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Abstract 
 

We propose two simple controls for the regulation of an under actuated rotational pendulum. Both controllers 
are based on the Lyapunov approach; the first is a simple passive control which makes the closed-loop 
solution converges asymptotically to an equilibrium manifold. The second approach is a combination of the 
Lyapunov and the off-line trajectory planning approaches to move the pendulum from an equilibrium point to 
another equilibrium point, both point belonging to an equilibrium manifold. The last task is accomplished in 
an approximated fashion. The results are illustrated by means of digital computer simulations. 
Keywords: Lyapunov-based control, Trajectory Planning and Under Actuated Systems. 
 
Resumen 

 
Se proponen dos controles simples para la regulación de un péndulo rotacional sub-actuado. Ambos controles 
están basados en el enfoque de Lyapunov, el primero es un control pasivo simple que hace que la solución de 
lazo cerrado converja asintóticamente a una variedad (manifold) de equilibrio. El segundo enfoque es una 
combinación de los enfoques de Lyapunov y el de planeación de trayectoria fuera de línea para mover el 
péndulo de un punto de equilibrio a otro punto de equilibrio, ambos pertenecientes a una variedad (manifold) 
de equilibrio. La última tarea se logra de forma aproximada. Los resultados se ilustran mediante simulaciones 
hechas en una computadora digital. 
Palabras clave: Control basado en el enfoque de Lyapunov, Planeación de Trayectoria y Sistemas Sub-
actuados. 
 
 

1. Introduction 
 
Control of under actuated mechanical systems has received considerable attention in the last two decades (de Jager and 
Nijmeijer, 2000). The main feature of this kind of system is that the number of independent control inputs is less than the 
number of degrees of freedom to be controlled. These control problems are of both practical and theoretical interest (we 
recommend to seeing Jager and Nijemeijer, 2000, Fantoni and Lozano, 2002, Olfati, 1999, Bloch et. al., 2000, 2002, and 
Furuta et. al., 1992). The main challenge of many of these problems, is that these devices are non-feedback linearizable by 
means of a dynamic state feedback (Jakubczyk and Respondek, 1997 , Spong, 1997, Isidori, 1995), and are not locally 
controllable around their equilibrium points (Shiriaev, 2000, Brockett, 1983, and Reyhanoglu, 1999). These drawbacks 
make it difficult to carry out some controlling tasks. For example, to force an under actuated system to follow a desired 
trajectory is not easy and in many cases, it is not possible to completely solve the problem. However, in various practical 
cases, that task can be partially solved by taking some suitable approximations, such as discarding some non-linearities 
(Hauser et. al., 1992 and Sira, 2000). It is worth mentioning that many traditional methods for nonlinear control design like 
backstepping (Isidori, 1995 and Krstic et. al., 1995), forwarding (Mazenk and Praly, 1996, Sepulchre et. al., 1997, Teel, 
1996 and Olfati, 1999), high gain/low design (Sepulchre et. al., 1997, and Khalil, 1996), and sliding mode control (Utkin, 
1992, and Christopher and Spurgeons, 1998) are not directly applicable to controlling these mechanical systems.  
 
In this article, we present a Lyapunov approach for the design of two asymptotic stabilizing feedback controllers, for the 
regulation of a very simple under actuated mechanical system; the first controller makes the system converge asymptotically 
to an equilibrium manifold and the second controller is a combination of the Lyapunov and the off-line trajectory planning 
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approaches, for carrying out the equilibrium to equilibrium regulation, in an approximated fashion. This particular 
mechanical device is an ad-hoc example for the application of Lyapunov's theory, due to the fact that it is not locally 
controllable around its equilibrium points. The methodology has been used to design stabilizing control laws in other under 
actuated systems, such as the Tora system (Escobar et. al., 1999, and Bupp et. al., 1995), in the regulation of a mass-spring 
system (Sira and Llanes, 2000 ) and in the stabilization of the inverted pendulum around its homoclinic orbit (Lozano et. al., 
2000, and Fantoni and Lozano, 2002).  
 
The remainder of this work is organized as follows. Section 2 covers a brief description of the dynamic model and presents 
the most important properties of the system. Section 3 presents the two control laws. In both closed-loop controllers, 
Lyapunov stability theorem and LaSalle's invariance principle theorem were used to analyze the asymptotic stability of the 
desired equilibrium point. In both cases, we present computer simulation results depicting the performance of the system to 
the particular feedback controller option. Section 4 contains the concluding remarks.  
 
 
2. Equation of Motion 
 

Consider the under actuated system described in Fig. 1. It consists of a rigid frame AOO'  joined to the axis of an electrical 

motor (which turns around AOO' ). At point A , a free rotating planar pendulum is attached. The plane of the pendulum is 

parallel to the rotating plane AOO' . For simplicity, the pendulum is a very light rod of length l  and mass . To describe 
the motion, let us introduce a reference system with origin at , such that the axis of the motor is perpendicular to the 
plane . Let 

m
O

OXY θ  be the angle which the projection of   makes with the OX axis and AO' ϕ  the angle between 

AB and the minus direction of the OZ axes.  
 
The coordinates of the pendulum's center of mass are given by  
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( )1cos
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 (1) 

where  is the length of segment a 'OA . 

 
Fig. 1 Rotational pendulum 

 

2.1 Dynamic Model 

 
The total kinetic energy and the potential energy U of this system are given by:   

( )2222

2
1

2
1 zyxmJK &&&& +++= θ ; mgzU = , (2) 
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where is the inertial momentum of the frame and the motor's rotor.  J

 
Differentiating x, y and z from (1) and substituting into relations (2) we obtain, after some algebraic manipulation, that 
kinetic energy and potential energy are given by,  

( ) ( )( )
( ) ( ).1cos

;
2
1sin

2
1, 2222

−−=

+++=

ϕ

ϕθϕ

mglqU

mllamJqqK &&&
 

where ( ) ( )ϕθ ,, 21 =≅ qqq .  
 
The Lagrangian function of the system is evidently given by 

( ) ( ) ( )qUqqKqqL −= && ,, . 
Following the traditional Euler-Lagrange procedure, we get the following set of differential equations  
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(3) 

 
Clearly, the system dynamics may be described by   (4) ( ) ( ) ( ) fuqGqqqCqqM =++ &&&& ,  

where is the inertia matrix  ( )qM
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( qqC &, )  is the Coriolis matrix 
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( )qG is the gravity vector  

( ) ;
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0
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ϕgml
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and finally u  is an external generalized force given by f

⎥
⎦

⎤
⎢
⎣

⎡
=

0
θτ

fu . 

where θτ  is the torque of the motor. 
 

It can be easily seen that equations given in (4) define an under actuated system, because it has only one input θτ and two 

degrees of freedom θ  and ϕ . Now, if 0=θτ and [ )πϕ 2,0∈ , the system (4) has two equilibrium points: the unstable 

equilibrium defined by ( 0,0, === )ϕθπϕ & , and the stable given by ( )0,0,0 === ϕθϕ & . 
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Remark 1. Linearization of system (4) around the stable equilibrium point produces 
( )( ) δτϕθδ =++ 2lamJ&&  , 0=+ δϕϕδ g&& , 

and evidently, we can claim that the system is not locally controllable around its stable equilibrium point. 
 
On the other hand, if the input action is a constant different from zero, it establishes another equilibrium manifold, which is 
characterized by the following relation:  

( ) ϕϕ
ϕθ

cossin
sin

la
g

+
=& . (5) 

Indeed, it is obtained substituting 0==ϕϕ &&&  into the second equation of (3). Now, we finish this section presenting the 
following mechanical properties, that system (4) satisfies:  
 
P.1 )  is definite positive. ( )qM P.2) The matrix CMH 2−=  is skew-matrix  

⎥
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⎤
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⎡
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0
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with ( )θϕϕ sincos lalmx += . 
 
Hence  for any . 0=HzzT ℜ∈z P.3) Vector ( )qG  satisfies the following relation  

( ) ( )
q
qPqG

∂
∂

=  where ( ) ( )ϕcos1−= mglqP  

 
P.4) The operator θτθ →  is passive (see Fantoni and Lozano, 2002). For this, one verifies, after use of properties P2 and 
P3, that the time derivative of total energy defined as  

( ) ( ) ( )qPqqMqqqE T += &&&
2
1, , is given by  θτθ&& =E

 
 
3. Stabilization 
 
The control objective is to move the planar pendulum from a initial angular equilibrium position to another angular 
equilibrium position, by the action of the motor's angular velocity, assuming that the pendulums's angular position ϕ  lies in 

ϕE , where { 2/2/: }πϕπϕϕ <<−=E 1. That is, from a set of initial conditions , such that ( ) ( )( 0,0 qq & )
( ) ϕEq ∈02 , we desire to change the present pendulum's angular position to another constant angular position, which is 

characterized by the equilibrium manifold defined previously in (5). For solving this problem a simple linear feedback 
passivity controller and an off-line trajectory planning controller are proposed.  

 
3.1 A simple linear feedback control law 

 
Consider the following controller  

( )θθτθ
&& −−= k ;  0>k (6) 

Evidently, the above controller produces the following closed-loop system: 

                                                 
1 Relation (12) gives sufficient conditions to assure that ϕϕ E∈ . 
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(7) 
To prove that (7) is asymptotically stable2, we introduce the following Lyapunov function,  

( ) ( ) ( )ϕϕ coscos
2
1,1 −+= mglqqMqqqV T &&& . 

The time derivative of  along the trajectories of the closed loop system equations (7) is given, after using the system 
equations and the passivity properties, by next relation 

1V

( ) ( ) 0,
2

1 ≤−−= θθ &&&& kqqV . 

Since  is negative semi-definite, we can only conclude that the signals 1V ( ){ }ϕϕθθ && ,,−  are bounded. We need to employ 
La Salle's invariance theorem to guarantee that the closed-loop system is asymptotically stable (Khalil, 1996).  

(8) 

 
Now, let us define the invariant set:  

( ) ( ){ } ( )
⎭
⎬
⎫

⎩
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⎧ =−−=== θθθθ &&&&&&& :0,:,

2
kqqVqqS  (9) 

 
On the set  the first equation of (7) becomes,  S

( ) 0cossin =+ θϕϕϕ &&la ; with 0≠θ& . ) 
 
Integrating the last relation, from  to t δ+t  with 0>δ , we obtain:  

( )( ) ( )( )22 sinsin δϕϕ ++=+ tlatla  
 
Clearly, ( )tϕ  is a constant on the set and also we have S 0== ϕϕ &&& . Hence, from the s
guarantee that ϕϕ =  

 
Notice that if the initial conditions satisfy  

( ) ( )( ) mglqqV ≤0,01 & , 
 
Then we guarantee that ϕϕ E∈ . This is due to the fact that  is a non-increasing functio
defines the region of attraction of the closed loop system.  

1V

 
We summarize the previous stability analysis, as follows:  
 
Proposition 1. Consider the closed loop system (7), under the assumption that the initial cond
Then the equilibrium point ( 0,, === ϕθθϕϕ && ) is asymptotically stable. 

 
3.1.1 Simulation Results 
 
Fig. 2 shows the closed-loop responses of the linear controller. We use system (3) with the param
[m], a=0.05 [m] and L=0.0025 [Nw-m/s2]. The control parameters were selected as k=0.5 a
angular position was chosen =ϕ 1.1 [rad]. All the initial conditions were set to zero, except 

which was set as -1  ( ) =02q
 

                                                 
2 We only make regulation in the variables ( ){ }φφφθθ &&& ,, −−  
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Fig. 2. Close-Loop response of feedback controller 
 
 

3.2 The transfer manoeuvre task 
 
Suppose that we want to carry out, in a finite time interval [ ]ftt ,0 , a transfer manoeuvre from an equilibrium to another 
equilibrium, by means of the motor's angular velocity . In other words, we desire to change the pendulum from a given 
equilibrium position ( ) ( )( 00 , tt )ϕθ  to another equilibrium position ( ) ( )( )ff tt ϕθ ,  based on the motor's rotational velocity. 
The manoeuvre task will be carried out following a nominal specified trajectory.  
 
Let us suppose that the pendulum's angular position given by,  
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where ( )fttt ,, 0ψ  is a smooth polynomial spline, interpolating between 0 and 1, 
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From the second equation of (3) we obtain the following relation for the motor's angular velocity, given by  

( ) **

*
* cossin

sin
ϕϕ

ϕϕθ
la

gl
+

+
=

&&&  (14) 

 
and evidently, the velocity references vector is defined by:  

[ ]*** ,ϕθ && =Tq , 
 
where variable *ϕ&  is computed taking the time derivative of equation (14).  
 
Since system (3) is not feedback linearizable and not locally controllable around the origin (see Remark 1), it is not 
possible to exactly solve the mentioned manoeuvre task. Despite the fact that there is no precise solution, the problem can 
be partially solve by taking some suitable approximations, as we indicate in the following assumption:  
A1. We disregard the terms: , ( )tml *

2ϕ& ( )tml ϕ&2  and ( ) 02 ≅tml ϕ&& . That is, we change the pendulum's angular position 
by means of very slow movements of the pendulum.  
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The previous assumption can be validated by a numerical simulation. For example, taking into account the above 
experiment, we estimate that . Consequently, we can use assumption ( ) 32 10−≅tml ϕ& A1.  
 
3.2.1 An off-line trajectory planning controller 
 
We proceed to design a passivity feedback controller to perform the transfer manoeuvre task, in an approximate fashion.  
Let us introduce the following Lyapunov function3 : 

( ) ( ) ( )( ) ( ϕϕ coscos
2
1, ***2 −+−−= mglqqqMqqqqV T &&&&& ) . 

Differentiating  along the trajectories of (4), produces, after using the passivity properties and the assumption 2V A1, the 
following approximation,  
 

( ) ( ) ( )( )*11*2 , θτθθ θ
&&&&&& qmqqV −−= ,  (15) 

with m ( ) ( )2
11 sinϕlamJq ++= 4

 
From the above relation we may propose the feedback controller as, 

( ) ( ) *11* θθθτθ &&&& qmk +−−= . (16) 
 

Thus, substituting the input (16) into (15), we guarantee 

( ) ( )2*2 , θθ &&&& −−== kqqV . 
 

To finish the asymptotic stability proof of the closed loop system, defined by equations (4) and (16), we must apply 
LaSalles' invariance theorem and follow the same arguments that were used in the previous proposition (see equations (9) 
and (11)). 
 
 
Finally, the region of attraction of the closed loop system is defined by, 

( ) ( )( ) mglqqV ≤0,02 & . (17) 

 
The above relation follows directly, due the fact that V  is also a non-increasing function. 2
 
The above discussion can be summarized in the following proposition.  
 
Proposition 2 Consider the system (4) and the controller (16) with positive constant k, under the assumption that initial 
conditions satisfy relation (17). Then, the closed loop system solution converges asymptotically to the nominal values 

*ϕϕ = , *θθ =  and *ϕϕ && = . 
 

Therefore, the feedback controller (16) can partially solve the transfer task from one pendulum's equilibrium point to 
another of its equilibrium points.  

 
 
 
 
 

                                                 
3 Recalling that we solely consider the case when ϕϕ E∈ , and we do not make regulation in θ . 

4 Ander assumption A.1, it is easy to check that we can approximate to zero the following terms: ( )ϕϕϕ sinsin ** −&mgl  and all the 
centripetal forces. 
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3.2.2 Simulation Results 
 
Fig. 3 shows the controlled responses of the system variables. The proposed controller is shown to make the system follow 
the specified nominal angular position of the pendulum *ϕ , despite initial state deviation ( ) 1.00 −=ϕ  [rad]. The time 

parameters were set as  sec and  sec. All the initial conditions and the physical parameter were the same as 
in the previous simulations.  

00 =t 10=ft

 

 
Fig. 3. Closed-Loop performance of feedback controller 

Based on trajectory planning approach 
 
 

4. Conclusions 
 
In this work, we have presented two feedback control schemes for the stabilization of the rotational pendulum. Both 
schemes are based on the Lyapunov approach. The first is a simple passive linear control, and the second is a combination 
of the Lyapunov and the off-line trajectory planning approaches. The first control solely solves the regulation problem; the 
second, transfers (in an approximated way) the pendulum from an equilibrium point to another equilibrium point. These 
equilibrium points are completely characterized by the equilibrium manifold defined in (5). This task is carried out 
neglecting some suitable terms, because the pendulum angular position changes very slowly. The closed-loop performance 
of both controllers has been shown to be quite satisfactory as assessed from the numerical experiments. Lyapunov's method 
in conjunction with La Salle's invariance theorem has been applied in both cases for the asymptotic stability analysis.  
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