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Abstract 
 
A fuzzy cognitive map is a graphical means of representing arbitrary complex models of interrelations 
between concepts. The purpose of this paper is to describe a dynamic/adaptive fuzzy cognitive map based on 
the random neural network model. Previously, we have developed a random fuzzy cognitive map and 
illustrated its application in the modeling of processes. The adaptive fuzzy cognitive map changes its fuzzy 
causal web as causal patterns change and as experts update their causal knowledge. Our model carries out 
inferences via numerical calculation instead of symbolic deduction. We show how the adaptive/dynamic 
random fuzzy cognitive map can reveal implications of models composed of dynamic processes. 
Keywords: Random Neural Network, Fuzzy Logic, Fuzzy Cognitive Maps, Dynamic Systems. 

 
Resumen 
 
Un Mapa Cognitivo Difuso es un medio gráfico de representación de modelos complejos de interrelaciones 
entre conceptos. El propósito de este artículo es describir un Mapa Cognitivo Difuso Dinámico/Adaptivo 
basado en el Modelo de Redes Neuronales Aleatorias. En trabajos previos, nosotros hemos desarrollado un 
Mapa Cognitivo Difuso Aleatorio y mostrado su aplicación en el modelado de procesos. Nuestro modelo 
realiza inferencias a través de cálculos numéricos en vez de deducciones simbólicas. Ahora bien, el Mapa 
Cognitivo Difuso Adaptivo cambia su red de relaciones causales difusas como un patrón causal cambia y un 
experto actualiza su conocimiento causal. Nosotros mostramos cómo el Mapa Cognitivo Difuso 
Dinámico/Adaptivo puede ser usado para describir implicaciones en el modelado de procesos dinámicos 
Palabras Clave: Redes Neuronales Aleatorias, Lógica Difusa, Mapas Cognitivos Difusos, Sistemas 
Dinámicos. 

 
1. Introduction 
 
Modeling a dynamic system can be hard in a computational sense. Many quantitative techniques exist. Well-understood 
systems may be amenable to any of the mathematical programming techniques of operations research. Insight into less well-
defined systems may be found from the statistically based methods of data mining. These approaches offer the advantage of 
quantified results but suffer from two drawbacks. First, developing the model typically requires a great deal of effort and 
specialized knowledge outside the domain of interest. Secondly, systems involving significant feedback may be nonlinear, 
in which case a quantitative model may not be possible. What we seek is a simple method that domain experts can use 
without assistance in a “first guess” approach to a problem. A qualitative approach is sufficient for this. The gross behavior 
of a system can be observed quickly and without the services of an operations research expert. If the results of this 
preliminary model are promising, the time and effort to pursue a quantitative model can be justified. Fuzzy cognitive maps 
are the qualitative approach we shall take. 
 
Fuzzy Cognitive Maps (FCMs) were proposed by Kosko to represent the causal relationship between concepts and analyze 
inference patterns [12, 13, 15]. FCMs are hybrid methods that lie in some sense between fuzzy systems and neural 
networks. So FCMs represent knowledge in a symbolic manner and relate states, processes, policies, events, values and 
inputs in an analogous manner. Compared with experts system or neural networks, it has several desirable properties such 
as: it is relative easy to use for representing structured knowledge, and the inference can be computed by numeric matrix 
operation instead of explicit IF/THEN rules. FCMs are appropriate to explicit the knowledge and experience which has 
been accumulated for years on the operation of a complex system. FCMs have gained considerable research interest and 
have been applied to many areas [6, 8, 15, 16, 17, 18, 19, 20]. However, certain problems restrict its applications. A FCM 
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does not provide a robust and dynamic inference mechanism, a FCM lacks the temporal concept that is crucial in many 
applications and a FCM lacks the traditional statistical parameter estimates. 
 
The Random Neural Network (RNN) has been proposed by Gelenbe in 1989 [9, 10, 11]. This model does not use a 
dynamic equation, but uses a scheme of interaction among neurons. It calculates the probability of activation of the neurons 
in the network. Signals in this model take the form of impulses that mimic what is presently known as inter-neural signals 
in biophysical neural networks. The RNN has been used to solve optimization and pattern recognition problems [1, 2, 3, 4]. 
Recently, we have proposed a fuzzy cognitive map based on the random neural model. The problem addressed in this paper 
concerns the proposition of a dynamic/adaptive FCM using the RNN. We describe the dynamic/adaptive Random Fuzzy 
Cognitive Map (DRFCM) and illustrate its application in the modeling of dynamic processes. Our adaptive/dynamic FCM 
changes its fuzzy causal web as causal patterns change and as experts update their causal knowledge. We shall use each 
neuron to model a concept. In our model, each concept is defined by a probability of activation, the dynamic causal 
relationships between the concepts (arcs) are defined by positive or negative interrelation probabilities, and the procedure 
of how the cause takes effect is modeled by a dynamic system. This work is organized as follows, in section 2 the 
theoretical bases of the RNN and of the FCM are presented. Section 3 presents the DRFCM. In section 4, we present 
applications. Remarks concerning future work and conclusions are provided in section 5. 
 
 
2. Theoretical Aspects 
 
2.1. The Random Neural Network Model 
 
The RNN model has been introduced by Gelenbe [9, 10, 11] in 1989. This model has a remarkable property called "product 
form" which allows the computation of joint probability distributions of the neurons of the network (the product form is 
true for the Markovian case [9]). The model consists of a network of n neurons in which positive and negative signals 
circulate. Each neuron accumulates signals as they arrive, and can fire if its total signal count at a given instant of time is 
positive. Firing then occurs at random according to an exponential distribution of constant rate, and signals are sent out to 
other neurons or to the outside of the network. Each neuron i of the network is represented at any time t by its input signal 
potential ki(t). Positive and negative signals have different roles in the network. A negative signal reduces by 1 the potential 
of the neuron to which it arrives (inhibition) or has no effect on the signal potential if it is already zero; while an arriving 
positive signal adds 1 to the neuron potential. Signals can either arrive to a neuron from the outside of the network or from 
other neurons. Each time a neuron fires, a signal leaves it depleting the total input potential of the neuron. A signal which 
leaves neuron i heads for neuron j with probability p +(i,j) as a positive signal (excitation), or as negative signal with 
probability p-(i,j) (inhibition), or it departs from the network with probability d(i). Clearly we shall have: 
 

∑n
j=1 [p+(i,j)+p-(i,j)] + d(i) = 1    for 1≤i≤n. 

 
Positive signals arrive to the ith neuron according to a Poisson process of rate Λ(i) (external excitation signals). Negative 
signals arrive to the ith neuron according to a Poisson process of rate λ(i) (external inhibition signals). The rate at which 
neuron i fires is r(i). The main property of this model is the excitation probability of a neuron i, q(i), which satisfy the non-
linear equation: 
  
       q(i) =  λ+(i)/(r(i)+ λ-(i))              (1) 
 
where, λ+(i) = ∑n

j=1 q(j)r(j)p+(j,i)+Λ(i)       

 λ-(i) = ∑n
j=1 q(j)r(j)p-(j,i)+λ(i)      

The synaptic weights for positive (w+(i,j)) and negative (w-(i,j)) signals are defined as: 
 
 w+(i,j) = r(i)p+(i,j)    w-(i,j) = r(i)p-(i,j) 
and 
 r(i) = ∑n

j=1 [w+(i,j) + w-(i,j)] 
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To guarantee the stability of the RNN, the following is a sufficient condition for the existence and uniqueness of the 
solution in the equation (1) 
 
      λ+(i) < [ r(i) + λ-(i)]   ∀i= 1, n 
 
Notice that the model is based on rates, much as natural neural systems operate. Thus, this is a "frequency modulated" 
model, which translates rates of signal emission into excitation probabilities via equation (1). For instance, q(j)r(j)p+(j,i) 
denotes the rate at which neuron j excites neuron i. Equation (1) can also be translated into a special form of sigmoid that 
treats excitation (in the numerator) asymmetrically with respect to inhibition (in the denominator). 
 
 
 
 
2.2. Fuzzy Cognitive Maps 
 
FCMs combine the robust properties of fuzzy logic and neural networks. At first, R. Axelrod used cognitive maps as a 
formal way of representing social scientific knowledge and modeling decision making in social and political systems [5]. 
Then, B. Kosko enhanced cognitive maps considering fuzzy values for them [12, 13, 15]. A FCM describes the behavior of 
a system in terms of concepts, each concept represents a state or a characteristic of the system. A FCM can avoid many of 
the knowledge-extraction problems which are usually posed by rule based systems. 
 
A FCM illustrates the whole system by a graph showing the cause and effect along concepts. Particularly, a FCM is a fuzzy 
signed oriented graph with feedback that model the worlds as a collection of concepts and causal relations between 
concepts. Variable concepts are represented by nodes in a directed graph. The graph's edges are the casual influences 
between the concepts. The value of a node reflects the degree to which the concept is active in the system at a particular 
time. This value is a function of the sum of all incoming edges and the value of the originating concept at the immediately 
preceding state. The threshold function applied to the weighted sums can be fuzzy in nature. This destroys the possibility of 
quantitative results, but it gives us a basis for comparing nodes – on or off, active or inactive. This is a variation of the 
“fuzzification” process in fuzzy logic. Fuzzification gives us a qualitative model and frees us from strict quantification of 
edge weights. Thus, concept values are expressed on a normalized range denoting a degree of activation rather than an 
exact quantitative value. The causal relationships are expressed by either positive or negative signs and different weights. 
Once constructed, a FCM of a specific system allows to perform qualitative simulations of the system.  
 
In general, a FCM functions like associative neural networks. A FCM describes a system in a one-layer network which is 
used in unsupervised mode, whose neurons are assigned concept meanings and the interconnection weights represent 
relationships between these concepts. The fuzzy indicates that FCMs are often comprised of concepts that can be 
represented as fuzzy sets and the causal relations between the concepts can be fuzzy implications, conditional probabilities, 
etc. A directed edge Eij from concept Ci to concept Cj measures how much Ci causes Cj. In simple FCMs, directional 
influences take on trivalent values {-1, 0, +1}, where –1 indicates a negative relationship, 0 no causality relationship, and 
+1 a positive relationship. In general, the edges Eij can take values in the fuzzy causal interval [-1, 1] allowing degrees of 
causality to be represented: 
 
- Ejk>0 indicates direct (positive) causality between concepts Cj and Ck. That is, the increase (decrease) in the value of Cj 

leads to the increase (decrease) on the value of Ck. 
- Ejk<0 indicates inverse (negative) causality between concepts Cj and Ck. That is, the increase (decrease) in the value of 

Cj leads to the decrease (increase) on the value of Ck. 
- Ejk=0 indicates no relationship between Cj and Ck. 
 
Because the directional influences are presented as all-or-none relationships, FCMs provide qualitative as opposed to 
quantitative information about relationships. In FCM nomenclature, model implications are revealed by clamping variables 
and using an iterative vector-matrix multiplication procedure to assess the effects of these perturbations on the state of a 
model. A model implication converges to a global stability, an equilibrium in the state of the system. During the inference 
process, the sequence of patterns reveals the inference model. The simplicity of the FCM model consists in its mathematical 
representation and operation. So a FCM which consists of n concepts, is represented mathematically by a n state vector A, 
which gathers the values of the n concepts, and by a n*n weighted matrix E. Each element Eij of the matrix indicates the 
value of the weight between concepts Ci and Cj. The activation level Ai for each concept Ci is calculated by the following 
rule: 
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Ai
new = f(∑n

j=1 Aj
new Eji)+ Ai

old    (2) 
 
Ai

new is the activation level of concept Ci at time t+1, Aj
old is the activation level of concept Cj at time t for 1≤j≤n, and f is a 

threshold function. So the new state vector A, which is computed by multiplying the previous state vector A by the edge 
matrix E, shows the effect of the change in the activation level of one concept on the other concepts.  A FCM can be used 
to answer a “what-if” question based on an initial scenario that is represented by a vector S0= {si}, for i=1 …n, where si=1 
indicates that concept Ci holds completely in the initial state, and si=0 indicates that Ci does not hold in the initial state. 
Then, beginning with k=1 and A=S0 we repeatedly compute Ai. This process continues until the system convergence (for 
example, when Ai

new=Ai
old). This is the resulting equilibrium vector, which provides the answer to the “what if” question. 

 
FCM have been used for decision analysis, for modeling and processing political knowledge, etc. [6, 7, 16]. [18, 19, 20] 
investigate the implementation of the FCM in distributed and control problems. Particularly, FCMs have been used to 
model and support a plant control system, to construct a system for failure modes and effect analysis, and to model the 
supervisor of a control system. In [20] is introduced a formal technique based on FCM to represent different types of 
knowledge in a group of agents. FCMs model the possible worlds as collection of classes and causal relations between 
classes. In [13] is proposed an extension of the FCM where each concept can have its own value set, depending on how 
precisely it needs to be described in the network. The value set can be a binary set, a fuzzy set, or a continuous interval. In 
addition, the procedure of how the causes take effect is modeled by a dynamic system. A novel approach is the use of 
FCMs as a computationally inexpensive way to "program" the actors in a virtual world [7, 8, 14]. Simulations involving 
human actors might combine FCMs with expert systems in order to model the soft, emotional aspect of human decision 
making as well as the formal, logical side. Finally, to overcome the lack of a concept of time and that they cannot deal with 
occurrence of multiple causes such as expressed by “and” conditions, in [17] is proposed the extended FCM. The features 
of this model are: weights having non-linear membership functions and conditional time-delay weights. 
 
 
3. The Dynamic Random Fuzzy Cognitive Maps (DRFCM) 
 
Our RFCM improves the conventional FCM by quantifying the probability of activation of the concepts and introducing a 
nonlinear dynamic function to the inference process [3]. Similar to a FCM, concepts in RFCM can be causes or effects that 
collectively represent the system’s state. The value of Wij indicates how strongly concept Ci influences concept Cj. W+

ij >0 
and W-

ij=0 if the relationship between the concepts Ci and Cj is direct, W-
ij >0 and W+

ij=0 if the relationship is inverse, or 
W+

ij=W-
ij=0 if doesn’t exist a relationship among them. The quantitative concepts enable the inference of RFCM to be 

carried out via numeric calculations instead of a deductive procedure.  
 
The new aspect introduce by the DRFCM is the dynamic causal relationships. That is, the values of the arcs are modified 
during the runtime of the FCM to adapt them to the new environment conditions. The quantitative concepts allow us 
develop a feedback mechanism that is included in the causal model to update the arcs. In this way, with the DRFCM we can 
consider on-line adaptive procedures of the model like real situations. For example, our DRFCM can structure virtual 
worlds that change with time. The DRFCM does not write down differential equations to change the virtual world. They 
map input states to limit-cycle equilibrium. A limit cycle repeats a sequence of events or a chain of actions and responses. 
Our DRFCM change their fuzzy causal web during the runtime using neural learning laws in order to change the causal 
rules and the limit cycles. In this way, our model can learn new patterns and reinforce old ones. To calculate the state of a 
neuron on the DRFCM (the probability of activation of a given concept Cj), the following expression is used [3]: 
 

{ }{ })j(),j(rmax),j(min)j(q −+ λλ=    (3) 

where  { }{ })j,i(W),i(qminmax)j(
n,1i

+

=

+ =λ  

{ }{ })j,i(W),i(qminmax)j(
n,1i

−

=

− =λ  

 
Such as, λ(j)= λ(i)=0. That means, the external signal inputs are equal to 0. 
 
In addition, the fire rate is 
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{ })j,i(W),j,i(Wmax)j(r
n,1i

−+

=
=      (4) 

 
The general procedure of the DRFCM is the following: 
 
1. Define the number of neurons (the number of neurons is equal to the number of concepts).  
2. Call the Initialization phase.  
3. Call the Execution phase. 
 
3.1 The Initialization Procedure 
 
In this phase we must define the initial weights. The weights are defined and/or update according to the next procedures: 
 
- Based on expert’s opinion: each expert defines its FCM and we determine a global FCM. In this case, the knowledge 

and experience human is exploited. We use two formulas to calculate the global causal opinion.  
 

{ }e
ji

e

G
ji EmaxE = ,  ∀ e=1, NE (number of experts) 

or 

NE/EbE
NE

1e

e
jie

G
ji ∑=

=
 

 
Where  is the opinion of the expert e about the causal relationship among Ce

jiE j and Ci, and be is the expert’s opinion 
credibility weight.  
 
Then, with the next algorithm we determine the initial weights of the DRFCM: 
 

1. If i≠j and if EG
ij>0    and  G

ijij EW =+ 0Wij =−

2. If i≠j and if EG
ij<0    and  G

ijij EW =− 0Wij =+

3. If i=j or if EG
ij=0     0WW ijij == −+

 
The causal relationship ( ) is caught from each expert using the next table: e

jiE

Symbolic value Real Value 
no relationship 0 

Slight 0.2 
Low 0.4 

Somehow 0.6 
Much 0.8 
Direct 1 

Table 1. Relationship between the concepts 
 
- Based on measured data: In this case we have a set of measures about the system. This information is the input pattern: 
 

M={D1, …, Dm} = {[d1
1, d1

2, …, d1
n], …, [dm

1, dm
2, …, dm

n]} 
 

Where dj
t is the value of the concept Cj measured at time t. In this case, our learning algorithm follows the next 

mechanism: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆∆
∆∆

η+= ++
−

t
j

t
i

t
i

t
j1t

ji
t
ji dd

ddWW  
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where  1t
j

t
j

t
j ddd −−=∆

   1t
i

t
i

t
i ddd −−=∆

   1t
j

t
j

t
j ddd −+ +=∆

   1t
i

t
i

t
i ddd −+ +=∆

 
and η is the learning rate (η<1 to guarantee the convergence to a local optimum). On this way we guarantee the values 
of Wij in the interval [0, 1], where Wij can be W+

ij or W-
ij.  

 
3.2 The Execution Phase 
 
The DRFCM can be used like an associative memory. In this way, when we present a pattern to the network, the network 
will iterate until generate an output close to the information keeps. This phase consists on the iteration of the system until 
the system convergence. The input is an initial state S0= {s1, …, sn}, such as q0(1)=s1, …, q0(n)=s1 and si∈[0, 1] (set of initial 
values of the concepts (S0=Q0)). The output Qm={qm(1), …, qm(n)}is the prediction of the DRFCM such as m is the number 
of the iteration when the system converge. Qm must be analyzed for an expert. During this phase, the DRFCM is trained 
with a reinforced learning procedure. The weights of edges leaving a concept are modified when the concept has a nonzero 
state change (the weight of edge among two concepts is increased if they both increase or both decrease, and the weight is 
decreased if concepts move in opposite directions): 

( t
j

t
i

1t
ij

t
ij qqWW ∆∆η+= − )    (5) 

where ∆qi
t is the change in the ith concept’s activation value among iterations t and t-1.  

 
It is an unsupervised method whose computational load is light. In this way, we take into account the dynamic 
characteristics of the process. The algorithm of this phase is: 
1. Read input state Q0 

2. Until system convergence 
2.1 Calculate q(i) according to the equation (3) 
2.2 Update Wt according to the equation (5) 

 
 
4. Experiments 
 
In this section we illustrate the DRFCM application. A discrete time simulation is performed by iteratively applying the 
equation (3) to the state vector of the graph. At the beginning, we must define an initial vector of concept states, and the 
simulation halts if an equilibrium state is reached. To test the quality of our approach, we compare it with the Kosko FCM 
[7, 8, 14, 15] and with the RFCM [3]. Obviously, the success of a particular model depends greatly on the selection of 
concept nodes and the interpretation of state vectors. 
 
4.1. First Experiment: a simple model of a country 
 
In this first experiment we discuss a simple model to determine the risk of a crisis in a country. Our model of assumptions is 
depicted in Fig. 1. The operative concepts are: 
 
- Foreign inversion (C1): the presence of a strong foreign inversion. 
- Employment rate (C2): The level of Employment on the country. 
- Laws (C3): the presence or absence of laws. 
- Social problems (C4): the presence or absence of social conflict in/within the country. 
- Government stability (C5): a good relationship between the congress, the president, etc.  
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   Inversion

     Laws
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Employment
      Rate
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+

+

+

 -
 -

 
Fig. 1. The RFCM for a simple model of a country 

 
The edge connection matrix (E) for this map is given in table 2. This is an example where the system is non-dynamic, for 
this reason we can applied all methods. 
 

 Foreign 
inversion 

Employment 
Rate Laws Social 

problems 
Government 

stability 
Foreign 
inversion 0 0.8 0 0 0 

Employment 
Rate 0 0 0 -0.6 0.8 

Laws 0.4 0 0 -0.8 0 
Social 
problems 0 0 0 0 -0.8 

Government 
stability 0.6 0 0 0 0 

Table 2. The edge connection matrix for the first experiment 

The table 3 presents the results for different initial states 
 

Input Kosko FCM RFCM DRFCM Iteration 

1 0 0 1 0 1 1 0 1 0 
1 1 0 0 1 0.8 0.6 0.2 0.2 0.8 0.6 0.6 0.2 0.2 0.6 

0.9 0.8 0.1 0 0.8 
1 
2 

1 0 1 1 0 1 1 1 1 0 
1 1 1 0 0 0.8 .0.6 0.8 0 0 0.7 .0.7 0.8 0 0.2 

0.9 .0.8 0.9 0 0 
1 
2 

1 1 1 1 0 1 1 1 1 0 
0.8 .0.6 0 1 0.8 
0.8 .0.6 0 0.8 0.4 
0.8 .0.6 0.8 0.6 0 

0.7 .0.6 0.6 0.7 0.2 
0.9 .0.8 0.9 0.8 0 

1 
2 
3 

Table 3. The results for the first experiment 

 
Clamping two antithetical concepts allows to test the implications of one or more competing concepts. To illustrate, we 
begin by clamping C1 and C4 (S0=(1 0 0 1 0)) – a strong foreign inversion can generate more employment. Despite of the 
foreign inversion, we have an unstable government due to the social problems (the system reaches an equilibrium state of (1 
1 0 0 1)). With S0=(1 0 1 1 0) foreign inversion and social problems remain clamped, but we also clamp the ability to have a 
good law system. The system reaches an equilibrium state of 1 1 1 0 0 – A peaceful country at the social level but one 
unstable government. Next, we test for S0=(1 1 1 1 0).  In our model, the inference process is:  
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S1 = (0.7 .0.6 0.6 0.7 0.2) 
S2 = (0.9 .0.8 0.9 0.8 0) 
 
In this example, we could take advantage of the ability to study the inference process during execution of the simulation.  
That means, we could study the different states of the concepts during the inference process (S1, S2). This example suggests 
the social problem is the main factor to have an unstable government. Obviously, our goal in analyzing this model was not 
to determine policy choices for a country. Rather, we tried to illustrate the advantages of the DRFCM for/in this sort of 
analysis. The nature of the domain is such that a quantitative model is difficult to construct, if not impossible. Resorting to 
qualitative measures permitted us to rapidly construct a model and analyze a variety of alternative policy options. Our 
results indicate that DRFCMs quickly come to an equilibrium regardless of the complexity of the model. DRFCM gives 
similar results than RFCM. 
 
4.2. Second Experiment: Virtual Worlds 
 
Dickerson and Kosko proposed a novel use for FCMs [7, 8, 14]. They employed a system of three interacting FCMs to 
create a virtual reality environment populated by dolphins, fish, and sharks. The use of FCMs proved to be a 
computationally inexpensive means of encoding behavior. [15] refines the Dickerson and Kosko’s approach to be used the 
FCM to model the “soft” elements of an environment in concert with an expert system capturing the procedural or doctrinal 
– “hard” elements of the environment. In their paper, they present a FCM modeling a squad of soldiers in combat. This map 
is shown in Figure 2. This is a good example where we can use a dynamic model to caught ideas like: an army needs 
several battles to know the strength of its enemy before a decisive battle. We introduce these aspects in this experiment 
(previous experiences) during the runtime (for this reason we do not use RFCM in this example). The concepts in this map 
are: 
 
- Cluster (C1):  the tendency of individual soldiers to close with their peers for support. 
- Proximity of enemy (C2): the observed presence of hostile forces within firing range. 
- Receive fire (C3): taking fire from hostile forces. 
- Presence of authority (C4): command and control inputs from the squad leader. 
- Fire weapons (C5): the state in which the squad fires on the enemy. 
- Peer visibility (C6): the ability of any given soldier to observe his peers. 
- Spread out (C7): dispersion of the squad. 
- Take cover (C8): the squad seeking shelter from hostile fire. 
- Advance (C9): the squad proceeding in the planned direction of travel with the intent of engaging any encountered 

enemy forces. 
- Fatigue (C10): physical weakness of the squad members. 
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Fig. 2. Virtual squad of soldiers RFCM 

 
In the hybrid system we suggest, the presence of authority concept would be replaced by an input from an expert system 
programmed with the enemy’s small unit infantry doctrine and prevailing conditions.  Similarly, the proximity of the enemy 
would be an input based on the battlefield map and programmed enemy locations.  Here, however, we give them initial 
inputs and allow them to vary according to operation of the FCM. In addition, during the runtime we introduce results of 
previous battles.  
 

 Cluster Prox. Of 
Enemy 

Receive 
Fire 

Pres. Of 
Auth. 

Fire 
Weapons 

Peer 
Vis. 

Spread 
Out 

Take 
Cover Advance Fatigue 

Cluster 0 0 0 0 0 1 -1 0 0 0 
Prox. Of 
Enemy 1 0 1 0 1 0 0 1 0 0 

Receive 
Fire 1 0 0 1 -0.1 0 0 1 0 1 

Pres. Of 
Auth. -1 0 0 0 0 0 1 -1 1 0 

Fire 
Weapons 0 -0.5 -0.12 0 0 0 0 0 0 0.2 

Peer Vis. 0 0 0 0 0 0 0 -0.7 1 0 
Spread Out -1 0 -0.5 0 0 0 0 0 0 0 
Take Cover 1 0 0 1 -0.7 1 0 0 -1 -1 
Advance 0 1 0 0 0 0 0 0 0 1 
Fatigue 0 0 0 0 -0.5 0 0 0 0 0 

Table 4. The edge connection initial matrix for the virtual word experiment 
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The table 5 presents the results for the initial states 0 0 0 1 0 1 1 0 1 0. 
 

Input Kosko FCM DFRCM Iteration 
0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1 1 0 1 0 

1 1 1 1 0 1 0 1 0 1 
1 0 1 1 0 1 0 1 1 0 
1 1 0 1 0 1 0 0 1 1 
0 1 1 0 1 1 0 0 1 1 
0 1 1 1 0 0 0 0 1 1 
1 1 1 1 1 0 0 1 1 1 

0.2 0.4 0.7 0.6 0.5 0.6 0.6 0.4 0.6 0.4 
0.6 0.6 0.6 0.6 0.5 0.1 0.4 0.6 0.6 0.8 
0.6 0.6 0.6 0.6 0.5 0.1 0.4 0.6 0.8 0.8 
0.8 0.8 0.6 0.6 0.8 0.1 0.2 0.8 1 0.8 

1 1 0.8 1 0.8 0 0 0.8 1 0.8 

1 
2           * 
3 
4           * 
5 
6 
7 

Table 5. The results for the virtual word experiment (* means that we introduce in this iteration results of new battles) 

 
We define the starting state S0=(0 0 0 1 0 1 1 0 1 0) i.e., presence of authority, peer visibility, spread out and advance are 
present, but all other concepts are inactive. We then obtain the discrete time series show on the second and third columns of 
the table 5. The system stabilizes to the state S7 (Kosko model) or state S5 (DRFCM). The introduction of new information 
during the runtime doesn't affect the convergence of our system (we obtain the same result of Kosko). The first * consist of 
clamping the first concept (Cluster) because the soldiers are closed with their peers. The second * clamps proximity of 
enemy, receive fire, and fatigue because that are new conditions that are observed from the environment. This is reasonable 
system operation and suggests the feasibility of FCMs as simple mechanisms for modeling inexact and dynamic behavior 
that is difficult to capture with formal methods. 
 
4.3. Stability 
 
Stability in dynamic systems is typically analyzed through the use of Lyapunov functions. Kosko [14, 15] finds that a 
simpler form of fuzzy systems, the standard additive model, may be checked for stability in terms of the eigenvalues of the 
edge connection matrix.  The standard additive model processes inputs in exactly the same way as FCMs, but does not 
iterate through multiple feedback cycles. It is strictly an “if-then” model of fuzzy systems.  If all the eigenvalues of a system 
have negative real parts, it will achieve some form of equilibrium. Positive real parts indicate instability, and the form of the 
eigenvalues may classify the types of instability. Unfortunately, complex feedback dynamics prohibit this sort of analysis 
for FCMs. But, with our feedback mechanism inside of the DRFCM we can solve this problem. 
 
 

 
Fig. 3: Simple FCM for stability analysis 

 
 
 A B C D E 

A 0 1 1 0 0 
B 0 0 1 0 0 
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C 0 -1 0 1 1 
D 0 0 0 0 1 
E 1 0 0 0 0 

 
Table 6. Simple FCM edge connection initial matrix 

 
 
The edge connection matrix has the eigenvalues 1.255, -0.084±1.408i, -0.543±0.325i, suggesting instability. Instead, using 
our approach given C0 = (0, 1, 1, 0, 0), it reaches the equilibrium state C3 = (0.9, 0, 1, 1, 0.9). 
 
 
5. Conclusions 
 
FCMs are an interesting yet isolated decision support tool. Their implicitly qualitative nature is at odds with general 
practice in the automation of decision support tools. In this paper, we have proposed a dynamic/adaptive FCM based on the 
RNN, the DRFCM. We show fusing the RFCM with a traditional reinforced learning algorithm can yield excellent results. 
The DRFCM may be rapidly adapted to changes in the modeled behavior. It is a useful method in complex dynamic system 
modeling. We do not observe any inconsistent behavior of our DRFCM with respect to the previous FCMs. Our DRFCM 
exhibit a number of desirable properties that make it attractive: 
 
- Provide qualitative information about the inferences in complex dynamic models. 
- Can represent an unlimited number of reciprocal relationships. 
- Is based in a unsupervised learning (based on a reinforced learning procedure). 
- Can model both mediator and moderator relationships. 
- Facility the modeling of dynamic, time evolving phenomena and process.  
- Has a high adaptability to any inference with feedback. 
 
Another important characteristic is its simplicity, the result of each DRFCM’s cycles is computed from the equation (3). 
Most of the computations are intrinsically parallel and can be implemented on SIMD or MIMD architectures. The ease of 
construction and low computational costs of the DRFCM permits wide dissemination of low-cost training aids. In addition, 
the ability to easily model uncertain systems at low cost and with adaptive behavior would be of extraordinary value in a 
variety of domains. We hope we have demonstrated their promise in a variety of areas. 
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