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 Abstract  
 

In this thesis we explore how to utilize a loop cache to relieve the unnecessary pressure placed on the 
trace cache by loops. Due to the high temporal locality of loops, loops should be cached. We have 
observed that when loops contain control flow instructions in their bodies it is better to collect traces 
on a dedicated loop cache instead of using trace cache space. The traces of instructions within loops 
tend to exhibit predictable patterns that can be detected and exploited at run-time. We propose to 
capture dynamic traces of loop bodies in a loop cache. The novelty of this loop cache consists of 
dynamically capturing loop iterations with conditional branches and correlating them to unique loops. 
Once loop iterations are cached in the loop cache, their bodies can be provided by the loop cache 
without polluting the trace cache and without any instruction cache accesses. The proposed loop cache 
includes hardware capable of dynamically unfolding loops such that large traces of instructions are 
accessed in a single loop cache interrogation.  
 
We evaluate our loop cache and compare it against a baseline machine with a larger first-level 
instruction cache. We also consider how the loop cache can compliment the introduction of a trace 
cache by filtering out loop traces that needlessly dominate the trace cache space. We quantify the 
benefits provided by a fetch engine equipped with the proposed loop cache and unrolling hardware.  
In our experiments we explore the design space of a loop cache and associated unfolding hardware and 
evaluate its efficiency to detect independent iterations in loops in SPECint2000, Media-Bench and 
MiBench applications. We show that trace cache efficiency and ILP can be significantly improved 
using our loop caching scheme. This improvement translates into up to 38% performance speedup 
when compared to a baseline machine with a loop cache and no trace cache to a baseline machine with 
no loop cache. Further experiments show up to a 16% speedup on a hybrid machine with loop and 
trace cache compared to a machine with a larger 1 cache and a trace cache. 

 
Resumen 

 
Este trabajo se concentra en el análisis y detección de bucles para incrementar el paralelismo a nivel de 
instrucciones a través de la especulación de visitas enteras a los bucles. En la tesis se comparan las 
técnicas propuestas con otras existentes y se proponen técnicas híbridas que explotan las características 
benéficas de los mecanismos involucrados. Se lleva a cabo un estudio dinámico de las propiedades de 
muchos conjuntos de aplicaciones con el fin de determinar las características óptimas del hardware 
propuesto. Tal incluye una memoria cache especialmente diseñada para el almacenamiento y manejo 
óptimo de instrucciones pertenecientes a los bucles. Proveyendo miles de instrucciones para 
especulación en la memoria cache de bucles se obtienen aceleraciones en la mayoría de las 
aplicaciones con el mismo presupuesto de hardware. Se presenta de forma detallada el estudio 
exhaustivo de técnicas similares así como los detalles del diseño del hardware propuesto. Se justifican 
cada una de las características basadas en estudios dinámicos de las propiedades de las aplicaciones. 
También se analizan posibles formas de proveer mayor ganancia en el rendimiento y se presentan 
alternativas de adaptación del hardware en arquitecturas futuras y en procesadores comerciales 
existentes. 
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1   Introduction 
 
To enable wide-issue microarchitectures to obtain high throughput rates, a large window of instructions must be 
available. A number of techniques have been proposed to support high instruction fetch rates, including compile-time 
and run-time techniques. 
 
Compile-time techniques produce optimized executables that map more efficiently to the underlying microarchitecture. 
One common technique employed is called loop unrolling. The popularity of this technique is related to the high 
instruction-level parallelism that can be extracted from loops. Loops have the property of iterating over the set of 
instructions located within their bodies, thus high spatial and temporal locality is present in these structures. Compilers 
can identify and generate copies of loop bodies and then perform software pipelining, producing better instruction 
schedules and exposing higher levels of instruction level parallelism.  
 
Run-time based techniques apply optimizations while a binary is executing. Hardware techniques can be coupled with 
compile-time techniques to further reduce execution time. Hardware strategies have the ability to apply optimizations 
that would not be possible at compile time. Many of these optimizations rely on knowledge of the run-time dynamics of 
the program. For instance, in loops where the number of loop iterations executed can be deduced at compile time, run-
time loop unrolling can be much more effective. Loops that contain ill-structured bodies pose problems for traditional 
compilation techniques; in such a case, dynamic loop optimization is needed. 
 
From studying a range of general-purpose workloads we have observed that, on average, half of the loops can not be 
optimized by the compiler. This statistic highlights the potential benefits of capturing loop behavior at runtime and 
using this information to dynamically unroll loops in hardware. 
 
 
2   Motivation  
 
Hierarchical memory systems are used to reduce the performance gap between processor speed and memory speed. 
During the execution of a program, data and instructions are transferred between different levels of the memory 
hierarchy. When an address is not found in a particular level (i.e., a miss occurs), the next higher level is interrogated 
for the address. Cache misses can occur for a variety of reasons including first time access, context switches and 
dynamic control flow changes. In the best case, a cache miss is resolved by the next closest level in the hierarchy. 
However, in some cases, misses can involve all levels of the hierarchy. Therefore, accesses to data and instructions can 
have a variable-length latency that is a function on the number of memory levels traversed.  
 
Hardware-based and compiler-based strategies make use of the inherent temporal and spatial locality present in 
programs to reduce the number of cache misses [1, 2, 3]. In this thesis we study hardware-based loop caching 
techniques that improve instruction caching efficiency by increasing the fetch bandwidth of the processor front end. 
 
 
3   Exploiting Loops Locality  
 
Loops are responsible for the majority of the execution time in many classes of applications. Scientific applications can 
be characterized as spending up to 90% of their execution time in one or a few loops [9]. Compile-time loop unrolling 
[10, 11] is commonly used in scientific programs, and can obtain large speedups. In general-purpose applications (e.g., 
SPECint programs), many loops are present, but many of these loops have characteristics that make them difficult to 
unroll at compile time. 
 
By studying the loop characteristics of different workloads, we are able to identify specific features that can expose 
higher degrees of instruction level parallelism. Some key observations that we have found include that we can 
accurately predict the number of loop iterations completed across multiple visits to the same loop and the correlation of 
the pattern of conditional branch outcomes leading up to the loop can serve as an accurate predictor of whether we will 
enter the loop.  
 
We have also found that there is good correlation between the branches visited during the execution of a single loop 
iteration and the number of iterations that are completed. Additional correlation patterns exist for nested loop patterns, 
where the number of iterations performed by the outer loop can be used to predict the number of executions of the 
associated inner loop. 
 
To perform hardware-based loop unrolling, we must have both the ability to capture past loop behavior, as well as a 
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way to capture the instructions present in the loop body. For these purposes, we propose to use a hardware-based loop 
predictor and a hardware-based loop cache. The loop predictor will capture dynamic branch and loop execution such as: 
the number of iterations executed during a loop visit and the path followed during each iteration.  
 
By capturing this information dynamically, an entire loop’s execution can be speculatively loaded into the instruction 
window. Hence, this mechanism permits building an instruction window containing thousands of instructions. This has 
the added effect of exposing higher levels of instruction level parallelism 
 
 
4   Loop Caching Hardware  
 
The hardware to identify a loop body consists of a comparator to detect a negative branch displacement and a stack-
based mechanism called the loop stack. At commit time, after loop entry has been detected, the loop’s associated loop 
information is pushed onto the loop stack. As the loop iterates, the loop stack will be updated with path-in-iteration 
information for the loop. This dynamic information includes the per-iteration in-loop branch history and the number of 
completed iterations per visit. 
 
The outcome of every branch executed within a loop iteration is recorded in a loop prediction table. At the termination 
of a loop visit, the loop prediction table holds the complete branch history for all iterations completed during the prior 
loop visit. Previous work on loop characterization showed that most loops tend to traverse a limited set of paths during a 
visit, and that these patterns persist over future visits to the loop [15]. 
 
Therefore, by recording this set of paths dynamically, we can speculatively generate the entire loop visit, allocating 
dynamic loop traces in our loop cache. The key observation made is that dynamic loop behavior can be uniquely 
identified by tracking information for each (loop head, loop tail) pair. This characteristic allows us to track the behavior 
of hot loops in a small, fast, loop cache lookup table.  
 
The information in the loop prediction table is used to unroll 

1 
the loop in the loop cache. The number of predicted 

iterations is used as an upper-bound on the number of times that the loop body is unrolled. The collected paths-in-
iteration information is used to build traces of instructions to be executed during each iteration.  
 
Figure 1 shows how the loop prediction table is used to capture path-in-iteration information. The path-to-loop register 
correlates the last n visited branches to the head of a loop. The address of the closest branch outside of the loop body is 
XOR’ed with the path-to-loop history to index into the loop prediction table.  
 
A tag is maintained in the loop prediction table entry, to prevent any aliasing from occurring in the table (aliasing can 
lead to mispredictions). A loop is unrolled if the predicted number of loop iterations for the associated visit is larger 
than 1. 
 
Once dynamic loop behavior is captured, instructions can be allocated in the loop cache. The hardware initiates a 
prediction by searching the loop prediction table. When a loop is found in the table, we search for a corresponding entry 
in the loop cache .Figure 2shows the hashing mechanism used to interrogate the loop cache.  
 
The loop table provides the head and the tail addresses for the loop of interest. Then, these fields are XOR’ed to 
produce a tag that is matched against existing tags in the loop cache lookup table. If a match is found, the loop cache 
lookup table provides the starting address in the loop cache where the loop has been allocated.  
 
 
 
 
 
 
 
 
 
 
 
1 Note that we use the term unrolling here rather liberally, meaning that we can produce multiple iterations through a loop body that 
may differ upon each iteration.  
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Fig. 1. Indexing the loop prediction table and path-in-iteration table 
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Fig. 2. Interrogating the loop cache. Loop cache access uses a 2-level table structure, first generating a tag to interrogate the loop 
cache lookup table, which then produces an index into the loop cache Loop cache 
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Fig. 3. An unrolled loo  the loop cache 
 

hen new loops need to be allocated in the loop cache, the loop cache lookup table returns the first unused address. In 

igure 3 shows an unrolled loop body after having obtained the loopid (head and tail), number of predicted iterations 

.1. Microarchitectural Features for Loop Caching  

ur loop caching mechanism was adapted to supply an out-of-order superscalar microprocessor. To evaluate the design 

igure 4 shows the organization of the proposed fetch engine. The fetch mode flag enables one of the three cache 

p visit in

W
the case that the loop cache lookup table is full or there is insufficient space available for a loop in the loop cache, LRU 
replacement is used. 
 
F
and paths-in-iteration from the loop prediction table (these are included in the loop cache control box). For simplicity, 
we show the body of the predicted loop as being allocated in the loop cache. The dashed lines indicate the targets of the 
branches inside the body. The loop cache contains four iterations of this loop. Each box represents a different iteration. 
The instructions are fetched according to the path-in-iteration information. In this example, our loop body contains four 
branches. Inspecting the first unrolled iteration of the loop, branches b0, b1, b2 and b3 are predicted as: 0, 1, 1, 0 (0: not 
taken, 1: taken) respectively. These instructions are shown in the leftmost column at the top of the loop cache. 
Similarly, the 3subsequent iterations of the loop are unrolled. Instructions are organized in the loop cache according to 
their dynamic path (very similar to how a trace cache caches traces). Finally, the instructions are sent to the dispatch 
queue, and from there they are processed by the other pipeline stages.  
 
4
 
O
space for our loop cache, we developed two models. First, we compare a baseline design that provides only an 
instruction cache to a system that adds a loop cache. In the second model, our loop cache is integrated with a trace 
cache, providing a hybrid fetch engine. The purpose of studying this hybrid design is to determine how much a loop 
cache can benefit a trace cache.  
 
F
entities. Depending on the activated entity, instructions will be sent to the fetch queue through an arbitrated tri-state bus. 
This bus width is equal to the size of the fetch queue.  
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Fig. 4. Multiple source fetch engine 
 

struction fetching is initially set to instruction cache fetch mode. In parallel to instruction cache fetching, traces are 

uring fetch, the loop cache lookup table is interrogated to detect whether a loop is going to be visited. If a loop entry is 

nce in loop cache fetch mode, we return to trace cache fetch mode or instruction cache fetch mode on either of the 

   Experimental Methodology 

he loop caching hardware is implemented for a high performance out-of-order issue superscalar processor with 

very entry of the loop prediction table occupies 120Bytes (112 bytes to capture the path-in-iteration information of up 

he proposed issue and fetch rates are equivalent to those proposed in clustered architectures [17]. Every trace cache 

 
In
constructed in the trace cache fill unit. Once traces have been built in the trace cache, the fetch engine interrogates the 
trace cache and switches to the trace cache fetch mode if a valid trace is found. Similarly, once loops are detected 
during instruction fetch, history is recorded in the loop cache.  
 
D
detected, then a loop entry flag is set. Later, if at any time the trace cache mispredicts a trace and the loop entry flag is 
enabled, then the fetch mode is switched to the loop cache. If the flag is not set, then fetch mode is directed to the 
instruction cache.  
 
O
following events: a loop completes a visit, or the loop cache encounters a misprediction. We will switch to trace cache 
fetch mode as long as we can find a valid trace for the current instruction stream. Otherwise we will return to instruction 
cache fetch mode 
 
 
5
 
T
speculative execution. The Simplescalar [16] version 3.0c for the Alpha EV6 architecture was used. The core 
configuration of the machine utilized for the simulations and the parameters for the loop unrolling hardware are shown 
in table 1. 
 
E
to 64 iterations per loop visit and up to 8 branches per path-in-iteration, and 8 bytes to hold the tag, loop head and loop 
tail addresses information).  
 
T
entry holds 16 instructions, history for 3 branches and address of next instruction when the last instruction in the trace is 
a taken branch. To hold this information are required 16*4Bytes + 3bits + 32bits per entry. The total space of the trace 
cache adds up to 133888 Bytes.  
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PARAMETR SIZE PARAMETR SIZE 
Lo 4864 B Loop 1216 B op Pred. table  Stack 
Path-to-loop length er op pred. table 8 Bits Pattern Regist Log2 (lo

size) 
Loop Cache Size 8 KB Pathinith Branches 8 
Loop Cache lat. 1 cycle  instrs IFQ 16
Bimod branch pred. ag Branch Pred. 4 K 2lev G 4K 
Comb. Branch pred. 4 K Miss lat. 3 cycles 
BTB 1 K RAS 8 entries 
Decode Width idth 16 Issue W 16 
Commit Width 16 I-Window 256 
LSQ 128 e nries Trace Cach 2K e
L1 Data Cache  32B, 2-way, LRU 2-way, LRU 16K, L1 I-cache 16K, 32B, 
L1Cache lat. 1 Cycle L2 Data Cache, I-Cache 2M, 64B, 4-way, LRU 
L2 Latency 10 cycle Memory Lat. 250, 2 
Memory Bus Width 8 B Memory ports 4 
INT ALU units 16 INT Mult/Divs 8 
FP ALU units 8 FP Mult/Divs 4 

 
lling Hardware DTable 1. Loop Prediction and Unr esign Parame s 

 

.1 The Benchmarks  

able 2 includes information of the set of benchmarks used in our evaluation. We have chosen these benchmarks 

SUITE NAME INPUT DYNAMIC DESCRIPTION 

o ter

 
 
 
5
 
T
because they contain loops with different properties. Columns contain bench mark suite name, name of application, 
input dataset, number of dynamic instructions and description of the application. 
 
 

INSTRS 
MiBench dijkstra Input.dat 2 Shosrtest path 76M 
MiBench gsm Large.au 1000M ing Speech transcod
MiBench Patricia  Large.udp 477M A Patricaia Trie 
MiBench fft Large (8 3278)  245M FFT computation
MiBench typeset Large.out 632M Typesetting tool 
MediaBench e.pgm on epic Test. Imag 66M Image data compressi
MediaBench g271 Clinton.pcm 415M n G.721 voice comprenssio
SPECint2000 vpr Test 3B Placement and routing 
SPECint2000 gzip .source  B Smred 1.66 Data compression 
SPECint2000 gcc Test.ccp.i 1.99B C compiler 
SPECint2000 bzip2 Smred.source ion 2.8B Data Compress
SPECint2000 parser Smred.in 214M Word processor 
SPECint2000 twolf Test 218M Placement and global 

 
Table 2. Benchmarks from MiBench, MediaBench and SPECint2000 
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Fig. 5. Prediction accuracy of entering a loop using path-loop correlation

 

   Results 

.1 Evaluation of the Loop Prediction Hardware  

efore we present performance numbers, we first want to look at the accuracy of the different components described in 

igure 6 indicates that for most of the benchmarks, we can correctly predict the number of iterations per visit 60%of the 

 

 
6
 
6
 
B
Section 5. First, we look at how well the hardware can predict a visit to a loop by using path to loop information. 
Second, we look at how accurately we can predict the number of iterations per visit. Third, we look at how well we can 
predict paths-in-iteration for each loop iteration. In Figure 5 we look at how effective the path-to-loop pattern can be 
used to predict a loop visit. Our results are computed on a per loop visit basis. In more than half of the benchmarks we 
can predict an entry into a loop body 60% of the time, and in 12 out of 13, we predict entry accurately only 50% of the 
time. At first glance this would seem to be a disappointing result. If the entry branch into a loop is not predictable, the 
associated loop is not a good candidate for speculation. However, we observed that entry branches that exhibit very 
high predictability (above 90%) are those that complete the largest number of iterations, and so contribute to a majority 
of the executed instructions. Thus, the path-to-loop pattern is a very good predictor for identifying hot loop visits (a key 
for obtaining good performance).  
 
F
time. In some cases we observed that loops that possess unpredictable patterns tend to change their behavior on every 
loop visit. The results shown here include loops with one or two iterations. These loops are difficult to predict since 
they do not repeat enough times to warm up the predictor. For speculation purposes, we should avoid caching these loop 
bodies.  
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Fig. 6. Prediction Accuracy of Number of Iterations in a Loop Visit. (Results are computed on a per visit basis) 
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The third characteristic we studied was the predictability of the branches executed during an entire loop visit, which is 
shown in Figure 7. Even if a single branch is mispredicted, we treat the entire path-in-iteration prediction as wrong. To 
implement this prediction, a combined predictor was utilized. This predictor uses branch patterns to predict path 
transitions between neighboring iterations and a two-bit confidence counter to decide whether to change the prediction 
of individual branches in a path. Next we evaluate the performance benefits of using a loop cache. 
 
6.2 Loop Cache Performance  
 
We compare a machine with a loop cache and an 8KB L1 instruction cache, with a baseline machine with only a 16KB 
L1 instruction cache. We double the size of the L1 instruction cache in order to compensate for the added space for the 
loop cache. Figure 8 shows the speedup obtained by the loop cache over the baseline machine. The benchmarks in 
which larger speedups were obtained are characterized by a smaller number of dynamic loops with predictable patterns 
[15]. Significant speedups in IPC were obtained in: fft, vpr, and bzip2.Our loop cache machine improves performance 
across all benchmarks. In the next section we compare the performance obtained for a machine with only a trace cache 
to a machine with an integrated hybrid fetch engine (loop cache + trace cache). 
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Fig. 7. Prediction Accuracy of path-in-iteration. (Results are computed on a per-iteration basis) 
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Fig. 8. Comparision of Basline and Loop Cache Machines 
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Fig. 9. Distribution frequency of committed instructions 

.3 Performance of a Hybrid Fetch Engine Machine 
 
Next, we want to evaluate how a loop cache cans benefit a trace cache. Besides capturing the IPC for this hybrid 
configuration, we also want to understand what percentage of the committed instruction stream is provided by a loop 
cache, and how much is provided by the trace cache. In Figure 9 we show the breakdown of the fetch sources for every 
committed instruction. As expected, the trace cache captures most of the instructions, since it can also cache 
instructions outside of loops. The loop cache is capable of caching loops that exhibit a changing behavior; these 
branches account for approximately 10% of loop executions.  
 
Instructions that are not provided by either of the mechanisms are supplied by the L1 instruction cache. A good example 
of this is observed in gcc, which includes a significant number of indirect branches out of loops.  
 
Lastly, we evaluate an architecture possessing a Hybrid fetch engine and compared it to a machine with a trace cache. 
The results are presented in Figure 10. We observed significant performance improvements in those benchmarks that 
have some predictable loops with large iteration counts and with in-loop branches that have more stable behavior (e.g. 
gsm and bzip2). For the benchmarks where our mechanism showed only small benefits or slowdown (e.g. epic and gcc), 
we found that there were only a limited number of loop bodies with a dynamically changing branch history pattern. 
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Fig. 10. Comparison of a Trace Cache Machine to a Hybrid Fetch Engine Machine 
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7   Conclusions  
 
Our loop caching hardware effectively exploits the temporal and spatial locality present in loops. We have shown that a 
loop cache can signficantly improve instruction level parallelism. We have also seen that a trace cache can obtain more 
benefit by being coupled to a loop cache system. We developed our prediction strategy based on a thorough study of 
loop-based behavior. 
 
This has led us to carefully consider the sensitiving of our design to various design parameters. We feel that main 
contributions of our work are to provide for a simple hardware implementation, while also considering the interaction 
between other aggressive instruction fetch mechanisms. In future work we will look to smarter steering algorithms that 
can utilize confidence to suggest when to redirect instruction fetching from either element in our hybrid scheme.  
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