (see
24), we have that (compare with (19)):

poa Am{Py M
le(O)| <\/ &z and \/xpyrs <€

Then, Theorem 2 implies :

—2*T

2 _ Anfp B (=)
lell” < X e YV telT,00).

Kg
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5.4 Simulations Results

To evaluate the performance of the proposed control law
(4), we carried out some digital computer simulations
for different values of the parameter . We have set the
original system and controller parameters to be,

M, =5kg; M, =1kg;r=1m;L = 2m,
k():l,]ﬁ:land 622

With the following initial conditions: z(0) = —0.2m,
y(0) = 1.1, (0) = 10m/s and ¢(0) = 10m/s, and being
the reference: 7, = 0.5m and r, = 1.8m. We write

"=l y,¢" = ¢Jand fI=[f. f)

In figure 2 ,we show the tracking error z(t) — ¢, (¢)
and z(t) — (,(t) for three different values of the para-
meter €. The highest, medium and lowest overshoot
corresponding toe =5, ¢ = 1 and € = 0.1, respectively.

In figure 3, we show the behavior of ¢(m) and ¢” (m)
for ¢ = 0.1 . And in figure 4 we show fI(N).

0.8

seconds

0 2 4 6 8 10 12

Fig. 2az—(,; £ =5,1,0.1

0.8

0.4

seconds
2 4 6 8 10 12

Fig. 2b y —(,;¢=15,1,0.1
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6 Concluding Remarks

In this paper we have proposed a linear stabilizable im-
plicit control law for a two degree of freedom parallel
manipulator. This controller needs to adjust four para-
meters, namely ¢, 3, ko, and k;. The constant € deter-
mines the stability (see Theorem 1) , 5 determines the
smoothness of the control action (2) and the constants
ko and k; determine the dynamics of the implicit ac-
tion Note that Theorem 1 states that the system is
AS when ¢ is less than a bound which is directly re-
lated with the Lipschitz constant Kg; namely the AS
is directly related with the weight linear density of the
action load.

Theorem 3 states that, when the initial conditions are
close to the equilibrium point, the tracking error, e(.),
between the states ¢(.) of the closed-loop system (7)
and the desired trajectory ((.) (see 10) is bounded by
an exponential decreasing function. Another way to see
Theorem 3 is that given any finite initial condition and
some fix parameters kg,k; and 5, we can find a parame-
ter € such that the error is bounded by an exponential
decreasing function as € tends to zero. The proofs of as-
ymptotic stabilty and the exponential model macthing
were carried on by means of the well known Lyupanov s
second method

Acknowledgment we shall thank Dr. Vladimir
Kharitonov for reviewing this material and discussions.
Also, the authors would like to thank to publication re-
viewer for their useful suggestions and style corrections,
that enhance this work quality.

7 Appendix

Proof of the Theorem 2: Let us first separate the
space of e in two regions using the negativeness of the
function Z(.) , as follows

Se={e(t) | ;e < e <3 g

Si = {e(t) | le()|| < zoe™}.

We proceed to consider two interesting cases:
First Case: Let us first consider that e(t) never

leaves S;, then

le(t)|| < z0e™® < 2(t) V te€[0;00).

Second Case: Let us next consider that e(t) comes
into S, for some T'. Then by continuity of e we have

le(T)|| = z0e™ T V(e(t)) < —k|le(®)||> Vt>t+ At
(39)
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Integrating the last inequality for At > 0, and using
properties (15),(16) of V' we get (recall a definition of

Z(.) (18))
|mut+AwW<z?Tyme%AQ, (40)

using now conditions (19) in the above inequality, we
have that

2
MG+AMF<z@hm(%AO<?
Then e(T + At) never lives S, for any arbitrary At > 0.

Let us finally analyze inequality (40). For this we
need to consider the following two cases

2 2

z (T+AY) <z (T) exp(g’f’” At); if k/A <2aq,
_2 _2

z (T) exp(*Tk“At) <z (T + At) otherwise.

Then by induction:
_2 ~
le(®)|* < = (T)exp[~a(t = T)] ¥V T <t < oo,

where @ = min{%, 2a}.
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