
Computación y Sistemas Vol. 9 Núm. 3, pp. 203-226
© 2006, CIC-IPN, ISSN 1405-5546, Impreso en México

MONIL Language, an Alternative for Data Integration
El Lenguaje MONIL, una Alternativa para la Integración de Datos.

Mónica Larre1, José Torres-Jiménez, Eduardo Morales2, Juan Frausto-Solís and Sócrates Torres1

1ITESM Campus Cuernavaca
Av. Paseo de la Reforma 182-A Col. Lomas de Cuernavaca

{monica.larre, juan.frausto, socrates}@itesm.mx
2Instituto Nacional de Astrofisica Optica y Electronica

Luis Enrique Erro 1, Sta. Ma. Tonantzintla, 72840 Puebla
emorales@inaoep.mx

Article received on September 07, 2001; accepted on January 21, 2005

Abstract

Data integration is a process of retrieving, merging and storing of data originated in heterogeneous sources of data.
The main problem facing the data integration is the structural and semantic heterogeneity of participating data.

A concern of research communities in computer sciences is the development of semi-automatic tools to assist the user
in an effective way in the data integration processes.
This paper introduces a programming language called MONIL, as an alternative to integrate data by means of design,
storage and program execution. MONIL is based on the use of meta-data, conversion functions, a meta-model of
integration and a scheme of integration suggestions. MONIL offers to the user a dedicated work environment with
built-in semi-automatic tools supporting the integration process in three stages.
Keywords: data integration, integration language, databases, metadata.

Resumen

La integración de datos es el proceso de extracción, mezcla y almacenamiento de datos provenientes de fuentes de
datos heterogéneas. El problema principal que enfrenta la integración de datos es la heterogeneidad estructural y
semántica de los datos que participan.

Una preocupación en las comunidades de investigación de las ciencias computacionales, es el desarrollo de
herramientas semiautomáticas que asistan a los usuarios de forma efectiva en los procesos de integración de datos.
Este artículo presenta un lenguaje de programación llamado MONIL, como una alternativa para integrar datos
mediante el diseño, almacenamiento y ejecución de programas. MONIL está basado en el uso de metadatos, funciones
de conversión, un metamodelo de integración y un esquema de sugerencias de integración. MONIL ofrece al usuario
un ambiente de trabajo dedicado con herramientas semiautomáticas integradas y que soportan un proceso de
integración en tres etapas.
Palabras claves: integración de datos, lenguaje de integración, bases de datos, bodegas de datos, metadatos.

1 Introduction: Data integration

Globalization establishes technologies and new parameters for the required information to make decisions. To satisfy the
requirements of the users, with the current information that arises from heterogeneous sources, has led the researchers in
computer sciences to develop effective tools to get and manage the information they need. The handling of information
originated at heterogeneous sources presents a complex task: data integration.

Data integration (DI) can be defined as “retrieval and merging of data originated at heterogeneous sources to be
stored at a selected target”.

Figure 1.1 shows a data integration system ([1], [2], [3]), and it is defined in terms of two elements: wrappers and
mediators. Wrappers, or the extractors, are the elements in charge of retrieving the required information from each one
of the sources that participate in the integration process. Mediators are the elements in charge of manipulating the source
data to convert them into target data. In several projects of data integration (e.g., [4], [5] and [6]), mediators are
considered the main elements of the integration process.

203

Monica Larre, et al

Source1 Source2

Wrapper2

Mediator1 Mediator2

Target

Wrapper1

Fig. 1.1. Generic architecture of a data integration system.

DI is complex due mainly to the semantic and structural heterogeneity of the participating data. Structural

differences come from the implementation details, including differences in the hardware platforms, database models and
programming languages. Semantic heterogeneity occurs, for instance, when different names are employed to represent
the same information or when the same names represent different pieces of information.

idProd varchar(12)
nameProd char(15)

Source1

...

numP varchar(12)
descripP char(35)

...

Source2

#prod varchar(12)
Sales real

...

Source3

finalSale char(15)
Sales char(80)...

Target

idprod=1α

numP=2α

prod#3 =α

M
ed

ia
to

r

nameProd

descripP

Sales

Sales

finalSale=ς

Fig. 1. 2. An example of DI problems.

Figure 1.2 shows an example of data integration where the target attribute Sales is integrated from three attributes
originated at different sources: nameProd from Source1, descripP from Source2 and Sales from Source3. All three
sources attributes have different formats (structural heterogeneity) and should be converted into the format of the target
attribute. On the other hand, reference attributes, used to equal both registers source and target (indicated as 1α , 2α ,

3α and ς in Figure 1.2) have different names but make reference to the same information (semantic heterogeneity).

 204

MONIL Language, an Alternative for Data Integration

 205

Conflicts arising from the heterogeneity between the source and target data should be solved as part of the data
integration process.

Because data warehouses have been increasing, semi-automatic tools for effective exploitation of multiple data
sources to fill up the data warehouses, has become increasingly relevant ([7], [8], [9], [10], [11]).

This paper presents the MONIL1 language as an alternative to solve DI problems. The first antecedent of the MONIL
language appears in [12], where integration problems are solved on the conceptual level. Later on, integration has been
sought through the application of genetic programming, as it is shown in [13], but from [14], this language acquires most
of its current features, as it appears on [15] and [16]. The structure of this paper is the following: Section 2 presents
proposals existing in the literature about the data integration problem. Section 3 contains the features and formalisms of
the MONIL language. Sections 4 and 5 describe the work environment developed for MONIL and the proposed
integration process. Section 6 presents examples of integration problems and MONIL programs that solve them. Section
7 presents main conclusions of the work and the future work.

2 Related Work

The DI problem is not new. It has been studied by different communities of researchers, especially by the database
communities ([17], [18], [19], [20]) and artificial intelligence ([21], [22], [23], [24], [25]).

The computer science community has proposed solutions to the data integration problems from different
perspectives. Most of those proposals are relevant and interesting due to their contributions. Two research trends are the
most important because they support one of two approaches: a) the semantic or declarative and b) the structural or
procedural. The semantic approach (e.g., [26], [27], [28], [29], [30], [31], [32], [33], [34]) considers the data integration
problem through a common data model built up from the conceptual schemes of each one of the participating data
sources. In addition, the semantic trend employs a data language for the information exchange between the common
data model and the sources that participate in the integration process.

On the other hand, the structural approach (e.g., [35], [36] and [37]) considers only individual, specific and pre-
established needs of the different data sources, without taking into account the notion of a global integration scheme.
For required information a specific consultation must be specified in terms of the source data.

More recently, new approaches appear that present similar concepts to the structural and semantic trends, but their
efforts are mainly oriented to solve the data integration of big Databases, Data Warehouses, Distributed Databases and
Web Databases.

These approaches are: GAV (Global as View) and LAV (Local as View). To carry out the integration, GAV and
LAV propose the following process. Each participating data source is manually modeled by the users as a set of
relationships called the mediator scheme. Users carry out the search of information they need in terms of the mediator
scheme and its attributes and not in terms of the data sources. The relationships of the mediator scheme are virtual,
which means that they are not stored anywhere. To complement the information of the mediator scheme, GAV and
LAV add descriptions of the participating sources to permit the access to each one of them, although each trend makes
this description in a different way.

GAV defines the relations of the mediator scheme in terms of sources and, in a similar way to the structural trend;
the consultations to obtain required information from each data source are specified in terms of the source and not of the
mediator scheme. Among the most relevant work of the GAV trend, there are: [38], [4], [24], [39], [40].

On the other size, the LAV proposal establishes that source descriptions should be defined starting from the unified
global representation of the mediator scheme. Some of the proposals of the LAV trend are: [41], [42], [22], [23], [43],
[8].

The mediator scheme used by GAV and LAV is built in virtual view. The traditional ones (e.g., [44], [45], [46],
[47], [48], [49]), propose to build the mediator scheme in integrated virtual views. Consultations carried out within the
mediator scheme are formulated again to work in a specific way with each one of the sources they are composed of.
More recently, the use of materialized views (e.g., [50], [51], [5], [52], [53], [54]) to build up a mediator scheme has
called more attention, especially due to situations where materialization is preferable to the use of virtual views: e.g.,

1 Metadata and Object Integration Language

Monica Larre, et al

 206

when the connectivity of the networks is unpredictable, when the consultation response time is critical or when it is
cheaper to build up materialized views and keep them than to calculate the consultation every time it is necessary.

3 MONIL Language Proposal

MONIL has been exclusively designed to solve data integration problems. This paper shows instances of integration
where data sources and targets are structured, however, MONIL is not restricted to solve DI problems exclusive of
structured data. MONIL is an expressive programming language, built on context free grammars and based on the use of
metadata, a set of conversion functions, an integration model and an automatic scheme of integration suggestions. To
achieve functionality, MONIL is immersed in a work environment formed by a set of automatic and semi-automatic
tools that assist the user in the design, development, storage and execution of integration programs solving the data
integration problems. The elements of the environment are related among them through an integration process proposed
by MONIL.

The proposed integration process points out three basic stages:
1. Definition of the corresponding integration scheme.
2. Generation of integration programs in MONIL
3. Program execution.

Solving the problem of DI by stages maintains flexibility, and allows the DI process to interfere as least as possible
with the day-to-day operation of the participating information systems.

MONIL includes the main GAV advantages:
• Incorporates or eliminates dynamically DI process elements.
• Excludes descriptions of elements that do not participate in a direct way in the integration.

MONIL incorporates from LAV the concept of a corporate model through the so called integration meta-model.
MONIL may be considered among the structural and semantic data integration problems solution tools, since it solves
cases in both types of conflicts.

In addition to its advantages, MONIL introduces some new concepts to solve DI problems:
• The integration units are used to describe the elements participating in the process.
• The pivots to relate the source and target elements being integrated and to keep up the integrity of the data

during integration.
• The conversion functions to solve conflicts issuing from the structural and semantic heterogeneity among the

data.
• The use of metadata as the information supply sources for the operation of the three phases of the MONIL

integration process.
• The automatic scheme of the integration correspondence to reduce the user effort, based on the semantic

proximity concepts [55].
To make easier the MONIL language operation, a special semi-automatic work environment has been designed to

develop, store and execute integration programs in the MONIL language.
The integration process is supported by the work environment defined by MONIL to systematize DI problems

solution. However, and in spite of its features, not all tools in the MONIL work environment carry their tasks in a fully
automatic way. User’s participation is especially required during the problem definition, an action that is performed at
the first stage of the integration process.

3.1 MONIL language concepts

As a fundamental part of its conceptual definition, MONIL includes four elements:
• Integration units
• Pivots
• Integration conditions
• Conversion functions

MONIL Language, an Alternative for Data Integration

3.1.1 Integration units

Integration units represent all the source and target elements that participate in the integration process. To manipulate
them, the integration units are represented by a set of symbols that form part of the formal language specification.

MONIL distinguishes two categories: HLIU and SIU.
The HLIU (high-level integration units) represented in the DI process the elements at a higher hierarchy or

abstraction level, for example, databases, tables, files and classes. The SIU (specific integration units) are indivisible
elements that participate in the DI process, for example, attributes and objects.

MONIL permits the use of several abstraction levels in the high level units. The abstraction level is represented by a
super index associated with each unit, for instance, for the case of the entity-relation model [53], a database that
participates in the integration process will have abstraction level zero and each one of the tables forming it will have
level one.

MONIL uses two kinds of high abstraction level integration units: HLSIU and HLTIU.
The HLSIU (high level source integration units) are the integration data suppliers. The HLSIU are represented by the

symbol , where i represents the i-th source participating in the integration, and ω
iS ω , represents the source abstraction

level. Lower ω values represent higher abstraction levels. Thus, for example, represents an entire database and
represents only a database table.

0
0S 1

0S

The HLTIU (high level target integration units) denoted by ωT , are the receiving integrated data units, where ω
represents (as for the sources), the abstraction level of the HLTIU. Again, 0T will be the receiving database and 1T a
table of the database.

Moreover, there is another classification for integration units. The specific integration units or SIU, which are the
attributes directly involved in the integration process, and they are also classified in source and target.

The Source Specific integration Units (SSIU) or σ are the source elements participating in the DI process
The Target Specific Integration Units (TSIU) τ are the target elements received by the integrated data.
By definition, the SIU must belong to a HLIU. The relationship between the SSIU and the HLSIU is expressed by

means of:
},...,,{ ,2,1, siiiiS σσσω = (1)

Where ω

iS is the i-th source that participates in the integration process with an abstraction level given by ω , and is

the total number of

s

ji ,σ that belongs to . The value of does not necessarily represent the total number of

attributes of

ω
iS s

ω
iS , i.e.: . This is a GAV feature of MONIL that permits to model only the

source participating elements.
)(iSOfattributess ≤

As for the sources units, the relationship between the TSIU and HLTIU is expressed by:

},...,,,,...,,{ 2121 qp tttT τττω = (2)

And due to the MONIL target orientation, ωT represents the target integration unit of ω level, represents the
number of TSIU participating in the integration (there should be at least one), q is the number of target elements (that
are only auxiliary elements, not SIU) but which are used in the DI process. The

p

qp + value does not necessarily

represent the total of attributes that form each ωT .

 207

Monica Larre, et al

 3.1.2 The pivots

A pivot is a set of one or more attributes, established by the user, that represents the HLIU that participate in the
integration process. An example may be the primary keys or candidate keys of the tables of a relational database model.
Pivots may be or may be not SIU.

For the MONIL definition, the objectives of the pivots are:
• To establish a relationship among the participating HLIU and the HLTIU.
• To maintain information integrity during the complete integration process.

MONIL assumes that the elements designated as pivots are representative and with unique values and without
missing values. However, in most cases, if the pivots do not meet these requirements, the integration process of MONIL
is not interrupted. This occurs with data integration cases that do not have an established structure.

MONIL establishes a rating for its pivots by the number of SIU that form them as:
• Simple, with only one SIU
• Compounded, formed by more than one SIU.

By their origin, pivots are classified as:
• Source ()α

• Target ()ξ

The value of a source pivot iα represents the source unit , and is expressed as: ω
iS

()ji

A

j
i ,

1
σα ⊕

=

= (3)

Where A is the number of ji ,σ elements which in concatenating with the operator ⊕ form the source pivot iα

The target pivot value ξ identifies the target unit ωT , and is expressed as:

()ji

Z

j
x ,

1
⊕
=

=ξ (4)

Where the items are the elements which form the pivot. They may be an integration unit jix , τ or an element not

TSIU , and, finally, t Z will be the number of elements that forms the pivot ξ .

The relationship between ξ and α is a Nto −−1 for any , i.e., each target pivot 1≥N ξ may be associated

with one or more source pivots iα .

3.1.3 Integration conditions

These are the integration process rules, represented by ϑ , and their goal is to select source data susceptible to be used in
each integration case.

 208

MONIL Language, an Alternative for Data Integration

The structure of an integration condition is based on the pivots values established by the user for DI. For each
relation HLIU source-target, it is necessary to define a condition to regulate the specific integration process. For
example, for an integration case where N data sources are participating, there should be N integrating conditions.

For data without structure, the integration conditions perform an even more important role, the one of becoming the
guide of the integration process.

Integration conditions are built establishing either the correspondence between the source-target pivots or defining
the correspondence between the source-target pivots. The structure of ϑ , is represented by:

iαξϑ =: (5)

Where it is established that the value of the source attribute, represented by iα participates in the DI process if and

only if there is any value of the target pivot ξ equals to the source pivot value iα .

The ϑ ’s are automatically defined by the MONIL environment at the beginning of the integration process, and, by
default, they have the format defined by (5). The automatic generation of ϑ is performed on the integration
correspondence basis between the pivots elements defined by the user

If data without structure is used, the user will be responsible for the definition of the integration conditions using the
editing tools offered by the MONIL environment.

3.1.4 Conversion functions

Conversion functions (represented by) are the MONIL transformation operators. Their purpose is to solve structural
and/or semantic conflicts between the source and target data. Conversion functions may be selected by the user once the
integration relations are established. Some of these functions are suggested automatically by the MONIL environment,
however, the user may eliminate or add functions deemed necessary to solve the particular integration problem. The
scope of the conversion functions is wide, some of them are even capable of modifying and creating physical structures
of HLTIU.

F

MONIL offers a taxonomy from which the user may build more complex functions permitting to solve different
integration cases, due to the recursive nature of most functions.

According to its scope, this taxonomy classifies its functions in three groups:
1 Converting functions work exclusively with source elements. (Fx)

)2 Basic functions work with source and target elements. (Fec
3 Construction or structural functions ()Fs alter or create HLTIU structures.
A converting function description is as follows: Fx

[] [] []()(){ }jifpppFxFx ,21 ..., σ= for στ ≠ (6)

Where is any converting function that uses Fx numberf − of parameters p to solve an existing conflict

between ji ,σ and τ . For those cases when the mapping of the target source does not require any transformation

τσ =ji , , (6) is reduced

jiFx ,σ= (7)

The definition of the parameter p is recursive in most cases, i.e., the parameters of a function may be defined by

another function and this, in turn, can have as a parameter a function, and so on:

 209

Monica Larre, et al

⎭
⎬
⎫

⎩
⎨
⎧

=
Fx
data

p f (8)

This feature offers built-in possibilities to obtain very complex functions to solve particular (rare) integration

problems.
The group is the most numerous, it is evaluated from left to right and its functions are classified considering the

type of data on which they operate. The classification is: i) Functions for text or chains, ii) Functions for numbers, iii)
Functions for dates and time, and iv) Functions for equivalence.

Fx

The second MONIL group of functions is the group of basic functions or . These functions are two: Fec
• The ε function: extracts data from sources.
• The ι function: loads the integrated information to the targets.

Fec syntax does not use parameters, thus, the minimum expression for the function ε is:

⎭
⎬
⎫

⎩
⎨
⎧= ⊕

=
i

K

i
Fx

1
ε (9)

Where it is shown, that the body of the function is formed by the concatenation of K functions. Fx

ι Function is expressed as:

⎭
⎬
⎫

⎩
⎨
⎧= ⊕

=

ετι
N

i 1
 (10)

Where τ is the receiver of integrated data and the operator ⊕ represents the concatenation operation of instances
of

N
ε . For eachτ , (at least one) supplying sources (SSIU) may participate. N
The third group of conversion functions is the construction or structure functions (). These functions permit to

modify the structure and even to create new HLTIU structures. do not use parameters. The solve complex
integration cases where exist conflicts of schematic discrepancy. There are four : NewEntity (

Fs
Fs Fs

Fs ψ) and NewAttribute

()ζ called primary functions used to modify the structure of HLTIU; and NewData ()γ and NewName ()δ called
secondary structures used to select the source data to populate the new structures created.

Currently, MONIL definition relies on 32 basic conversion functions, however, and due to the flexibility and
expressive power of MONIL, a number of function combinations can be created to solve different data integration
problems.

In section 6, examples of conversion functions are shown as part of program codes in MONIL language.

3.2 MONIL compared with other tools

Figure 3.1 shows comparison parameters between MONIL language and other existing proposals in the literature. The
compared aspects are:
1. Research trend between the proposals GAV and LAV analyzed in section 2.
2. The possibility to suggest some of the integration correspondences among the participating elements.
3. Consideration of the full integration process, or whether to solve only the data integration in a partial way.
4. The proposal as a language of commands without associated tools or, if it is a formal programming language, with

the entire environment to edit, compile and store programs.
5. Implementation of the proposal.

 210

MONIL Language, an Alternative for Data Integration

6. Specific (S) or general area (G) of the tool with respect to integration problems.
As it can be appreciated, MONIL features cover the standards of all aspects pointed out in the comparison, showing

a better coverage in the integration suggestions, implementation, full integration process and general applications.

Param TSIMMIS MOMIS DWH NPDI COM MONIL

1 GAV LAV LAV
LAV+

GAV
GAV

GAV+

LAV

2 NO NO NO NO NO YES

3 PARTIAL PARTIAL PARTIA
L

PARTIA
L

PARTIA,
FULL FULL

4 C C C C - L

5 YES YES NO NO YES YES

6 G S
S

(DW)

S

(Web)

S/G

G

Fig. 3.1. MONIL vs. other data integration proposals.

3.3 Formal definition of MONIL language

MONIL language is represented as a context free grammar[56]:

()IPFV ,,,GM = (11)

Where:

{ },...,,,,,,,,,,, IDFFFxTidSCEvV SEC αϑ= { },...,,:,,;,},{, tiesSourceEntiPivotSPivotTF ==

}_112{ sproductionP =

MONILPI =

A subset of productions and 58 terminal symbols describing MONIL language are shown in the production list
BNF[56], some of these are presented in the next list:

{ }>><<>=<< CEvPMONIL :: >=<>< idv ::

><><>=<>< STE ;;:: ξ

>><<=>< idUtTARGETT ::

><=>< dPIVOTPivotT :::ξ

 211

Monica Larre, et al

>><<>><=<>< '::: dPIVtDATidUenPivdPIV ><=>< dPIVOTdPIVOT |,::' θ
[] ';::: SKEYidUSES >><<><><=>< ϑα ><=>< SS |,::' θ ><=>< dPivotePivotS :::α

><=>< ϑϑ datoConditions ::: >><>=<=<>< ':: ϑϑ datoidUidUdato
>><<=>< ϑθϑ datoanddato |::' { }>><><<=>< ρστattributeettC :arg:: ...

From it is clear that the structure of a MONIL program has three main elements: { >><<>=<< CEvPMONIL :: }

vECPMONIL = (12)

Where v is a unique valid identifier that represents the program, E the heading, and C the body.2

The heading of a program is given by:

[]iii

N

i
STE ϑαξ⊕

=

=
1

 (13)

Where T is the HLTIU that will receive the integrated data by means of the target pivot ξ , is the i-th of the

participating HLSIU,
iS N

iα is the pivot representing the source , and iS iϑ is the i-th integration condition that controls

the information between T and , is the concatenation operator. iS ⊕
The body of a MONIL program combines the declarative information of source and target SIU with the procedural

information of the so-called integration procedures.
The body of a program describes the process that will be carried out to enable the data from to be integrated in iS

T . This body can be represented by:

ρστ ⎥
⎦

⎤
⎢
⎣

⎡
= ⊕⊕

==
ji

M

j

N

i
C ,

11
 (14)

Where τ is the TSIU objective, is the total of participating SSIU (there are NxM M events of ji ,σ for each),
and

iS
ρ is the integration procedure.

An integration procedure is a set of conversion functions that will be applied to ji ,σ , to be converted into τ .
MONIL distinguishes two types of integration procedures:
• Converting procedures cρ
• Generating procedures gρ

The cρ are those that do not cause modification to the target structure, they simply transform the values of the
source values before leaving them at their target. They are based on functions. Fec

The generating procedures gρ are based on structural functions and their actions cause transformations in the
HLTIU. Specially, these procedures are applied when the integration case under solution involves different levels of
abstraction between sources and targets.

 212
2 To reduce the complexity of the expressions, language reserved words are omitted.

MONIL Language, an Alternative for Data Integration

Finally, substituting (13) and (14) in (12), we get the full expression of the MONIL program:

[] ρστϑαξ ⎥
⎦

⎤
⎢
⎣

⎡
= ⊕⊕⊕

===
ji

M

j

N

i
iii

N

i
MONIL SvTP ,

111
 (15)

An example of a MONIL program is shown in Figure 3.2.

Program’s name

Pr
og

ra
m

’s
 h

ea
de

r
Pr

og
ra

m
’s

 b
od

y

Fig. 3.2. A MONIL program structure

4 MONIL Framework

MONIL framework was designed with the purpose of assisting the user in the generation, storage and execution of the
integration programs to solve DI problems. The environment is formed by software components that support and
implement the integration process consisting of the three phases, proposed by MONIL.

MONIL architecture is shown in Figure 4.1. The elements formed by the MONIL framework communicate with the
user through the interfaces of the elements EC and AgI. The elements communicate between them through different
activities defined as part of the MONIL integration process. Each one of these elements is described in more detail in
subsequent paragraphs.

4.1 Integration Metamodel (IM)

The integration metamodel is the general repository of information of the MONIL environment and its main function is
to store all the data generated and required over the three stages of DI process. The existence of the IM concentrates the
global view of the integration process and places MONIL language and its integration process within the LAV paradigm
of data integration. The IM is considered as an element of liaison and service of the integration process because it
facilitates communication among the work environment modules.

 213

Monica Larre, et al

Integration
Metamodel

IM

Integration
Metamodel

Management

Editor-
Compiler

EC

Programs
Generator

PG

Algorithm for the
Suggestions of

Correspondences
of Integration

ASCI

Generator of
correspondences

Schemes
GenCor

Integration
Agent

IA

Target

Source

Source

Graphical interface

user

MONIL Framework

Fig. 4.1. The MONIL framework architecture.

In the metamodel data reading and writing operations are performed, depending on the process integration time and
of the component of the environment that uses it. Maintenance processes of IM are performed by an independent
software module (administrator), available to act at any time.

IM is built on a relational data model since it is required to be solid, scaling and easy to operate. Specifically, it was
built using ORACLE [57], [58] as the database administrator system.

The conceptual architecture of the metamodel appears in Figure 6 showing the most important entities of the model.
ICOS. It stores all the integration correspondence schemes generated either automatically or semi-automatically

during the stage 1 of the DI process.
MP. It stores all the programs generated either automatically or manually during the integration process.
CF. It stores the name, code and description of all the conversion functions defined as part of MONIL language.

τσ ,,,,, 11 ++ N
N

N
N TTSS are the tables that store the HLIU and SIU.

4.2 Algorithm for suggestions of the integration correspondences (ASCI)

ASCI is an algorithm that analyzes data, and searches for pairs source-target susceptible of being integrated based on
structural and/or semantic similarities. ASCI is a tool of MONIL environment of optional use that automatically
generates integration correspondences. (See Figure 4.2).

 214

MONIL Language, an Alternative for Data Integration

ICOS

CF
NameFunction
ProgramName (FK)

TypeFunction
FunctionCode

SDbName (FK)
STableName (FK)
SNameA

STypeA
SLengthA

SN

SDbName (FK)
STableName

SDescriptionT
SPivot
SAttributesNumT

TN+1

TDbName

TDbUrl
SN+1

SDbName

SDbUrl

TN

TDbName (FK)
TTableName

TDescriptionT
TPivot
TAttributesT

TNameA
TDbName (FK)
TTableName (FK)

TTypeA
TLengthA

SDbName (FK)
STableName (FK)
SNameA (FK)
TDbName (FK)
TTableName (FK)
TNameA (FK)
ProgramName (FK)

SPPivot
SPivotTransformations
ExtractConstrain
LoadConstrains
TpivotSpivot

MP
ProgramName

ProgramCode

σ τ

Fig. 4.2. The main elements of the integration metamodel.

ASCI work requires reading privileges with respect to HLIU source and target to obtain metadata and/or samples of
data to allow it to perform its work. Its use is limited to integration cases that handle data with structure and metadata.
ASCI automatic actions use concepts of semantic proximity and produce as a result an initial scheme of integration
correspondence which may be discarded, used as such or complemented by the user. ASCI looks for correspondences

 among all the source-target SIU participating in the integration process, analyzing their semantic meanings. 11 −− to
The search for correspondence is carried out using the following algorithm:

While SIU target

While SIU source

),(||),((,, jiji isSynonymisSubIf στστ),(, jierespondencsuggestCor στ

The algorithm works on the basis of two methods: isSub and isSynomyn.
The isSub method analyzes the pairs of names of the SSIU and the STIU, and it searches if the name of one unit is a

substring of the name of the other unit, then its effectiveness depends on the original designs and on the obtained
metadata of the HLSIU.

The isSynonym method uses the entity Synonym of the IM to compare the source and target names of the
correspondence scheme, with pairs stored in Synonym. If any pair source-target appears on the registers of Synonym,
the correspondence is suggested. Synonym stores pairs of data names with some degree of semantic proximity. If the
user wishes it, using the IM administrator, he/she can initialize the Synonym with those values he/she considers
representative of the cases of integration he/she intends to solve. However, it is not necessary since ASCI will
automatically increase the contents of the Synonym with each correspondence selected during the first stage of the DI

 215

Monica Larre, et al

process that is still not included in the Synonym selection. This action increases the number of available synonyms and,
therefore, the performance of ASCI

4.3 Editor-Compiler (EC)

EC is a software module that provides the user with tools to design (an Editor) and validate (a Compiler) new integration
programs.

Editor includes a text window where the user may enter the programs. When a new program construction starts, the
Editor includes in the text window displayed for the user the minimum structure of an integration program, as reference.

Operationally, the Editor offers 4 options:
1. To create a new program.
2. To edit existing program.
3. To compile a new or modified program.
4. To save a new or modified program.

It is possible to create a new program or to edit and existing program. The compilation phase reviews the codes of
the new or modified program to verify whether it complies with all the syntactic and semantic rules of the MONIL
language. The option to save a program will be activated only after the compilation option is used and when it is
successful in order to guarantee that the new or modified programs are valid.

4.4 Generator of correspondence schemes (GenCor)

It is a component of the software that provides functionality to the generation of integration correspondence schemes.
Functions offered by GenPro are:

• Parameters definition. It permits to select the HLIU that participate in the DI problem (databases,
tables, etc.).

• Automatic generation of correspondence suggestions. It calls for the execution of ASCI to look for
and suggest integration correspondences.

• Manual definition of integration correspondence. It permits the user to select integration
correspondences.

• Validation of the initial scheme of correspondence. It permits the user to validate the conversion
functions necessary to solve conflicts between the source and target data, i.e., when στ ≠ .

• Storage of the final scheme of correspondence, once it is validated.

4.5 Generator of Integration Programs (GenPro)

It is a software component that automatically generates IP in MONIL language, using stored correspondence schemes.
The automatic action of GenPro offers two possibilities:
• To generate only one IP based on a specific correspondence scheme.
• To generate all the IP using all the correspondence schemes stored in the integration metamodel.

Construction of an IP is a progressive process of symbols concatenation ruled by the MONIL syntax. The IP
contains reserved words and specific data of the integration case, defined in the scheme of the base correspondence.
This construction option produces IP syntactically correct. However, since the data to build an IP derive from the
correspondence schemes defined by the user, any error in their specifications will be incorporated to the generated IP.

In addition to the automatic option, and if the user decides to design a program manually, GenPro transfers the
control over to the Editor-Compiler to edit, compile and store the user´s program.

4.6 Integrating Agent (AgI)

The AgI is a semi-automatic module that executes IP stored in IM. AgI actions require a connection with the source and
target HLIU of the data. It uses reading privileges to retrieve data from the HLIU, writing privileges to load integrated
data to the target HLIU. Its action starts when the user selects a MONIL program. The program can add integrated data
() to the existing data at the target, if in the program code appear the procedure FAppend _ cρ , and, on the contrary,
it can replace the target data with the new data () if in the code there areFplace _Re gρ procedure.

 216

MONIL Language, an Alternative for Data Integration

AgI action by default is cρ . The execution of an IP is shown by the following algorithm:

connect(HLSIU(read-only); HLID (write))

extractData(HLSIU) //gets data from sources

If Fx

convertData(SSIU TSIU) // transforms them

If Fs
 createStructures(HLID) //builds structures

If Fx

 convertData(SSIU TSIU)

 loadData(HLID) //converts and load data

The execution of IP is the last stage of the DI process. It is considered that a program has been executed successfully
when the source data have been placed at their respective targets.

The flexibility of the MONIL environment permits at the end of the execution of an IP another one can be executed
immediately, even the same one.

5 MONIL integration process

Proposed DI process:

1. Generation of integration correspondence scheme.
2. Integration programs generation.
3. Execution of integration programs.

Functionally, the MONIL framework provides a software component for each one of the three stages detailed in
section 4.

5.1 Stage 1: Generation of the integration correspondence schemes.

It is the first stage of the DI process and its purpose is to build a scheme of integration correspondence to describe the DI
problem we wish to solve. During this first stage, user’s participation is required, being desirable for the user to be
familiarized with the integration problem characteristics.

The integration correspondence scheme sets up the bases of the DI process in describing in detail the elements that
participate in the integration and all the actions that must be carried out as the part of the process.

A scheme of integration correspondence (represented by kΓ) is the not empty set of tuples of attributes source-target

called integration correspondences and represented by . ic
A establishes the existence of an integration relation between a source and a target units. A scheme of

correspondences is represented by:
ic

{ }Nk ccc ,..., 21=Γ (16)

Where the k-th DI problem is described, stating that it is formed by correspondences of integration . N ic

A graphical example describing the correspondence scheme concept between three data sources Source1, Source2
and Source3, and a target Target is shown in Figure 5.1. The correspondence scheme in Figure 5.1 describes the

 217

Monica Larre, et al

integration between: Matricula of Target and Matricula of Source1, Id of Source2, and Numero of Source3. The SIUD
Nombre is integrated from the concatenation of Nombres, ApellidoP and ApellidoM from Source1, Nombre from
Source2, and DatosP from Source3. The TSIU Carrera is formed by: Carrera, Especilidad and Carrera of Source1,
Source2 and Source3 respectively. The last correspondence shown by the example is, for TSIU, edad which is
integrated from Edad of Source1; Source2 and Source3

Matrícula
Nombres
ApellidoP
ApellidoM
Carrera
Sexo
Edad

Id
Nombre

Edad
Especialidad

Número
DatosP

Dirección
Carrera
Sexo
Edad

Matricula

Nombre

Carrera

Edad

Fuente1

Fuente2

Fuente3

Destino

Source1

Source2

Source3

Target

Fig. 5.1 A correspondence scheme between three sources and one target.

Due to the GAV feature of MONIL, there are attributes of some of the sources that do not participate in the
integration.

The construction of a has 3 steps: kΓ

1. The construction of an initial scheme of correspondence.

2. Validation of the initial scheme to transform it into the final correspondence scheme.

3. The storage in the integration metamodel of the final correspondence scheme.

An initial is formed by correspondences as follows: kΓ N ic

iiI STc στ ..: = (17)

where the sub index I is the correspondence number, T describes the TSIU in terms of its HLIU, the symbol =
represents the integration relationship between the target τ and the source, ji ,σ represents the whole of j source units

participating on behalf of and the abstraction ω
iS Nto −−1 establishes the correspondence between sources and

one target.
N

The component offered by MONIL for this DI process is the GenCor tool.

When an initial correspondence scheme kΓ has been generated, the validation process begins. The validation
process is semi-automatic and consists of defining and/or accepting those transformations (using MONIL conversion
functions) that applied to the source SIU can solving the conflicts existing between the source and target data.

 218

MONIL Language, an Alternative for Data Integration

This step is considered very important because any mistake produce at this stage will have consequences on the
entire integration process. Once the validation process is concluded, a new kΓ is considered complete and valid, and it
is stored in the table Correspon of the IM, ready to be used for the generation of integration programs.

5.2 Stage 2: Generation of the Integration Programs.

The purpose of this stage is to generate valid integration programs and the functionality is given by the modules of the
GenPro and EC environments.

GenPro uses a valid correspondence scheme kΓ stored in IM, to produce an integration program to model and solve
the problem set forth by the correspondence scheme. To use GenCor, it is indispensable that correspondence schemes
exist in the integration metamodel performing as the input to the automatic generation of programs.

However, MONIL environment is flexible and permits the users to build their own IP manually using the ED, as it
has been already described in the previous section. The actions of IP generation are executed out of the line, that is, no
connection is required at any time to any of the integration units. This is because all the information used to generate
them is obtained from stored in the metamodel, or it is typed by the user at the time of designing them. kΓ

5.3 Stage 3: Execution of the Integration Programs

This is the third and last stage of the DI process by MONIL and its purpose is to execute the stored MONIL programs to
retrieve and integrate source data and deposit them as target data. The executed programs are selected by the user from
all the stored programs. The execution process is automatic, that is, once it has been initiated, if successful, it does not
require user’s participation until it concludes. The execution is carried out by AgI.

Unlike the stages 1 and 2, the execution of an IP does require a permanent connection with the source and target
HLIU: the sources require reading access and the target reading-writing access. The execution process of a stored
program may be repeated the number of times the user wants. According to what has been said, the ways to execute a
program are: Append_F and Replace_F.

The execution Append_F of a program adds the integrated information from the sources to the information existing
at the target. Target information is not lost. This kind of execution is expressed as:

ρττ += inicialfinal (18)

where inicialτ is the value stored in the TSIU before the execution of the IP, ρ represents the integration process of the
participating source SIU and the sign + represents an operation of aggregation between the existing target data and the
new integrated data.

By default, the operator + transforms itself in concatenation when the participating data are of the chain type and
stays as + for the numerical data. The parameters for the numerical data, however, can be modified at the beginning of
the execution in average, product and mean.

On the contrary, the execution Replace_F of an integration program acts replacing all the existing information at the
target by the source integrated information. This kind of execution is represented by:

ρτ =final (19)

Where ρ represents the source integrated information which will be deposited at the target. When a target TSIU is
empty, Append_F and Replace_F actions produce the same result.

 219

Monica Larre, et al

6 Test Cases
The purpose of this section is to check out the expressivity and scope of MONIL language by means of solving DI cases.
The trial cases are presented by means of the classification of the type of structural and semantic conflict existing in the
set using the concepts of semantic proximity [55]. The problem is complemented with the solution equation offered by
MONIL to solve the conflict, and for the cases 1 and 5, MONIL program is included too.

Case 1. Data Scale Conflict (domain incompatibility)

Problem. To integrate at the target SIU CAL=τ , the information originated at the source SIU
CALIFICA=1,1σ . There is a data scale conflict among the SIU semantically equivalent. The source SIU is

expressed in hundreds and the target SIU should be expressed in tens (Figure 6.1).

Solution. Solution of the data scale conflicts is carried out by means of MONIL conversion functions that work with
the information stored in pre-established tables. The minimum expression of the solution is:

[] []()()1,1,0,10 σετ DivEqui= (20)

Where ε , is the basic function of data retrieval, Equi is the equivalence function (converting function) that solves
the data scale conflict; and finally, 1,1σ is the source SIU providing those data. The execution of the MONIL program
produces an effect where the source values are converted into required units by means of:

() ()
0.10

1,1στ valueOfvalueOf =

The MONIL program that solves this data integration case is shown on the Figure 6.1.

Fig. 6.1. MONIL program solving a scale conflict between source and target SIUs.

 220

MONIL Language, an Alternative for Data Integration

Case 2. Data Accuracy Conflict (domain incompatibility)

Problem. To integrate the attribute Cal (students’ grades) from the source CALIFICA (which uses numbers registers)
to the target DESTINO (that uses words or letters to represent the students’ grades), it is necessary to replace the
numerical values by distinctive words. The grades values from CALIFICA should be rated into 5 groups, and each
group will be represented by a different pre-established value.

Solution. Data accuracy conflicts between the source and target is solving by the next expression:

[][]()()1,1σετ YXChange= (21)

Where X represents the possible source values: SIU 1,1σ , and Y are the values we wish to get for the target TIU.

Case 3. Aggregation Conflict (abstraction levels incompatibility)

Problem. It is necessary to integrate the grades of the students to calculate the averages obtained in all their subjects
they have studied during an academic period.

Solution. The conflict appears when an operation of aggregation to the source SIU is necessary in order to represent
a target TIU. In this case, there is a one way relation. The other way relation cannot be obtained. The participating SIU
maintain a semantic relationship. A simple expression to show MONIL solution to this conflict is:

[]()()1,12 σετ Average= (22)

Where ε is the basic function of data extraction, is the converting function that will transform

source data (in this case 2, indicated by the parameter [2]), inro one target datum r through the operation of the average.
Average N

Case 4. Schematic Discrepancy Problem (abstraction level = Attributes)

Problem. To integrate the data from HLSIU to add new columns to HLTIU . PARTESS =1
1 VENTAST =1

Solution. This problem presents a schematic discrepancy conflict because the SSIU correspond to the target
metadata. MONIL solves this level of schematic discrepancy by means of its construction functions that act adding new
attributes to the HLTIU structure with the data provided by SSIU. It is difficult to solve this kind of conflicts because
the semantic similarities among the data are established among the elements at different abstraction levels. The
minimum expression of MONIL solution of this case is given by:

() ()()2,11,1 , σδσγιτ = (23)

Where it creates new columns in the HLTIU using the function NewName=γ that will transform the 1,1σ values

into new columns of the HLTIU, and the function NewData=δ , will populate new columns with the values obtained
from the 2,1σ source.

Case 5. Schematic Discrepancy Problem (abstraction level = Entities)

Problem. The integration should build new entities to store the grades of the students by subject. Each new entity
will only store grades of the students per each subject.

 221

Monica Larre, et al

Solution. MONIL solves this case by means of its construction functions which, unlike the above case, it works on a
higher abstraction level and solve a schematic discrepancy conflict on entity level. The minimum expression of the
solution of such a problem is:

() ()()2,11,1 , σδσγτ v= (24)

Where a structure function is the one that builds new HLTIU structures using the function NewName=γ which will

transform the 1,1σ values into new HLTIU, and the function NewData=δ will populate the columns of the new

HLTIU created with the values obtained from the 2,1σ source. See Figure 6.2.

Fig. 6.2. Solution of the schematic discrepancy problem on entity level.

7 Conclusions and Future Work

This article presents a proposal to solve the data integration problems bye means of the MONIL language. The main
contributions of MONIL are.

• Definition of a formal programming language devoted to solve data integration problems.
• Introduction of concepts of integration units, pivots, conversion functions and integration conditions.
• Use of metadata to build integration metamodel as a fundamental part of the integration process.

 222

MONIL Language, an Alternative for Data Integration

 223

• Automatic generation of a correspondence suggestion scheme to assist the user in the definition of the integration
metamodel.

• Work environment with integrated semi-automatic tools that support the design, storage and execution of the
integration programs.

• Integration process that allows to carry out integration operations in a simple and ordered way and, in many
operations, without interfering with the day-to-day operations of the information systems that provide or receive
data in the integration process.

Notwithstanding, and due to the complexity of the problem the data integration presents, there is much future work
to perform in this area, especially in the search to automate the process integration activities that, for the time being, are
still semi-automatic, among them the definition of all the integration correspondence schemes.

References

1. J. Ullman, .Information integration using logical views. In. Proc. of the 6th International Conference on
Database Theory (ICDT.97), vol. 1186 of Lecture Notes in Computer Science, pp. 19-40, 1997.

2. N. Kushmerick, R. Doorenbos, and D. Weld. Wrapper induction for information extraction, 15th International
Joint Conference on Artificial Intelligence, 1997.

3. G. Wiederhold. Mediators in the architecture of future information systems, IEEE Computer, vol. 25, no. 3, pp.
38-42, 1992.

4. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, and J. Widom. The
TSIMMIS approach to mediation: Data models and languages, Journal of Intelligent Information Systems,
1997.

5. G. Zhou, R. Hull, and R. King. Generating data integration mediators that use materialization, Journal of
Intelligent Information Systems, vol. 3:2/3, no. 2/3, pp. 199-221, May 1996.

6. L. Ling, M. T. Özsu, and L. Liu. Accesing heterogeneous data through homogenization and integration
mediators, Second IFCIS Conference on Cooperative Information Systems (CoopIS97), 1997.

7. W. Inmon. Building the Data Warehouse, 2nd ed. John Wiley and Sons, 1996.
8. M. Jarke, C. Quix, D. Calvanese, Maurizio Lenzerini, E. Francosi, S. Ligoudistiano, P. Vassiliadis, and Y.

Vassiliou. Concept based design of data warehouses: The DWQ demonstrators, In Proc. of the ACM SIGMOD
International Conference on Management of Data, p.p. 591-2000.

9. W. Inmon, R. Terdeman, and C. Imhof. Exploration Warehousing Turing Business Into Business Opportunity,
John Wiley and Sons, Inc., 2000.

10. R. Kimbal, L. Reeves, M. Ross, and W. Thornthwaite. The Data Warehouse Lifecycle Toolkit: Tools and
Techniques for Designing, Developing, and Deploying Data Warehouses, John Wiley and Sons, 1998.

11. R. Kimball, L. Reeves, M. Ross, and W. Thornthwaite. The Data Warehouse Lifecycle Toolkit : Expert
Methods for Designing, Developing, and Deploying Data Warehouses, John Wiley and Sons; ISBN:
0471255475, 1998.

12. M. Larre, S. Torres, J. Torres, and E. Morales. Un algoritmo para la integración de datos basado en el
descubrimiento de relaciones, In. Proc. of the 7° Congreso Internacional de Investigaciones en Ciencias
Computacionales (CIIC00), pp. 264-273, 2000.

13. S. Torres, M. Larre, and J. Torres. A string representation methodology to generate syntactically valid genetic
programs, WSEAS Transactions on Systems, vol. 1, p.p. 290, 2002.

14. M. Larre, J. Torres, and E. Morales. Data integration with MONIL, metadata and correspondence suggestions,
3er. Encuentro Internacional de Ciencias de la Computación (ENC01), vol. 2, pp. 623-632, 2001.

15. M. Larre, J. Torres, E. Morales, and S. Torres. Data integration using the MONIL language, Proceedings of
ICEIS 2002 - the Fourth Conference on Enterprise Information Systems, 2002.

16. M. Larre, J. Torres, and E. Morales. MONIL, the metadata and object integration language, Advances in
information science and soft computing (ISBN 960 8052 602), p.p. 114, 2002.

17. C. Beeri, G. Elber, T. Milo, Y. Sagiv, O. Shmueli, N. Tishby, Y. Kogan, D. Konopnic-ki, P. Mogilevski, and N.
Slonim. Websuite-a tool suite for harnessing web data, In. Proc of the International Workshop on the Web and
Databases, 1998.

Monica Larre, et al

 224

18. W. Cohen. Integration of heterogeneous databases without common domains using queries based on textual
similarity, In. Proc. of ACM SIGMOD Conference on Management of Data, 1998.

19. L. Haas, D. Kossmann, E. Wimmers, and J. Yang. Optimizing queries across diverse data sources, In Proc. of
the International Conference on Very Large Data Bases (VLDB), 1997.

20. Z. Ives, D. Florescu, M. Friedman, and A. Levy. An adaptative query execution system for data integration,
Proc. of ACM SIGMOD Conference on Management of Data, 1999.

21. S. Bergamaschi, G. Cabri, F. Guerra, L. Leonardi, M. Vincini, and F. Zambonelli. Supporting information
integration with autonomous agents, 5th International Workshop CIA-2001 on Cooperative Information
Agents,, 2001.

22. O. Duschka, M. Genesereth, and A. Levy. Recursive query plans for data integration,. Journal of Logic
Programming, special issue on Logic Based Heterogeneous Information Systems, 1999.

23. M. Friedman and D. Weld, .Efficient execution of information gathering plans. In. Proc. of the International
Joint Conference on Artificial Intelligence, 1997.

24. H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom. The
TSIMMIS project: Integration of heterogeneous information sources, Intelligent Information System, vol. 8,
num. 2, pp. 117-132, 1997.

25. C. Knoblock, S. Minton, J. Ambite, N. Ashish, P. Modi, I. Muslea, A. Philpot, and S. Tejada. Modeling web
sources for information integration,. In Proc. of the 15th National Conference on Artificial Intelligence, 1998.

26. D. Beneventano and S. Bergamaschi. Extensional knowledge for semantic query optimization in a mediator
based system, International Workshop on Foundations of Models for Information Integration (FMII-2001),
2001.

27. D. Beneventano, S. Bergamaschi, F. Guerra, and M. Vincini. The MOMIS approach to information integration,
AAAI International Conference on Enterprise Information Systems (ICEIS01), 2001.

28. S. Bergamaschi, S. Castano, D. Beneventano, and M. Vincini. Semantic integration of heterogeneous
information sources, Special Issue on Intelligent Information Integration, Data and Knowledge Engineering,
vol. 36, no. 1, pp. 215-249, 2001.

29. W. Kim, I. Choi, S. Gala, and M. Sheevel. On resolving schematic heterogeneity in multi-databases systems,
Distributed and Parallel Databases, vol. 1, num. 3, 1993.

30. S. Madnick. From VLDB to VMLDB (very MANY large data bases):dealing with large-scale semantic
heterogeneity, in Proc. if the 21th International Conference on Very Large Databases, pp. 11-16, 1995.

31. F. Saltor and E. Rodriguez. On intelligent access to heterogeneous information, In. Proc. of the 4th KRDB
Workshop, 1997.

32. M. Bright, A. Hurson, and S. Pakzad. Automated resolution of semantic heterogeneity in multi-databases,
ACM Transactions on Database Systems, vol. 19, no. 2, pp. 212-253, 1994.

33. R. Hull. Managing semantic heterogeneity in databases: A theorical perspective,16th ACM SIGACT Symp. on
Principles of Database Systems (PODS.97), 1997.

34. S. C. Diego Calvanese and, F. Guerra, D. Lembo, M. Melchiori, G. Terracina, D. Ursino, and M. Vincini.
Towards a comprehensive methodological framework for semantic integration of heterogeneous data sources,
Proc. of the 8th Int. Workshop on Knowledge Representation meets Databases (KRDB 2001), 2001.

35. T. Häder, G. Sauter, and J. Thomas. The intrinsic problems of structural heterogeneity and an approach to their
solution, VLDB Journal, vol. 8, no. 1, pp. 25-43, 1999.

36. W. Klas, G. Fisher, and K. Aberer. Integrating relational and object oriented database systems using a
metaclass concept, Journal of Systems Integration, vol. 4, no. 4, 1994.

37. M. Roth and P. Scharz. Don.t scrap it, wrap it, 23th Conference on Very large Databases, 1997.
38. S. Adali, K. Candan, Y. Papakonstantinou, and V. Subrahmanian. Query caching and optimization in

distributed mediator systems, In. Proc. of the ACM SIGMOD Conference on Management Data, 1996.
39. C. H. Goh, S. E. Madnick, and M. Siegel. Context interchange: Overcoming the challenges of large scale

interoperable database systems in a dynamic environment, 3rd. International Conference on Information and
Knowledge Management (CIKM.94), pp. 337-346, 1994.

MONIL Language, an Alternative for Data Integration

40. J. Hammer, M. Breunig, H. Garcia-Molina, S. Ñestorov, V. Vassalos, and R. Yerneni. Template based
wrappers in the TSIMMIS system, In Proc. of the 26th SIGMOD International Conference on Management of
Data, 1997.

41. Cali, D. Calvanese, G. D. Giacomo, and M. Lenzerini. Accessing data integration systems through conceptual
schemas, Proc. of the 20th International Conference on Conceptual Modeling (ER2001), pp. 270-284, 2001.

42. D. Calvanese, G. De-Giacomo, M. Lenzerini, D.Ñardi, and R. Rosati. A principled approach to data integration
and reconciliation in data warehousing., Proc. of the International Workshop on Design and Management of
Data Warehouses (DMDW.99), vol. 19, p. 16, 1999.

43. Levy, A. Rajaraman, and O. J.J. Query an answering algorithms for information agents, Proceeding of AAAI,
1996.

44. Y. Arens, C. Chee, C. Hsu, and C. Knoblock. Retrieving and integrating data for multiple information sources,
International Journal of Intelligent and Cooperative Information Systems, vol. 2, no. 2, pp. 127-158, 1993.

45. D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y. Vardi. View-based query processing and constraint
satisfaction, Proc. of the 15th IEEE Sym. on Logic in Computer Science (LICS 2000), pp. 361.371, 2000.

46. W. Litwin, L. Mark, and N. Roussopolos. Interoperatibility of multiple autonomous databases, ACM
Computing Surveys, vol. 22, no. 3, pp. 267-293, 1990.

47. R. Hull. Towards the study of performance trade of between materialized and virtual integrated views,
Workshop on Materialized Views, pp. 91.102, 1996.

48. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries using views, Proceedings of the
14th ACM SIGACT SIGMOD-SIGART Symposium on principles of Database Systems, 1995.

49. R. Pottinger and A. Y. Levy. A scalable algorithm for answering queries using views, Proc. of the Int. Conf. on
Very Large Data Bases (VLDB), 2000.

50. R. Hull and G. Zhou. A framework for supporting data integration using the materialized and virtual
approaches, ACM SIGMOD International Conference on Management of Data, pp. 481-492, 1996.

51. R. Pottinger and A. Y. Halevy. Minicon: A scalable algorithm for answering queries using views, VLDB
Journal, 2001.

52. D. Theodoratos, S. Ligoudistianos, and T. Sellis. Designing the global data warehouse with SPJ views, 11th
Conference on Advanced Information Systems Engineering CAiSE.99), 1999.

53. D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy. Answering SQL queries using materialized views,
Proceedings of VLDB, 1996.

54. Labrinidis and N. Roussopoulos. Reduction of materialized view staleness using on line updates, Proc. of
Workshop on Materialized Views: Techniques and Applications (VIEW 1996), pp. 91-102, 1996.

55. V. Kashyap and A. Sheth. Schema correspondences between objects with semantic proximity, Department of
Computer Science Rutgers University, Tech. Rep. DCS-TR-301, 1993.

56. J. Hopfcroft and J. Ullman. Introduction to Automata Theory, Languages and Computation, 2nd ed. Addison-
Wesley Pub. Co., 2000.

57. T. Kyte. Expert One on One: Oracle, 2nd ed. Wrox Press Inc ISBN: 1861004826, 2001.
58. G. Harrison. Oracle SQL High-Performance Tuning, 2nd ed. Prentice Hall PTR ISBN: 0130123811, 2000.

Monica Larre Bolaños Cacho. She studied Computer Engineering at Instituto Tecnológico y de Estudios Superiores de
Monterrey in Cuernavaca City. She has a MSc degree in Software Engineering: Databases, Programming languages, and

 225

Monica Larre, et al

a PhD degree in Computer Science from de Instituto Tecnologico y de Estudios Superiores de Monterry. Her research
interests include data integration, data mining and databases.

José Torres Jiménez He studied Electronics Engineering at Tecnologico de Nuevo Laredo. He has a MSc degree in
Computer Systems and a PhD degree in Computer Science from ITESM Campus Cuernavaca. His research interests
include Databases, Computational Complexity and Programming Languages.

Eduardo Morales Manzanares. He Eduardo Morales studied Physics Engineering at Universidad Autonoma
Metropolitana in Mexico City. He has an M.Sc. degree in Information Technology: Knowledge-Based Systems from the
University of Edinburgh, Scotland and a Ph.D. degree in Computer Science from the Turing Institute - University of
Strathclyde, also in Scotland. His research interests include machine learning, data mining and robotics.

Juan Frausto Solís. He studied Electrical Engineering at IPN in Mexico City and a Ph.D Degree and a DEA in
Electrical Engineering in Computational Methods area at Politechnique of Grenoble, France. His research interests
include Combinatorial Optimization and Formal Methods in Software Engineering.

Sócrates Torres Ovalle. He studied Electronic and Comunication Engineering at FIME. He has MSc Degree and PhD
degree in Computer Science from ITESM. His research area is programming languages.
 226

	
	Abstract
	Resumen
	While SIU source
	Case 1. Data Scale Conflict (domain incompatibility)
	Case 2. Data Accuracy Conflict (domain incompatibility)
	Case 3. Aggregation Conflict (abstraction levels incompatibility)
	Case 4. Schematic Discrepancy Problem (abstraction level = Attributes)
	Case 5. Schematic Discrepancy Problem (abstraction level = Entities)
	References

