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Abstract  
 
This paper shows a simple way to recover the whole unknown parameters set of the Duffing's oscillator by 
using a genetic algorithm. The fact that the system is observable and constructible with respect to a suitable 
output helps in obtaining   an integral parameterization of the output. Subsequently an integral 
parameterization of the output which depends upon the unknown parameters, and, a random estimation of the 
output is proposed, assuming that the set of unknown parameters are contained into a bounded set. This 
random estimation is chosen provided that the error between the actual output and the estimated output 
minimizes the errors of .a quadratic function. The minimization problem and the random estimations of the 
output are formulated directly in terms of a genetic algorithm. A population of chromosomes is codified with 
the parameters of the Duffing's oscillator system. A fitness function is established to evaluate the 
chromosomes, in such a way that it minimizes the errors of a quadratic function. The chromosomes` 
population evolves till a fitness average threshold is obtained. This method is numerically possible and easy 
to implement in a digital computer. 
Keywords: Mechanical Oscillator, Chaos, Genetic Algorithms, Reconstruction. 
 
 
Resumen 
 
En este artículo se presenta una forma sencilla para estimar los parámetros desconocidos del oscilador de 
Duffing mediante el empleo de un algoritmo genético. El hecho de que el sistema es observable y construible 
con respecto a una salida disponible, ayuda a obtener una parametrización integral de la salida. A partir de 
esta parametrización se propone un estimador aleatorio de la salida, asumiendo que los parámetros 
desconocidos están contenidos en un conjunto acotado. El estimador aleatorio es propuesto de tal forma que 
el error entre la salida real y la salida estimada minimiza una función cuadrática. Así, el problema de 
minimización y del estimador aleatorio son resueltos mediante un algoritmo genético. La población de 
cromosomas es codificada con los parámetros del oscilador de Duffing. La función de adaptabilidad es 
establecida para evaluar los cromosomas, de tal forma que se minimice el error de la función cuadrática. Los 
cromosomas de la población evolucionan hasta que un umbral promedio de adaptabilidad es alcanzado. Este 
método es numéricamente posible y fácil de implantar en una computadora digital. 
Palabras Clave: Oscilador Mecánico, Caos, Algoritmos Genéticos, Reconstrucción.  

1. Introduction 

The identification of chaotic attractors from one or more suitable variables is one of the most difficult problems in chaos 
theory and its applications. Several methods for identifying a chaotic systems have been proposed in the literature (for an in-
depth treatment of those methods, the reader is referred to Chen, 1995; Middleton, 1990; and Huijbert et al., 2000). In these 
papers, the authors apply control theory to design state observers and system identification schemes for recovering the 
unknown parameters. The other important approach is based on the well-known Takens' Theorem (see Alligood et al., 1997; 
Sauer et al., 1991; Takens, 1981; Parlitz et al., 1994; and Makoto et al., 1997). This methodology consists in analyzing the 
observed time series from a nonlinear system to reconstruct a time delay of a phase space, in which it is possible to analyze 
the attractor. This is carried out by using time delayed values of an observed scalar quantity as coordinates for the phase 
space. Roughly speaking, vector state y(n) constructed as: 
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can be estimated from a set of observations. Here x  is the observed variable, T is the time delay and d is the embedding 
dimension (see Parker et al., 1990). The last approach is based on soft computing, as proposed in (Poznyak et al., 1998; 
Poznyak et al., 1999; Yeap, 1994). In those papers, the unknown chaotic system is viewed as a black box belonging to a 
class of nonlinearities. Therefore, the dynamic neural network can be used to recover the unknown parameters.  
 
In this paper, we show a simple and efficient approach for the revealing of all the unknown parameters and the estimation of 
the velocity state for the Duffing's system by using  a genetic algorithm (GA). Loosely speaking, the role of a GA in any 
application is to evolve a chromosome population that codifies several possible solutions of the problem using genetic 
operators like selection, crossover and mutation. The goal of GA is the optimization of a fitness or cost function that 
depends on the problem to resolve. In our case, we must minimize the norm of a quadratic function that depends on the 
unknown parameters and successive integrations of a suitable output (the position of the Duffing's system). The integral 
parameterization of the output is necessary for making the positive function that will be minimized. The minimum of the 
function is reached when the actual parameter values are attained. The proposed methodology differs from the one described 
in Makoto et al. (1997) and Nayfeh (1979) because we discard the necessity of computing the derivatives of the measurable 
variable states (by using pairs of time-points and averaging the estimates), instead, we apply successive integrations of the 
output. It is worth to mention that the most common identification methods cannot estimate parameter w  (which is the 
force frequency), while the one proposed in this paper successfully accomplishes the task.  

 
The rest of the paper is organized as follows. Section 2 contains a brief introduction to Duffing's system. In Section 2 the 
observability property with respect to the precise output is discussed, therefore, an integral parameterization of the output 
can be obtained. Finally, in the same Section, we establish the framework for recovering the set of unknown parameters 
based on the minimization problem of some specific norm.   Section 3 presents a brief and general description of GA and 
contains the numerical results, while Section 4 holds conclusions and suggestions for curious researchers and possible 
solutions to computing problems yet to be solved . 

 
 

 
 

Figure 1 : Duffing's oscillator 

2 Duffing’s Mechanical Oscillator 

We consider a traditionally Duffing’s mechanical oscillator, consisting of a light metal bar, hardly more than a thin strip, 
attached at each end by  a solid support (see Fig. 1). Near the middle of the metal bar is an electro-magnet powered by 
alternating current. As the current in the magnet goes through a cycle, the magnetic field couples energy into the bar, 
forcing it to move. The movement is a flexing of the bar. As the bar in the oscillator flexes, the position of the midpoint is 
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used to measure the amount of movement. The non-linear model, which can be found in Alligood et al. (1997) and 
Kapitaniak (2000), is given by:  
 

 
(1) 

 
The vertical displacement of the midpoint of the flexible strip is measured by x. The magnitude of the forcing function is 
denoted with A, the forcing frequency is w, the damping coefficient is p1, and the fixed constants, which are related to the 
non-linear stiffness function of the flexible strip, are p2 and p3. 
 
It is known that the system has a chaotic behavior (see Parker, 1990) for the fixed values of parameters in a neighborhood of 
p1=0.4, p2=-1.1, p3=1, A=2.1 and w=1.8 . 

2.1 An integral parameterization of the output 

In this section, we introduce a simple integral parameterization for Duffing's system. This parameterization allows us to 
build a function that depends on the unknown parameters and on successive integrations of the measurable state (output).  
 
Let us consider equation (1) and let us take as output y = x (i.e. the position is known). Then, the velocity state v = y can be 
obtained by means of an integral parameterization as follows:  
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where y0 and v0 stand for the initial conditions of the states x (t0) and v (t0) respectively. And 
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Note that the integral parameterization is given by equation (2), and thus allows us to measure the velocity state v, as a 
function of the output, y modulo the initial conditions. 
 
Integrating equation (2) once again with respect to time from initial time t0 up to the final time t we have the following 
iterated integral equation: 
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and g(A,w,t) stands for: 
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From (3) we say that the system is observable and constructible with respect to the output y (see: Martinez, 1996 and Sira 
2002). The last equation contains the needed information for recovering the set of parameters. In the reconstruction process 
an error is generated, that must be minimized as a quadratic function of parameters {v0, p1, p2, p3, A, w}.  In the following 
section we present such quadratic function.  
 

 
 

)cos(2
3

31 wtAxpxpvpv

vx

++−−=
=

&

&

An Identification Genetic Algorithm for a Family of Duffing's System



 105 

2.2 Parameters identification for the Duffing’s System 
 

It is known that parameter recovering of a model based on the measurements of one or more variables leads to an 
optimization problem that is characterized by its ill-posed nature,   in the   Hadamard sense  (see Hadamard, 1902, for more 
details), since a unique solution is impossible . Usually, the issue can be solved using some variant of Newton's method and 
either a conjugated gradient algorithm or even the least quadratic method (see Bender, 1999). So, we proceed to solve the 
problem as follows. First, a random parametric estimator for the available output is proposed. Based on that estimation, a 
quadratic error functions is formed, where the error is the difference between the actual output and the estimated one. This 
difference is computed in a discrete set of time. Finally, a simple GA is applied in the  finding of   an optimal solution. 

 
We start with the identification problem for the Duffing's system: 
 

Let q=[ q0, q1, q2, q3, q4, q5] be the vector of unknown parameters where qi ∈R for i = 0,1,…,5 , and let ( )⋅ŷ  be the 
following estimation output function:  

 
 

            (4) 
 

 
Where the set of variables  is an iterated integral function of the measurable output, y defined by: 

 
 
 
            (5) 
 
 

And finally f(A,w,t) denotes the time dependent function given by  
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Now, consider the following estimation error defined as:  

 
            (6) 

 
Note that if vector q takes the real values of Duffing's system given by q = [v0, p1, p2, p3, A, ,] then e(t) = 0  for any time t. 
This means that the problem of finding the vector of unknown parameter q∈R6 is clearly equivalent to solving the 
following unconstrained minimization problem: 

 
 

            (7) 
 
 

where T is the sampling time and n is the total number of samples. 
 
To find the minimum of the last expression, it is necessary to introduce some basic assumptions: 

 
A.1 The strings of outputs y (t-k τ) for a fixed delay τ > 0 and k={0,1,…,n} are available for any time t, such that t > kτ. 
 
A.2 The auxiliary functions φ1(t-kτ) for a fixed delay τ > 0  and k={0,1,…,n} defined in (5) can be stored and computed. 
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A.3 The set of parameters of the non-linear system (1) are selected provided that their solution is bounded. 
 

Notice that under assumption A.3, the solution of system (1) can exhibit a chaotic behavior for some particular sets of 
parameters. Also, when p3 is equal to zero, it is well-known that system (1) becomes a periodical oscillator. It is worth 
observing that under assumption A.3 system (1) represents a wide variety of oscillator systems. For instance, the very 
common  RLC circuit, the spring-mass system and the classical Duffing’s oscillator. 

 
Remark 1. The problem of finding q such that expression (7) is minimized, can be solved either by a numerical 
implementation of the well-known Newton's method or a variant of it. However, instead of Newton's method, we employ a 
GA which avoids the possibility of falling into a local minimum. The GA creates a population of q in a stochastic fashion 
according to some basic rules (see Goldber, 1989; Mitchel, 1998; and Bäck et al., 2000). Then, it selects the element that 
produces the smallest error in (7). 
 
Remark 2. The objective of all optimization problems is to find a minimum or maximum objective function value. 
Considering optimum values, usually a problem may have more than one optimum objective function value. There are many 
traditional deterministic algorithms available to solve optimization problems for a local minimum. Some of these methods 
include the descent gradient techniques. These methods require the evaluation of  a gradient information in order to solve 
the problem. Gradient evaluations can become difficult and time consuming when complex objective functions are at sake . 
These methods always look for the closest minimum, without regarding it is a local or global one. 
 
 
3. General description of GA to solve a minimization norm 
 
Roughly speaking, the general framework to apply a GA can be summarized in the following six steps: 
 

1. Individuals in the GA are vectors (in R6) of the form q i =[ q0,i, q1,i, q2,i, q3,i, q4,i, q5,i]. It can be seen that the GA 
is real-coded (instead of a binary coded). 

 
2. The initial population, P0, contains 500 individuals, while subsequent populations, Pj, consist of 100 individuals. 

Thus  allowing  a wider search with the initial population and  concentrating on more specific regions afterwards.  
 

3. The best individual, q1 (evidently ranked 1st), in generation Pj is passed on to generation Pj+1, with no change.  
 

4. Several steps are involved in the creation of generation Pj+1, they are: a) selection; b) crossover; c) mutation.  
 
a ) To accomplish a  selection, each individual in Pj is assigned a probability which is calculated linearly according to 
its ranking in the whole population . Selection of individuals is made by generating random numbers in [0,1] (say ái) 
and comparing them to the accumulated probability, Ap(qi), of each individual. Individual qi is selected to be part of 
Pj+1 when ái    AP (qi). This is the well-known roulette selection scheme.  
 
b) The crossover algorithm used in this GA is a slight modification of the flat crossover (or arithmetic crossover) 
operator (see Cardón, 2001; Bäck, 2000; and Michalewicz, 1999). An "offspring" h = [ h0, h1, h2, h3, h4, h5] is 
generated as  

( ) 2,1 1 iii qqh ⋅−+⋅= − ββ   

 
From "parents"  
 

q1=[ q0,1, q1,1, q2,1, q3,1, q4,1, q5,1] 
q2=[ q0,2, q1,2, q2,2, q3,2, q4,2, q5,2] 

 
Where q1 is  a better individual that q2 (i.e. q1 makes the error function smaller than q2 does).and â is a random 
number chosen uniformly from the interval [0.5,1]. This interval is used in order to weight as more "influential" the 
information carried by the best of the parents. This process is repeated until there are 99 "offspring" (q1 passes on 
unchanged). 
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c) The mutation algorithm consists into randomly changing an allele of 50% of the individuals created at the last step. 
Changes are done within the vicinities specified below. This is the final step in creating generation Pj+1.  

 
5. The "cost" of each individual was calculated via 

∑
=

n

k

kTe
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where  T is the time sample. The algorithm stops when the best individual tags a "cost" named α, where α is fixed as 
small as needed. 
 

6. Components of vector q=[ q0, q1, q2, q3, q4, q5] were searched in a previously defined “box”, it means 
 

iici qq ε≤− , i=1,2,…,5. 

Where qic is the selected centre and iε  is the radius, which can be chosen as large as needed. 

 
3.1. Numerical implementation of the GA 
 
In order to evaluate the efficiency of the previously described method, computer simulations were usually carried out to 
estimate the unknown parameters {p1, p2, p3, A, w} and initial state v0 for the Duffing's system given in (1). The numerical 
program was implemented by using the fourth-order Runge-Kutta algorithm.  
 
The computation was performed with a precision of 8 decimal digit numbers. To obtain a good performance, the step size in 
the numerical method was set to 0.001. Parameter values were taken as p1=0.35, p2=-1.014, p3=0.957, A=2.15 and 
w=1.893. The sampling time was selected as T=0.25 sec., the number of samples was chosen as n=20, the cost was selected 
α=10 −9 and the radius iε  was equal to 2.5 for every i=1, 2,.., 5  and 0ε =5.  

 
The initial conditions where taken as ( ) 3.00 =y and ( ) 3.20 −=y&  respectively. Finally, q0,c=0, q1,c=0.1, q2,c=-0.5, q3,c=0.5, 
q4,c=1, and q5,c=1.2. 
 
In the following figures we present the obtained results after applying the previously described GA. In figure 2, four signals 
are displayed: the measurable output and three reconstructed signals.  
 
These signals correspond to the best individual of generations 1, 200, and 22793 (last generation). Note the absence of 
difference between the last one and   the original output. This means that the error in the estimated parameter is almost zero.  
 

 
Figure 2 : Actual output and three reconstructed signals. 
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Figures 3-5 show the evolution process of the initial state v0 and of parameters p1, p2, p3, A, w, respectively, through 
generations. 
 

Figure 3 : Evolution process of initial state v0, and parameter p1. 
 

 
 

Figure 4 : Evolution process parameters p2 and  p3. 

Figure 5 : Evolution process of parameters A and ù. 
 

Finally, in Figure 6 we show the behavior of expression (7); the process of error minimization. It is fully understandable that 
the error tends to zero when the generation number increases, therefore, the reconstructed output is practically the original 
output. This explains why the actual and estimated parameters are very close, as shown in Table 1.  
 
 

 

 
Figure 6: Error minimization process. 
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Ge p1 p2 p3 A  
1 -0.570 0.631 0.882 0.665 0.346 
3 -0.147 -0.360 0.975 1.259 2.215 
9 0.158 -0.612 1.086 1.761 1.984 

28 0.099 -0.633 1.077 1.499 1.964 
86 0.124 -0.687 1.092 1.599 1.913 

264 0.140 -0.707 1.15 1.675 1.879 
804 0.184 -0.734 1.213 1.854 1.860 

2451 0.269 -0.860 1.118 2.029 1.874 
7475 0.335 -0.983 0.995 2.133 1.888 

22793 0.350 -1.015 0.957 2.150 1.893 
 

Table 1. Best individual of some generations. 

4. Conclusions 

A method for recovering parameters and estimating the velocity state of the Duffing's oscillator was proposed. We exploited 
the fact that the system is observable and constructible with respect to a measurable output. This property allowed us to 
build an iterated integral equation of the available output, which contains the required information for recovering the absent 
state and the unknown parameters. Based on the iterated integral equation, we estimated the output (defined in (4)) 
assuming that physical parameters of the system are contained in a bounded set. The basic idea is to minimize the average 
quadratic error, i.e., the difference between the actual output and the estimated one, as described in (7). The minimization 
process is carried out by using the GA. This approach was validated by means of numerical experiments, in which the 
quadratic error was efficiently minimized. Therefore, the parameters and the unknown state could be satisfactorily 
estimated. 
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