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Abstract 
 
Immune systems of live forms have been an abundant source of inspiration to contemporary computer 
scientists. Problem solving strategies, stemming from known immune system phenomena, have been 
successfully applied to challenging problems of modern computing. However, research in artificial immune 
systems has overlooked establishing a coherent model of known immune system behaviour. This paper 
aims reports on an preliminary computer model of an immune system, where each immune system 
component is specified in terms of its observable behaviour using a suitable process algebra. Our model is 
not only suitable to simulation but also and more importantly to formal analyzes of immune system 
behaviour. 
Keywords: Multiagent systems and Distributed AI, Immunology, Immune Based Computer Systems. 
 
Resumen 
 
El sistema inmune de los seres vivientes ha sido una fuente rica de inspiración para científicos en 
computación contemporáneos. Estrategias de solución de problemas, cuyos orígenes se encuentran en 
fenómenos inmunológicos, han sido exitosamente aplicadas en problemas desafiantes de la computación 
moderna. Sin embargo, el trabajo de investigación en sistemas inmunológicos artificiales ha ignorado el 
establecer un modelo coherente que incorpore comportamientos conocidos y aceptados del sistema inmune. 
Este artículo reporta un modelo computacional preliminar del sistema inmune, en el cual cada componente 
del mismo es especificado en términos de su comportamiento observable, usando una álgebra de procesos 
adecuada. Nuestro modelo no sólo es adecuado para la simulación sino también y aún más importante para 
el análisis formal del comportamiento de un sistema inmune. 
Palabras Clave: Sistemas Multiagentes y AI Distribuida, Inmunología, Sistemas de Cómputo basado en 
Inmunidad. 

 
 

1. Introduction 
 
Underlying natural evolution, the immune system of live forms is a robust, effective and highly reliable defense mechanism. 
An immune system is made out of a number of simple components, each of which carries out a small, specific task. Yet the 
immune system is able to achieve complex goals. Its overall behaviour is the product of the number of interactions that 
happen amongst its individuals. Thus, the immune system is a large, complex, highly coordinated communicating system.  
 
The immune system has recently captured increasing interest in computing. Biology and Computing have merged together, 
yielding two central disciplines. First, computational Biology, which aims to duplicate within a machine outstanding 
biological phenomena. Second, artificial immune systems, which aims to discover problem solving strategies using the 
immune system as source of inspiration. Yet, research on artificial immune systems seems to proceed without a formal 
model of the natural system from which it has developed. 
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This paper reports on an experiment towards the computer modelling of the immune system. The model provided is 
intended to be used both by biologists, as a controlled laboratory, and by computer scientists, as a reference for developing 
and hopefully discovering new problem solving strategies.  
 
The model comprehends only aspects of behaviour. Hence, it is written in a process algebra. Process algebra is a suitable 
means for modelling, analyzing and building large communicating systems from simpler ones. These communicating 
systems have their own identity circumscribed by their entire capabilities of interaction. Instead of using a known process 
algebra, such as PEPA [6] or WSCCS [27], we use a combination thereof. This is because no existing process algebra can 
singly model an system as complex as the immune one. We shall argue that a model of immune system behaviour should 
encompass issues about activity duration, probabilistic quantification for non-determinism a multiple communication.  
 
This paper also hints how to formally specify some properties associated with our model of the immune system. Example 
properties include effectiveness, self-stabilization and robustness. The model, unfortunately, is not suitable for formal 
analysis yet. We outline directions to indicate what sort of toolbox is required to formally analyze it. 
 
1.1. Paper Overview 
 
The rest of the paper is organized as follows: We first overview outstanding behavioral aspects of an immune system, 
motivating the sort of formalism required to model them (§2). Then we argue that these informal requirements can be 
captured using a process algebra (§3). Then, using this algebra, we specify the behaviour of some immune system 
components (§4). We next outline how to conduct formal model analysis, as well as providing guidelines towards 
mechanical analysis (§5). Finally, related work is contrasted (§6) and conclusions drawn from our experiments presented 
(§7). 
 
 
2. Modelling an Immune System 
 
This section briefly accounts for current knowledge of immune system phenomena. It aims to motivate what takes to 
formally modelling the behaviour of the immune system.  
 
2.1. Immune Systems: General Features 
 
An immune system consists of a number of components, for example cells, antigens, etc. Each element performs a small, 
specific task. Components are independent but they coordinate one another. Overall immune system behaviour is a product 
of the number and kinds of interactions played by its individual components. The immune system is thus a highly 
distributed communicating system.  

 
An immune system is diverse: cells of the same kind vary from one another. This involves a cell’s ability to non-self 
detection. So what is distinguishable to one cell may go unnoticed to others [26]. Due to this cell diversity, an immune 
system is highly robust.  
 
To increase their possibilities of successful antigen detection, lymphocytes, as well as other components, complement their 
recognition abilities by traveling the body through the blood stream. Mobility is hence crucial to immune system 
performance.  
 
Also an immune system is highly dynamic: the number of components of the same kind, as well as the structure of the entire 
system, changes with time and according to circumstances. Non-cell components, such as antigens, will be part of the 
inhabited body as long as it last. By contrast, some living cells may last a few days; other will last much longer. Living cells 
therefore obey to a universal clock; they are programmed to die⎯apoptosis [15].  
 
To compensate for short-lived cells, the body is continuously producing cells and so are some cells of the immune system 
itself. Yet the population does not grow boundlessly, it self-stabilizes. A cell population increase amounts to the detection of 
an invading antigen. It is followed by the corresponding decrease when the disease is eliminated [22]. 
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Learning and memory are key to body protection. When facing an new, unknown antigen, not only will the immune system 
battle the invader, but it will also learn the invader structure, called unfolding [22]. As a result of antigen unfolding, the 
immune system will evolve a collection of lymphocytes, specially designed and designated to detect and protect the body 
against the invader. 
 
While traveling through the blood stream, a group of immune system’s components may coincide and form a chain, 
clustering. The cluster is able to provide a more sophisticated defense, stronger than that given by any cell in 
isolation⎯emergent behaviour.  
 
Thus, immune systems of life forms are mobile, highly distributed and coordinated communicating systems. However, the 
behaviour of each element is simple and so in principle suitable to modeling and verification. This paper argues that a 
process algebra provides a suitable means to express each individual cell and then use a collection of them to build the 
entire system and analyze its behaviour. 
 
2.2 Process Calculi: General Features 
 
Basic process calculi, such as CCS [16], CSP [12] or ACP [2], provide a means suitable for modeling and analyzing 
communicating systems. They have been largely and successfully applied to formal modeling and analysis, evolving into an 
international standard, LOTOS [14].  
 
In a process algebra, communicating systems are modelled as a collection of autonomous agents. An agent is defined in 
terms of the discrete actions it may perform. In a basic process algebra, an agent’s capabilities of interaction do not change 
with time, actions are atomic, they have no structure and are assumed to be executed instantaneously.  
 
Extended process algebras, such as Message-Passing Process Algebra [10], PEPA [11,6], WSCCS [27], the π -calculus 
[17,18] and fusion [21], provide a more expressible language, together with a more powerful verification method, that 
relaxes one or more of the aforementioned limitations. Extended process algebras are capable of expressing and reasoning 
about, for example, the communication of messages of any kind, value-passing process algebra, action duration and 
probabilistic choices, PEPA and WSCCS, and mobility, π –calculus or fusion. These aspects, as discussed in the previous 
section, are required to modelling immune system behaviour. 
 
Process algebras are either synchronous or asynchronous, but not both. Asynchrony is the assumption that concurrent agents 
run at different speeds, while synchrony is the assumption that they run in lockstep [16]. 
 
In what follows, we assume synchronous, message-passing process algebra, using the so-called early semantics for 
modelling communication [19], with probabilistic choices. Like PEPA, the calculus allows for multiple inter-process 
communications, using a CSP like composition operator. However, like WSCCS, the calculus is synchronous, choices are 
quantified with weights. Complementary actions, forming the basis for communication, do not yield ∠, the unobservable 
action. The process algebra does not include mobility either and so here we constrain ourselves to a modest, limited but 
intuitive model, which involves only a single site.  
 
Given that we consider a singled-site system, our model of the immune system does not comprehend clustering either. 
Clustering requires specifying coordination and competence protocols, which would necessarily increase the complexity of 
the model.  
 
This paper extends [23]. A refined version of the intended process algebra is presented in [20] at a more elaborate level of 
detail. 
 
 
3. A Synchronous, Value-Passing CCS, an Extended Version 
 
We assume value expressions, e, built from value variables x, y, ..., value constants v1, v2, ... and any other operators, e.g., 
+, ×, ....We also assume Boolean expressions, b, with similar properties except that they are closed under the logical 
connectives. The set of actions, Act, contains the set of input actions, the set of output actions and the unobservable action 
∠, which denotes an internal, unknown activity.  
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Input an output actions are respectively of the form a?x an a !e, where a∈L, the set of channels. We use l, l’,..., to range over 
L, and let, K, L, ..., denote subsets of L. Actions, whether input or output, may take no parameters at all. In that case, we 
simply write a?, a!, ....  
 

The set of agent expressions, Ɛ , is defined as the smallest set that contains the agent expressions below: 
• a?x.E, a!e.E, ∠.E, prefixes (where a is a channel, x an input variable, and e is an output expression); 
• w1:E1 + w2:E2 , choice (w1 an w2 weights);  
• E1│{ L }│ E2, a composition(L a set of channels);  
• E\L, a restriction (L⊆L); and 
• E/L, a hiding (L a set of channels). 

Where E, Ei are already in Ɛ.1
 
Informally, the meaning of the combinators is as follows: prefix, (.), is used to convey the discrete actions an agent may 
perform. For example, a.E denotes an agent capable of executing the action a, and then evolving into E. a?x. accepts any 
input value, binding the value variable x, whereas the output Prefix a!e. sends e to the outside world. 
Choice, +, disjoins the capabilities of the agents that either side of it; as soon as one performs any action, the others are 
dismissed. Choices are quantified: w1:E1 + w2:E2 means that we shall see w1 occurrences of E1 for each w2 of E2. We 
shall use Σi∈IEi for the summation of all processes Ei, i∈I. 
 
Parallel composition, (│{ L }│), is used to express synchronous concurrency. Let L be a set of action names, then the 
composite agent E1 {L} E2 denotes an agent where E1 and E2 may proceed independently but simultaneously, but may also 
interact one another via some action name in L. │││ is a special case of │{L}│, when L is empty. The set L is significant 
because it determines those activities where the agents are forced to interact. We shall use ∏ i∈I Ei for the composition of 
all processes Ei, i∈I. 
 
Restriction, (\), is used to enforce communication as well as binding the scope of actions: E\L behaves like E, except that it 
cannot execute any action � that uses a name in L. Finally, hiding, /, is used for internalizing actions: E/L is as E except that 
any one time it is about to perform an action in L, it will produce ∠ instead. We now proceed to describe the semantics of 
the language. 
 
Processes are given meaning by two transition relations. One specifies the actions an agent may perform, and the other the 
weight with which the associated state is reached. Weights are associated with choices, representing probabilistic branching. 
They propagate as choices are performed. 
 
We are now ready to present our model of an immune system. The model abstracts out only details about behaviour. We 
leave out some components, including cytotoxic T-cells—which are a type of lymphocyte—, antigens, antibodies and 
infected cells. The complete model is available upon request by sending electronic-mail to the second author. 
 
 
4. A Behavioural Model for an Immune System 
 
This section presents part of our behavioural model for an immune system. In the model, each component is idealized at 
least in two senses: first, it cannot be infected; and second, it cannot spontaneously die as time goes by. The first issue we 
have ignored both for the sake of clarity and manage-ability. The second issue is a bit more complex. To specify the 
corresponding mortal component, Cr, we must get the idealised agent, C, concurrently work with its own individual clock, 
Clock. Whenever the individual clock of an agent stops ticking, then so should the real, compound agent. This can be 
modeled by making Cr execute the tick action infinitely many times. Unfortunately, │{ L }│ is not enough to specify cell 
mortality and accordingly the process algebra must have to be extended with a new parallel composition. As it serves only 
this purpose, we have decided not to include other composition operator and hence model an idealized immune system.  

 
In what follows, tick denotes the idle process, capable of delaying only, given by: 

tick ≝ ∠.tick 

                                                           
1 Notice we do not include two WSCCS operators, namely: restriction and process priority decomposition. 
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4.1. The Natural Killer 
 
A Natural Killer, NK, plays a major role in the protection of the body against a disease. It may get engaged in either of three 
main activities [26]: i) to recognize the presence of antigens or infected cells; ii) having identified it, to attack the non-self 
until possibly extinguishing it; and iii) to regulate the immune response. These activities are all kinds of interactions. 
 
On non-self recognition, a natural killer will start attacking immediately. The attack will be either direct, if the non-self is an 
infected cell, or indirect, if it is an antigen, via an specific antibody. On cell attack, the interaction takes the form of toxin 
injection from the NK into the non-self and is usually lethal. On response regulation, the interaction amounts to cytosine 
injection from the NK into the blood stream. This either suppresses or stimulates the development of T-lymphocytes, each 
of which may inherit different features. Also on response regulation, an NK may proliferate [26]. 
 
Our process algebra model of the natural killer is given in Table 1. There, NK(R,A) means an NK with reception 
capabilities R,2 and antibody population A (initially empty). As the model states, an NK is initially ready to detect the 
presence of either an antibody or an infected cell. If an antibody is detected, encrust, the NK will absorb it and then 
specialize itself as a terminator of the specific antibody’s antigen. This process, called affinity maturation, we model simply 
using memorization, via a set. 
 
 

 
 
 
 
 
 
 
  
 

NK(R, A) ≝  1: encrust?x. NK(R,A ∪ {x})   
                  +  1: bind?y.( if (y ∈ R ∪ A) then NK’(R, A)  else NK(R, A)) 
                  +  1: ∠.NK(R, A) 
NK’(R, A) ≝ 1:txn!.NK’’ (R, A)  + 1:cts!↑. NK’’’ (R, A) 
NK’’(R, A) ≝ w0:die?.NK(R,A) + w1:txn!.NK’’(R, A)  + w2: ∠.tick 

                   (w0»w1»w2) 
NK’’’(R, A) ≝ cts?x.NK’’’(R, A,x)                                                            α 

NK’’’(R, A) ≝ if ( x= ↓) then NK(R, A)  +  if ( x= ↑) then NK’(R, A) ||| ∏ NK’(R, ∅) 

Table 1. Model of the Natural Killer, NK 
 
Upon non-self detection, bind, the cell will either attempt to kill it, txn, but may react according to existing immune 
stimulus, cts. While attacking it, an NK may successfully get rid of the antigen, die, or may get exhausted, ∠, dying 
immediately afterwards. If it injects cytosine into the blood stream, an NK will either extinguish its own response, ↓, or 
proliferate, ↑. In the model, α stands for an oracle function which returns how many cells ought to be left upon proliferation. 
 
4.2 The Monocyte Cell 
 
Monocytes aim to engulf non-self, both active and inert (debris), thereby getting rid of it. They also help other immune 
system components recognise the presence of invading microorganisms [15]. In particular, monocytes have the capability of 
functioning as an antigen presenting cell, APC, for which they first require to interact with antibodies. Table 2 displays our 
model of a monocyte. 

M(R,I) ≝ w0: bind?x.M’(R,I,x) 
          +  w1: cts?y.if (y= ↑) then 1:cts!↑.M(R,I) + 1: bind?x.M’(R,I,x) 
           else M (R,I) 
          + w2: apc?.(if ( I ≠ ∅ then apc!(x ∈ I). M(R,I⎯{x}) else fail!.M(R,I)) 
          + w3: ∠.Macrophage 
           (wo > w1> w2  > w3) 

M’(R,I,x) ≝ if (x ∈ R) then Mp(R,I,x) else M(R,I) 
Mp(R,I,x) ≝ w0: engulf!.die? .M’p(R,I,x) + w1: ∠.tick 

                w0 = DC × w1 

Mp’(R,I,x) ≝ bind?y.( if ( x = y) then Mp(R,I,x) else M(R,I ∪ {x}) 

 
 
 
Table 2. The Model of a Monocyte 
 
 
 
 
 
 

                                                           
2The reception capabilities are different from one lymphocyte to other. Moreover, they improve when a major histocompatibility complex, MHC, molecule 
enables the lymphocyte to detect an invading microorganism residing inside a cell. 
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As indicated by the model,
3
 monocytes require an stimulus, namely: cytosine, in order to bind and then absorb a non-self. 

Upon detection, monocytes absorb as much non-self as possible but they may die if they exceed their digestion capability. 
Sometimes, a monocyte moves from the blood stream into the muscular tissue and, hence, differentiates into another cell, 
called macrophage [26]. Macrophages are just as monocytes except that they are bigger and may swell an infected area. 
 
4.3 The B Lymphocyte 
 
B cells play a chief role at yielding the acquired immune response [26]. They are concerned with 4 main activities: i) getting 
rid of the non-self; ii) learning from past attacking activities; iii) providing a repository for documenting experienced 
attacks; and iv) tuning the cell reception capabilities, via either antibody encrustation or through incoming cytosine. In 
Table 3, B(R,A, I) represents a B cell with reception capabilities R, population of antibody encrustation A and repository of 
previous attacks I. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B(R,A,I) ≝ w0: cts?y.B(R ∪ {y}, A,I) 
+ w0: encrust?x.B(R,A, ∪ {x}, I) 
+ w1: endocyte?z.B(R,A,σ(I)) 
+ w1:  (if (I ≠ ∅) then query! (u∈ I).B(R,A,I)) 
+ w0: bind?v.B(R,A,I,v) 
+ 1: ∠. B(R,A,I) 

B(R,A,I,v) ≝  if (v ∈ R ∪ A) then engulf!.die?P(R,A,I,v) 
α 
else B(R,A,I) | ∏  Ab(ε) 
i = 1                                       α0

P(R,A,I,x)   ≝ τ.Bm(R,A,I,y) | {cts,encrust} | ∏ Ab(y) 
α1                                                        i = 0 

Bm(R,A,I,y) ≝ w0: cts?. (∏ P(R,A,I,y) + Bm′ (R,A,I,y)) 
i = 0 
+ w1:endocyte?z.Bm (R,A,I, σ(I)) 

+ if (I ≠ ∅) then w1: query! ( u ∈ I).Bm (R,A,I) 
+ 1: ∠. B(R,A,I, y) 
Bm  (R,A,I,z) ≝1: cts!↑.Bm  (R,A,I,z) + 1:cts!↓.Bm (R,A,I,z) 

(w0 » w1»1) 

Table 3. Definition of a B cell 
 

The model expresses that once the antibody-antigen complex has been formed, a B cell may engulf it and then endocyte it, 
endocyte, hence, modifying the repository of known attacks, σ(I). The information in the repository, I, can be consulted any 
other time, query. The size of the repository increases monotonically, upon endocytosis. 
 
When its receptors bind to an specific antigen, bind, a B cell differentiates into a plasma cell, P(R,A, I, x). Then, the plasm 
cell will immediately yield a fixed but arbitrary number of antibodies, specific to the detected antigen, ending up as a B 
memory cell. 
 
The behaviour of a B memory cell is similar to that of a B cell. The main difference being that the B memory cell is 
involved in the regulation of the immune response. After the reception of cytosines, a B memory cell will, in turn, inject 
cytosines into the blood stream. This will result in a number of interactions whereby the cell may either proliferate or 
suppress the immune activity. Notice that once differentiated, a B memory cell will never go back to its original, B cell 
state. 
 
 
 
 
 

                                                           
3 DC amounts to the digest capability of an standard monocyte. So if it goes beyond DC, the monocyte may die.  
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4.4 The Th Lymphocyte 
 
The T helper lymphocyte, Th, aims at speeding up the immune response [26]. It has a special, unique receiver, which is 
different to other lymphocytes’. With its unique receiver, the Th cell is able to recognize an antigen, provided that the 
antigen has formed an MHC-antigen complex already. 
 
Detection of an MHC-antigen complex is not enough for a Th to help the immune system to increase the response. It further 
requires the assistance of an antigen presenting cell, APC. Unless this assistance arrives, the Th will go unnoticed. In the 
normal case of successful activation, the Th cell is able to stimulate other cells’ response, both by injecting cytosine in the 
blood stream and, provided the right feedback is detected, by proliferation. Upon reception of negative feedback, the Th will 
rest going back to its initial state. Our model of a Th cell is given in Table 4. 
 

Th  ≝ mhc-ag?x.Th(x) 
Th(x) ≝ apc!x.apc?y.(if (y = fail) then Th(x) else Th’) 

α 

Th’ ≝ cts!↑.Th’    + cts?x.(if x= ↑) ||| ∏ Th’ else Th 
i = 0 

 
 
 
 
 
 
 

Table 4. Model of a Lymphocyte type Th 

4.5 The Ts Lymphocyte 

The T suppressor lymphocyte, Ts, aims to slow down the immune response, injecting cytosine with negative stimulus into 
the blood stream. Given that it has no receptors, the Ts cannot detect the presence of invading microorganisms and it 
therefore does not need toxin injection capabilities. To become active, a Ts needs to get cytosine with positive stimulus 
from the blood stream. Then, it further emphasizes deactivation of immune response, injecting itself negative cytosine and 
then proliferating. The high concentration of negative cytosine will eventually give rise to a immune response decay. Our 
model of the Ts lymphocyte appears in Table 5. 
 

  Ts  ≝ cts?x.Ts(x)  + 1: ∠. Ts 
                                                                                                  β  

Ts n   Ts else (cts!↓. │││ ∏ Ts ) (x) ≝ ( if x≠ ↑)  the
                                                                                i=1 
 

 
 
 
 
 
 

Table 5. Ts Definition 

4.6 The Blood Stream 

Apart from other substances, such as micro- and macro-nutrients, the blood stream carries the immune system components 
and provides a means of component intercommunication. Thus, the blood stream is vital to the immune system. In this 
paper, we model the blood stream as an agent which may input or output information, via cytosine—see Table 7—. 
Cytosine leaves from and arrives to the blood stream in no specific order, so BloodStream is simply modelled as a computer 
bag with infinite capacity (see Table 6)  
 
 

BloodStream (S) ≝ 1: cts?x.BloodStream ( S ∪ {x}) 
                                 +  1: (if ( S ≠ ∅  ) then  cts!(e ∈ S).BloodStream (S - {e})) 
                                 +  1: ∠.BloodStream (S)

 
 
 
 

Table 6. Blood Sream Definition 
 

To complete our model for the immune system, we need only to compose the elements and then properly link them. To 
approach composition, we first look into main components: 
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NS | {bind, txn, engulf, die} |ISC|{cts}|BloodStream 

 
Where NS stands for non-self components, antigens and infected cells, and ISC for immune system components, 
lymphocytes, monocytes and antibodies, properly linked. 
 
The initial population of each agent type will be different and so should be set according to standard literature. We specify 
an immune system at an idle state by omitting antigens and infected cells. Clearly, agent population and links, called the 
configuration of the system, can be set according to the type of analysis to be conducted. 
 
With this, we complete the description of our model of the immune system. Now we now give attention to formally 
specifying its associated properties. 
 
 
5. Immune System Analysis 
 
An immune system aims to protect the body against invading microorganisms. It portrays a number of properties one would 
like to have in a contemporary computer system application, for instance effectiveness, reliability, robustness, adaptability 
and self-stabilization⎯to mention a few⎯. This section discusses how to provide a formal specification about some of 
these properties. It also outlines the sorts of mechanisms that would be required to prove whether or not the proposed model 
enjoys any one of these properties. 
 
Effectiveness is achieved when the system gets rid of both all antigens and all infected cells. Consider that, when dying, any 
one invader issues the action die (see §4). Then effectiveness can be succinctly specified using the µ-calculus [25], as 
shown below: 

IS |= Ev (die)  

where IS and |= respectively denote the immune system model and a satisfaction relation, and where Ev(die) is given by: 

Ev(die) = µX. <->tt ∧ [-die]X  

 
Roughly, this means that IS can do no action sequence where die does not appear. 
 
The above formula guarantees only that one invader will die. To handle an arbitrary number of invaders, we ought to use 
nested applications of Ev. Since this is a bit awkward, we appeal to an alternative specification method.  
 
Recall that the configuration of a system is given by the size of each component’s population, together with the link 
structure (see §4.6). Upon action execution, the configuration changes. We take action execution to be a language 
generation process: The output language being the set that contains all possible configurations. Then, effectiveness can be 
modelled as follows: Given an initial configuration with a non-empty population of invaders, the system will eventually 
become idle, getting rid of the non-self. Effectiveness can be formally verified using methods borrowed from probabilistic 
process calculi: A system is effective if the expected value of non-self population tends to zero.  
 
Using the notion of configuration, we can model other properties self stabilization and robustness. Self-stabilization is 
achieved if, after activity, the immune system goes back to a configuration similar to the initial one. Put differently, an idle 
system does not evolve. Thus, the expected size of the configuration of an infected immune system should tend to the size 
of that configuration after eliminating the non-self.  
 
Robustness is achieved if, no matter the population of a particular component, the system does not loose effectiveness. 
Thus, the expected value of non-self population should tend to zero, even though we omit part of the immune system 
population from the initial configuration. 
 
There are of course properties, such as a adaptability, that cannot be even specified within our model. That would take 
giving a full account of learning.  
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To formally analyze our system, we only need existing proof methods. However, these methods ought to be re-implemented 
so that they can be used to analyze partial system behaviour. This is because, prior to verification, existing methods first 
compute the entire system behaviour. Yet this is not always possible, especially when the system space is infinite. The space 
associated with our immune system is essentially infinite and so is the language it generates. This is because, the 
configuration evolves dynamically. Accordingly, we need to do our observations along a predefined number of transitions, 
ticks of a universal clock. 
 
 
6. Related Work 
 
Hofmeyr and Forrest have invented ARTIS, an architecture for immune computer systems [13]. While ARTIS involves the 
basic ingredients of an immune system, the authors o not develop the underlying model. Rather they include only 
operational ideas associated with immunology⎯attack, detection, learning and rejection⎯. 
 
In [5], the authors suggest a methodology for immune system architecture design. Roughly, the design of an architecture 
should be based on the informal requirements associated with the target immune system. These requirements must be first 
matches against a natural immune system, identifying responsible mechanisms. Then, given the isolated mechanisms, the 
authors suggest feasible implementations.  
 
Artificial Immune System, AIS [1], portrays a collection of mechanisms that combine characteristics found in some 
elements of a natural immune system (cells and proteins). The mechanisms are used to address intrusion detection, so the 
underlying model does not consider the entire variety of system elements. A similar argument applies to both [4]an [3,pages 
242-261]. Other applications of immune system phenomena can be found in [24].  
 
More related to ours is the work of Hatcher, Tofts an Dunn [9, 8, 7]. They have applied WSCCS to computer modelling 
issues of biological systems, such as sex ratio, sex determination and parasite transmission rate. Focusing on a very specific 
problem, they have been able to formally analyze or simulate the behaviour of biological systems. Their papers have been a 
source of inspiration for the work presented here. This paper extends [23]. 
 
 
7. Conclusions 
 
We have presented a model for an immune system based in process algebra. Our model involves only aspects of behaviour, 
ignoring other important subtleties, such as learning a detection. Our model can be used to analyze immune system’s 
expected population, with which we can address properties like effectiveness, robustness and self-stabilization. To conduct 
formal analysis of our system, however, we need to extend existing techniques so as to incorporate the analysis of partially 
developed in infinite-state systems. While this development is time consuming, the associated payoffs are worthwhile. We 
reckon the resulting tool could be used as a controlled laboratory by biologists.  
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