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Abstract

A method for numerical solution to the advection-diffusion-reaction equation in unbounded domains is
developed. The method is based on the concept of artificial boundary conditions (ABCs), and employs
the techniques of time and dimensional splitting of the partial differential equation coupled with do-
main decomposition of the original infinite space. The essentials of the method is that it is applicable
for solving a wide class of mass transportation problems in domain of drastically complex geometries,
realisable from the computation standpoint, and provides a highly accurate solution at minimal compu-
tational efforts.

Keywords: Artificial (numerical) boundary conditions, advection-diffusion-reaction equation, split-
ting, domain decomposition.

Resumen

Se desarrolla un método para la solucion numérica de la ecuacion de adveccion-difusion-reaccion en
dominios infinitos. El método se basa en el concepto de condiciones de frontera artificiales (CFAs), y
utiliza las técnicas de escision del operador por tiempo y por espacio junto con la de descomposicion
de dominio para el espacio original infinito. Los esenciales del método son lo que es aplicable para dar
solucion a una amplia clase de los problemas de transporte de masa en dominios de la geometria dema-
siado compleja, realizable desde el punto de vista numérico, y ademas proporciona una alta precision
de la solucién con minimos esfuerzos computacionales.

Palabras clave: Condiciones de frontera artificiales (numéricas), ecuacion de adveccion-difusion-
reaccion, escision del operador, descomposicion de dominio.

1 Introduction

While numerically solving a differential problem originally formulated in an unbounded domain as a Cauchy prob-
lem, one has to reformulate it as a boundary value problem (BVP) for a finite computational domain. Therefore, the
question of imposing adequate boundary conditions on the artificial boundary arises.
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The simplest approach is to place the boundary rather far from the region of interest and impose the known
boundary condition at infinity there. Obviously, the main disadvantage of this approach is wasteful use of computer
resources; in particular, the calculation time increases dramatically, especially when solving multidimensional prob-
lems. To minimise the computational efforts, one can employ the nested grids method when the solution is recalcu-
lated sequentially from a coarser grid onto a finer one. However, this introduces an essential error into the final solu-
tion.

Approximately from the 1970’s there has been developed the approach of artificial boundary conditions (ABCs)
(Givoli, 1992; Tsynkov, 1998). Within the framework of this approach it is supposed that outside the region of inter-
est the problem admits the exact or approximate analytical solution. This simplification permits reducing the con-
struction of boundary conditions to seeking for a solution in the exterior domain, which is further used as an ABC.

All the existing methods of constructing ABCs can be classified in two groups.

Methods of the first group, so-called global, lead to exact artificial boundary conditions, which are, however,
unrealisable from the computational point of view. The latter is because the standard apparatus for constructing exact
ABC:s is integral (Fourier and/or Laplace) transforms, and so, the boundary condition is represented as a non-local
integral relation between the function to be sought and its derivative(s). Moreover, many of these methods are very
exigent to the shape of artificial boundary.

Methods of the second group, so-called /ocal, on the contrary, provide algorithmically simple boundary condi-
tions not so exigent to the geometry of computational domain. Nevertheless, these ABCs are often of an unsatisfac-
tory degree of precision.

It is important to emphasise that for solving complex differential equations that include several (two and more)
different physical processes, advanced methods of constructing artificial boundary conditions are required. In par-
ticular, these should take into account the mathematical specifics of each of the processes to be modelled, which will
allow more accurate treating the solution at the artificial boundary. A new method satisfying the aforesaid require-
ments is described further in this paper.

2 Construction of the ABCs
2.1 Problem Formulation

Consider the two-dimensional mass transportation problem

0
a—f+V-(U<p)—V-(Ws0)+0’<p=f, (1
ou Ov
—+==0, 2
dr 0Oy )
@l = 9(z,9), 3)
lim ¢=0. 4)
12+y2~>+9o

Here ¢ = ¢(z,y,t) is the function to be sought, U = (u(z, y,1),0(z,,1))" is the vectorial field of velocities,

= p(z,y,t) >0 is the diffusion coefficient, o = o (z,y,t) > 0 is the absorption coefficient, and f = f(z,y,t)
denotes the sources. We want to find the solution to problem (1)-(4) in a bounded convex domain €2 with a piece-
wise smooth artificial boundary I". Upon this we assume that outside Q = QUT the parameters u, v and p are

constant, while the sources f are absent (cf., e.g., Gustafsson, 1982, 1988; Halpern, 1986, 1991; Tsynkov, 1995,
1998, 1999; Yudin, 1982, 1984).
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2.2 Time Splitting
We split (1) into the three equations

Oy, a(“%) 8(1}501)
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corresponding to the advective, diffusive and absorptive processes. (Without loss of generality the function f can be
written on the right-hand side of (7) only.) Then the solution to the ™ problem is the initial condition for the
(i41) ™ one, ie.,

<‘01|t=[) = g ("'K7 y) > (8)
902'1‘,:0 =% (I’ Y t)|r:7 > (9)

(10)

c»03|t:0 =¥ (l“,y,t)

t=7

Here 7 is the timestep used in the numerical calculations. It can be shown that the sequential solution to problems
(5), (8), (6), (9), and (7), (10) is equivalent (in the small) to the solution to original problem (1)-(4).

2.3 Advection
Consider the transport equation

dp  O(up) O(vp)
ot ox Ay =/ (b

subject to conditions (2)-(4). (For the sake of generality, hereafter the numerical subscripts at the function ¢ are

omitted, while the sources f are distinct from zero on the right-hand side.) In accordance with the technique of do-

main decomposition, we represent the plane R” as a union of a convex interior (denoted as D, ) and exterior (de-

noted as D, ) domains such that D, > Q, D, YR\ Q (Fig. 1).

Then we consider the exterior problem. On the set 0D, déf{(x,y) €0D, : U-n <0} C D, its solution is de-
termined by the formula

= g(z —ut,y —vt)

QDE (fL', y? t) (:n,y)e@l)f > (12)

(z,y)edDy

which due to the requirement of continuity of the function ¢ on 0D, leads to the exact local ABC for the interior
problem

o; (z,y,1) o g(z —ut,y — ot) - (13)

(z.y

Here the subscripts I and E correspond to the interior and exterior problems, respectively, D, is the inflow part
of the boundary 0D, , and n is the outward unit normal to 9D, .
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Constructing an energetic Hilbert space with an adequate norm, it can be proved that the interior problem with
boundary condition (13) is well-posed in the sense of existence, uniqueness and stability of solution (Filatov).

Fig. 1. Decomposition of the plane R’

2.4 Diffusion
Consider the diffusion equation

% u2)- a[ ‘9*"} f (14)
t Oxz\ 0z) OJy| Oy

with conditions (3), (4). Similarly to the advective problem, we decompose the infinite plane and solve the exterior
diffusive problem: applying the Laplace transform in time, coordinate splitting and spline interpolation, we construct
an infinite family of approximate solutions of the form

(d— 1/2 m m

xy+z V”‘ ,)

m=1

PE,d (xa y,t) (15)

(@y)eDy

(z,y)eDp

Here d > 3 is the spline order (odd). This leads to the infinite family of local approximate ABCs for the interior
problem

(d— 1/2 mtm

(z,y)+ Z Vz'” (z,y)

m=1

©,; (fL', Y, t>|(_1;,y)€@1-)1 ~ (16)

(z,y)edD;

One can make sure that boundary conditions (16) are asymptotically correct (or admissible) in time with any finite
timestep 7 (Filatov). For each odd d > 3 for the corresponding error we derive the estimate

(dlv 12
) (f) Z

les| < 24

] (17
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where ¢, = max { ,

(y)edD,

} and ¢, =
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Analogically, in an energetic Hilbert space and a specially chosen norm, it can be demonstrated that for each
odd d > 3 the interior problem with the corresponding boundary condition (16) is well-posed in the sense of exis-
tence, uniqueness and stability of solution.

2.5 Reaction

The absence of spatial derivatives in (7) does not require imposing boundary conditions when solving the absorptive
subproblem.

3 Numerical Results

3.1 Preliminaries
In the numerical experiments as the sets  and D, we considered the domains Q =[0,1]x[0,1] and

D, =[-0.5,1.5]x[—0.5,1.5] . The experiments were performed for the following three problems: the purely advec-

tive problem, the purely diffusive problem, and the general advection-diffusion-reaction problem. For each of the
problems the experiments can be classified in the three groups: in the first two groups the problems were solved in

the domain D_] ; upon this, the parameters of the model were varied in some ranges being constant and non-constant,

respectively; in the third group the problems were solved without ABCs for a fixed set of the parameters in domains
with increasing sizes from [—2,3]x[—2,3] to [—14,15]x[—14,15]. The aim of the experiments of the first two

groups was to confirm the functionality of the ABCs constructed in the previous chapter; the experiments of the third
group were performed in order to substantiate the approach of ABCs from the point of view of saving of computer
resources.

The spatial grid steps were Az = Ay = 0.05, the time of modelling was T = 12 . The numerical solutions

were compared with the appropriate “exact” ones computed in the square S = [—2,3]x[—2,3]. When solving the

purely advective and diffusive problems, the timestep for the “exact” solution was equal to 7 = 0.001, while
for the general advection-diffusion-reaction equation it coincided with 7™™ = 0.005, 0.004, 0.003 . Such a practice
of comparison of results is typical in the literature (Gustafsson, 1988; Halpern, 1986). The initial condition was cho-
sen to be zero, the sources were computed by the formula f(z,y,t)= f(t)f(z,y), where f(t)= 0.6t% 07
(cost+1), f(z,y)=0.25[1—cos4m(z —0.35)][L — cosdm (y — 0.1)], (z,y) € [0.35,0.85]x [0.1,0.6]. Such a function
reflects the behaviour of real sources used in practical modelling.

3.2 Advection

To discretise the differential operator of equation (11), we employed the explicit conditionally stable first order up-
wind finite differencing scheme (Press ef al., 1992). On the artificial boundary the solution was computed by formula

(13). For each of the experiments we computed the absolute errors in the norms of the spaces L, (ﬁ) and

L ([@x(0,T)): g = ™ —

(num) (exact)

Q

L@’ Saxo.r) ”(‘0 L, (@x(0,7]) ©

Figures 2—4 correspond to the first group of experiments (the field of velocities U = U“"" is constant). In
Fig. 2 we plot the variation of the & -error in time at U = (0.3,0.24) and 7" = 0.005. It can be easily verified
that the behaviour of the function e; = ¢, (¢) qualitatively repeats the behaviour of the function f(¢). Figure 3

shows the dependence of the mean error €auor ON modulus of the field U . One can see that for U less than some

critical U” the quantity = increases, while it decreases when U > U”. In other words, in case of U < U" the

0,7

error between the numerical and “exact” solutions is simply growing with the growth of U due to the temporal dis-
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cretisation of the problem, while for U > U it is additionally transported (or “pushed”) rapidly out of the region 2
under the essential influence of the advective process itself.
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In Fig. 4 we plot the dependence of the mean e . -error on the timestep 7"

(0] . Extrapolation of the curve to

(num) (exact

the point 7 = 7 = 0.001 yields zero value of the error, which confirms that expression (13) is the exact arti-
ficial boundary condition.
Figure 5 represents the portrait of the field U™ = U™ (z,y) for the second group of experiments (the general

field of velocities U = U™ + U"" is variable; upon this, the vector-function U satisfies the finite differencing
analogue of condition (2)). The results are almost identical (the difference is about 4% ) to those presented above.

Consequently, boundary condition (13) “catches” well variations of the parameter U in the region of interest Q.
Figure 6 corresponds to the third group of experiments (we compared the calculation time required for solving
the problem without ABCs in a series of domains with increasing sizes and when solving it with the ABC in the do-

main D_1 ). As it follows from the graph, the behaviour of the curve is of a quadratic character with respect to linear

size of the computational domain. This determines the importance of using ABCs from the point of view of saving of
computer resources when solving the purely advective problem.
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Fig. 6. Dependence of the calculation time
on linear size of the computational domain

3.3 Diffusion

To discretise the differential operator of equation (14), we employed the explicit conditionally stable “Forward Time,
Centred Space” finite differencing scheme of the first order in time and the second order in space (Press et al., 1992).
We investigated the first three boundary conditions d = 3, 5, 7. To compute the spatial derivatives of orders 2, 4 and

6 in expression (16), we used the discrete exponential extrapolation of the function ¢ beyond the artificial boundary:

(ppﬂ
QOiP :U_pv pENa (18)

1

and employed the central finite differences of second order (Korn, 1968). We compared the solutions in the norms:

(num) ___(ezact)

€op; .0 = "%

(mum) ___(ezact
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const

Figures 7-9 correspond to the first group of experiments (the diffusion coefficient p = p is constant). Fig-

ure 7 shows the variation of the ¢,,, ,-error in time at y = 0.05, 7" = 0.005 and d = 3. One can see that there

is a growth of the error in time caused by an inaccuracy of extrapolation (18). Therefore, that extrapolation should be
used for short time modelling only, when the error is within acceptable limits. In Fig. 8 we plot the dependence of
the mean ¢,), ., , -etrors on the diffusion coefficient.
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Although ¢,,, 7, decrease when increasing d , the benefits in precision are rather small and observable only for

= 0.05. Also, it can be seen that when g > 0.01 the character of the dependence is not polynomial, which con-
tradicts estimate (17). This means that for large values of [t a more accurate extrapolation than (18) is required for
calculating the spatial derivatives in expression (16). Figure 9 shows the dependence of the errors on the timestep.
Again, quasi-constancy of the errors contradicts estimate (17), which confirms that the influence of the inaccuracy of
extrapolation (18) is essential.

In Fig. 10 there is represented the portrait of the function p™" = p

var

(z,y) from the second group of experi-
ments (the diffusion coefficient p = p™™ (1+ p"") is variable). The corresponding results differ very little (the dif-

ference does not exceed 4% ) from those shown above, which indicates the sensitivity of boundary conditions (16) to
variations of the parameter £ in the domain .

The results of the third group on solving the diffusive problem are analogous to the corresponding advective
ones. This determines the importance of the approach of ABCs for the diffusive problem.

3.4 Advection-Diffusion-Reaction

For discretisation of the advective and diffusive terms of the mass transportation equation we used the explicit up-
wind and “Forward Time, Centred Space” finite differencing schemes, respectively. The numerical solution was
computed by the split scheme, while for the “exact” solution we employed the unsplit differencing scheme. We con-

sidered the case when the influence of diffusion is negligible out of the domain E in comparison with the advective
component, which is valid for many practical problems (Bayliss and Turkel, 1982; Incropera and De Witt, 1996;
Marchuk, 1986; also Herrera, 1988, 1989).

There were tested the diffusive ABCs corresponding to d = 3,5, 7 ; for the “exact” solution on the boundary

0D, we imposed the ABC corresponding to d = 9. For the advective process there was imposed ABC (13) with ab-
sorption. The solutions were compared in the norms of the spaces L, (ﬁ) and L, (ﬁ x (0, T]) .

const

Figures 11-14 correspond to the first group of experiments (the field U = U™ and the coefficient =
are constant). In Fig. 11 we show the variation of the ¢ -error in time at U= (0.3,0.24), u=0.05,

7" =0.005 and d = 3. It can be seen that the behaviour of the function &; , =&, , () is similar to the behav-

iour of the temporal component of the source function. In Figs. 12 and 14 there are shown the dependences of the
mean &g, , -€ITOrs on modulus of the field of velocities and on the diffusion coefficient, respectively. As it fol-
lows from the figures, when U >> u the order d of the diffusive ABCs does not affect the precision of the solution;
however, it does affect it when the influences of the processes are comparable. This fact indicates the importance of
using diffusive ABCs of high orders in case of small velocities. In Fig. 13 we plot the dependence of the mean

€qiu(o.1) 4 ~CTTOTS ON the timestep 7™ . One can easily see that decreasing the step yields decreasing the error, which
together with the data of Fig. 11 (the absence of divergence of the numerical solution from the “exact” one) indicates

the convergence of the solution to the split BVPs to the solution to the original, unsplit boundary value problem.
The results of the second group (the field U = U™ + U™ and the coefficient p = p“" (14 p"") are vari-

able) are close (the difference is not greater than 5% ) to the previously obtained ones. This means that boundary
conditions (13), (16) “catch” well variations of the parameters U and s in the domain .

The results of the third group are analogous to the corresponding advective and diffusive ones, which substanti-
ates the importance of the approach of ABCs when solving the general mass transportation problem.

3.5 Non-Square Computational Domain
Aside from the domain Q = [0,1] x[0,1] we solved the advection-diffusion-reaction equation in the non-square do-

main € shown in Fig. 15. The results of these experiments differ rather little from those analysed above, which con-
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firms the functionality and accuracy of the constructed ABCs, as well as indicates their sensitivity to the shape of ar-
tificial boundary.
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3.6 Experiments with Real Data

A few series of experiments with real data were also performed to test the developed method. Specifically, we mod-
elled the propagation of a polluting substance in the atmosphere of Mexico City. As the pollution sources, we con-
sidered the contribution of the city traffic in five principal streets. The data were obtained from the archives of
RAMA (Automatic Net for Atmospheric Monitoring) of the Mexico City Government.

Fig. 16. Experiments with real data: numerical solution (left) and real situation (right)

Figure 16 shows an example of numerical modelling and the real situation (the results are averaged). It can be
seen that the numerical solution qualitatively repeats the data of observation. In particular, one can see a maximum in
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the city centre (Fig. 16, left) that corresponds to the two maximums in Fig. 16, right. Yet, there is a family of isolines
in the west observed in both figures (with some local maximums in Fig. 16, left, as well). Thus, the method can be
used for accurate simulation while numerically solving a wide range of practically important problems described by
the mass transportation equation. We believe the method can further be investigated for a wider class of shapes of ar-
tificial boundaries.
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