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Abstract 
 

The description of the optimal Sampling – Reconstruction Procedure (SRP) of Gaussian fields is given on the basis of 
the conditional mean rule when the quantity of samples is limited. The Gaussian fields are described by two types of 
space covariance function: exponential and Gaussian. A lot of both reconstruction and reconstruction error surfaces 
are obtained by numerical calculation. We changed the type of the covariance functions; the type of sampling 
(uniform: triangular, square, etc. and non – uniform: polar, spiral, and arbitrary); the quantity of the samples; the 
distances between the samples; and radii of the covariance functions of both axes. We demonstrate how all above 
mentioned factors influence on principal optimal SRP characteristics. The results of the calculations have clear 
interpretations. 
Keywords: Gaussian Fields, Uniform and Non - Uniform Sampling, Reconstruction Functions, Reconstruction Error 
Functions. 
 
Resumen 

 
La descripción del Procedimiento óptimo de Muestreo – Reconstrucción de los procesos Gaussianos esta dada en 
base a la regla de la media condicional cuando la cantidad de las muestras es limitada. Los Campos Gaussianos están 
descritos por dos diferentes funciones espaciales de covarianza: exponencial y Gaussiana. Varias superficies de 
reconstrucción y de error de reconstrucción son obtenidas a partir de los cálculos numéricos. Cambiamos el tipo de 
las funciones de covarianza; el modo de muestreo (uniforme: triangular, cuadrada, etc. y no uniforme: polar, espiral y 
arbitraria); la cantidad de muestras; la distancia entre las muestras; el radio de las funciones de covarianza en ambos 
ejes. Demostramos como estos factores influyen en las principales características del Procedimiento óptimo de 
Muestreo - Reconstrucción. 
Palabras claves: Campos Gaussianos, Muestreo Uniforme y no Uniforme, Funciones de Reconstrucción, Funciones 
de Error de Reconstrucción. 
2000 Mathematics subjects classification –60Hxx, 94A20 

 
1 Introduction 
 
The description of the Sampling-Reconstruction Procedure (SRP) of both deterministic images and stochastic fields has 
been discussed in many publications. Here we note the papers.(Petersen and Middleton, 1965) –(Bourgeois, 2001), 
(Pogany, 1999) – (Klesov, 1985). In Clark (1985) and Stark (1993), the SRP of some deterministic images is considered. 
The papers (Petersen, 1965) – (Zeevi, 1993), and (Bourgeois, 2001), are devoted to the investigation of some different 
aspects of the SRP of random fields. Usually, the random fields are characterized by a covariance function or a power 
spectral density. A probability density function (pdf) of fields is not discussed by the authors of the mentioned papers. 
The work (Poganu, 1999) is a review of the publications with almost sure restoration algorithms for both the stochastic 
processes and random fields. The main feature of this approach is related to some generalizations of the so-called 
Kotel’nikov-Shannon’s series and the problems of the convergence of this series in the multidimensional case (see also 
(Pogany, 1995) – (Klesov, 1985), and some other references in Pogany (1999)). Different kinds of sampling are used in 

227 

mailto:vkazakov41@hotmail.com
mailto:africanov@mail.


Vladimir Kazakov and Sviatoslav Afrikanov 

all of these papers: uniform (triangular, square, pentagonal, etc.) and non-uniform (polar, spiral, etc.). In Clark, (1985), 
Zeevi (1993), and Bourgeois (2001), the main attention is put on the transformation of the non-uniform sample set into a 
uniform sample set in order to attain simplification in an analysis. 

The problem of the calculation of the reconstruction error is very difficult in any case. For instance, in Petersen, 
(1965), the calculation of the error reconstruction function is given for a one-dimensional case, i. e. for a random process 
but not for a random field. In Zeevi, (1993), some bounds for the reconstruction of one-dimensional errors were 
obtained. The reason for  these difficulties is the lack of any information about pdf of the fields under consideration. 

The present paper is devoted to the statistical description of the SRP of some Gaussian fields on the basis of the 
multidimensional conditional mathematical expectation rule. As is well known (see, for instance, Cramer, (1946)) this 
rule provides the minimum of the mean square error. This approach was applied in the statistical description of the 
optimal SRP of some stochastic processes and their transformations, when the sample set is limited. The case of  a 
limited set of samples is very important both for the practice and for the theory. The present paper is a generalization of 
the conditional mean rule on the multidimensional case - the Gaussian random fields. 

We consider Gaussian random fields with two types of  space covariance functions: exponential and Gaussian. The 
fields can be isotropic or anisotropic. This feature is analytically reflected by equal or different radii of the covariance in 
the expressions of the covariance functions. The corresponding spectral density functions are infinite. The quantity of 
samples is arbitrary and limited. The location of the samples is arbitrary, i.e., the distance between samples can be 
arbitrary as well. It is necessary to know the exact coordinates of all samples. 

One can emphasize a very important fact. In order to describe the Gaussian fields completely it is sufficient to use the 
usual statistical characteristic - a space covariance function and the mathematical expectation. For this reason we do not 
need any other special statistical characteristics. The difference between the present paper and many other papers is that: 
i) we apply the conditional mean rule; ii) we analyze the optimal SRP algorithms with an arbitrary number of samples; 
and iii) we concretize the type of multidimensional pdf as the Gaussian pdf. We give a detailed optimal SRP description 
of Gaussian fields, i.e. we determine the optimal reconstruction surfaces and the minimum reconstruction error surfaces 
in many very important practical cases. Therefore, the present paper has an applied character. 

Non-Gaussian fields must be characterized by a special multidimensional pdf or by many moment or cumulant 
multidimensional functions of high orders. The calculation of both the conditional mean and the conditional variance is 
very difficult in this case. 
Some results of the present paper were orally presented by Kazakov (2003). 
 
 
2 General expressions 
 
For the sake of methodology we first discuss some principal expressions for stochastic Gaussian processes and after that 
some expressions for Gaussian fields will be considered. 
 
 
2.1 The case of the Gaussian processes 
 
Let us consider the general case of a non-stationary Gaussian process ( )tx  with the mathematical expectation ( )tm , 

the variance , and the covariance function ( )t2σ ( )21 ttK , . This is the complete information about the given process 
because one can write the exact expression for the multidimensional pdf of the arbitrary order m 
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where  is the determinant of the covariance matrix ||),(|| li ttKdet
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We fix the set of the samples X, T . Then the conditional pdf will be a Gaussian one 

also. The main statistical characteristics of this conditional process are known (see, for example, the pages 44 – 47 of 
Stratonovich, (1963)): 
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The conditional Gaussian process )(~ tx  is completely described by the expressions (4) – (6). 
It must be emphasized that all formulas of this Subsection are valid for a non-stationary Gaussian process and for an 

arbitrary set of samples X, T. This means: i) we need to know all moment functions , ,  of a 
non-stationary process ; ii) the set of samples X, T can have an arbitrary number of samples N and any arbitrary 

distance between samples . We choose the conditional expectation mean 

)(tm )(t2σ ),( 21 ttK
)(tx

1−− ii TT )(~ tm  as the optimal reconstruction 

function which provides the minimum of the square error )(~ t2σ  of the estimation of a given process  for any time 
t when the set of samples X, T is given. One can notice here that the quantity of samples is limited by N. Therefore , the 
reconstruction procedure of a complete realization of the process  

)(tx

)(tx )( ∞<< t0  must be carried out by the renewal 
of the given set of samples X, T. There are some different variants of this renewal. We use the variant when the quantity 
of samples N is constant and the renewal of the given set is fulfilled by a shift: one (or some) of the past samples is (are) 
canceled and one (or some) new sample(s) is (are) entered into the set of samples. From (4) one can notice that the 
reconstruction function )(~ tm  depends on both all of samples  )( lTx ),...,( Nl 1=  and the unconditional mathematical 

expectation ,  .The error reconstruction function )(tm )( lTm ),...,( Nl 1= )(~ t2σ  does not depend on the values of 

samples, but depends on both the coordinates ),...,( NlTl 1=  of samples and the unconditional variance )(~ t2σ . These 

main statistical characteristics of the SRP )(~ tm  and )(~ t2σ  depend on both the covariance moments between all pairs 

of the samples  (this dependence is reflected by the elements  of the inverse covariance matrix) and the 

covariance function ,  between the random variable  with the current time t and all samples 

. It is clear that the reconstruction function 

),( ji TTK ija
),( lTtK ),( tTK l )(tx

)( lTx )(~ tm  is equal to the values of samples  when )( lTx ),...,( Nl 1=
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lTt = . It is also clear that the error reconstruction function )(~ t2σ  is equal to zero in the all moments ),...,( NlTl 1=  

of samples and it tends to the a priori variance when ∞→− NTt  (this is the extrapolation case). 
This approach was used in the statistical description of the SRP of stochastic processes of different types. In 

particular, the SRP of non-stationary Gaussian processes was investigated by Kazakov (1997 and 2002). Some problems 
of the SRP description of the stationary Gaussian processes were discussed in the papers written by Kazakov et al. 
(1994 and 1995). In this case in the formulas (4) and (5) it is necessary to have m(t) = m, , and 

, 

22 σσ =)(T
)(),( ll tTKtTK −= )(),( tTKtTK ll −= . The SRP of one-dimensional Gaussian processes is considered by 

Kazakov et al. (1994). The SRP of multidimensional Gaussian processes (with some two-dimensional examples) was 
investigated by Kazakov at al. (1995). Papers written by Kazakov (1988 and 2001) were devoted to the SRP of some 
non-Gaussian processes. 
 
 
2.2 The case of the Gaussian fields 
 
Generally, random fields can be changed both in space and in time. We restrict our analysis to the case when the field 
does not depend on time. It depends on two coordinates ),( yxξ . We study the case of the Cartesian coordinates x and 
y. Hence, the field is represented by an infinity of surfaces as separate realizations. In the Gaussian case the field can be 
completely determined by its mathematical expectation ),(),( yxmyx =ξ  and the space covariance function 

. Below we consider the stationary case when ),;,( yyyxxxK ΔΔ ++ myxm =),(  and 

.It is natural that . This is the variance of the field. ),(),;,( yxKyyyxxxK ΔΔΔΔ =++ 200 σΔΔ === ),( yxK
We choose two types of covariance functions: Gaussian and exponential. The Gaussian covariance function 

corresponds to some smooth fields. Its mathematical expression is 

( )2 2( , ) exp ( ) ( )x yK x y x yσ α α 2⎡ ⎤Δ Δ = − Δ + Δ⎣ ⎦  (7) 

where xα  and yα  are the coefficients determined by a slope of change of a covariance function along the axes x and y. 
The broken fields are characterized by the exponential covariance function. Its mathematical expression is 

2( , ) exp ( | | | |)x yK x y x yσ β β⎡ ⎤Δ Δ = − Δ + Δ⎣ ⎦  (8) 

 
In order to give the physical interpretation of the coefficients xβ  and yβ  we fix one coordinate (for instance y) and 

make a section. In this section we have a stochastic Gaussian process )(xξ  with the exponential covariance function 

.As is known, this covariance function describes the Markov Gaussian process with 

the frequency band of the power spectrum 

[ ||(exp)( 2
xxxK ΔΔ βσ −= ]

xβ  or with ''the covariance time '' xβ/1 . It is clear that in our case it is 

necessary to call this parameter “the covariance radius” xρ  along the axis x. 
We remember that the Markov Gaussian process is non-differentiable, hence, its realizations are broken and its 

spectrum is rather wide. If yx αα =  and yx ββ =  then the Gaussian fields are isotropic. In other cases the fields are 
un-isotropic. 

In order to get surfaces of both the optimal reconstruction function and the minimum reconstruction error function 
we need to enter the one two-dimensional random variable with the current coordinates ),( yxξ . This variable is the 

conditional variable with respect to the set of N fixed samples: ),(),...,,(),,( NN yxyxyx ξξξ 2211 . Then, we change 
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our designations in expressions (4) and (5): the current point of the field is ),( yxξ  and the fixed set of samples is 

)},(),...,,(),,({ 2211 NN yxyxyx ξξξ=Ξ . Hence, instead of the expressions (4) and (5) we have: 

[ ]
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As one can see, we use the same indexes for both Cartesian coordinates of each sample. 

For the sake of simplification we put the mean of field equal to zero 0),(),( == yxyxm ξ , and the variance 

equal to one . Then formulas (9) and (10) will be simplified: 1),( 22 == σσ yx
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All the following results of the calculations are based on expressions (11) and (12) 

 
 
3 The uniform SRP 
 
Now we apply the general expressions for some types of uniform SRP. In this case the points of the field discretization 
are located at the angles of triangles, of squares, of pentagons, etc. The quantity of samples, their Cartesian coordinates, 
and their values must be known. 

The surfaces of the two reconstruction functions are presented in Fig. 1 and Fig. 2 when the quantity of samples is 
equal to 4 and the points of samples are located at the angles of a square. The surface in Fig. 1 corresponds to the field 
with the Gaussian covariance function (7). The parameters of the calculation are the following: The number of the 
samples is 5. The coordinates of the samples are: 5.011 −== yx ; 5.0,5.0 22 =−= yx ; ; 5.033 == yx 4 0.5,x =  

; . The covariance radii are equal:4 0.5y = − 055 == yx 1== yx ρρ . The reconstruction function of the field with the 
exponential covariance function (8) is presented in Fig. 2. Both the coordinates and values of the samples are equal in 
Fig. 1 and Fig. 2. As one can see, the reconstruction surfaces have a difference. The surface in Fig. 1 is smooth; it does 
not have any fractures. The surface in Fig. 2 is characterized by the presence of many fractures. The reason for these 
differences is determined by the different properties of both covariance functions (7) and (8). These differences will be 
observed in all graphs in this paper; therefore, we will not discuss below these features of the graphs. 
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Fig. 1. The reconstruction function for  uniform sampling. 
The covariance function is Gaussian. 

 Fig. 2. The reconstruction function for uniform sampling. The 
covariance function is exponential. 

 
For the square sampling the surfaces of the three reconstruction error functions are presented in Fig. 3, 5, 7. Fig. 4, 

6, 8 illustrate the sections of these surfaces. The graphs in Fig. 3, 4 and Fig. 5, 6 are related to sampling with the same 
parameters as in Fig. 1 and 2. As one can see, the reconstruction errors are equal to zero in the points of samples. The 
errors are increased if the current point is moved off the sample points. This is the reason for a local maximum of the 
error in the centers of Fig. 3 - 6. It is natural that the errors are increased to one if the coordinates of the current point are 
moved off the sample points. The graphs in Fig. 7 and 8 are characterized by another case. The parameters of the 
calculation are the following: 25.011 −== yx ; 25.0,25.0 22 =−= yx ; 25.033 == yx ; 

; . The covariance radii are equal:5.0,25.0 44 −== yx 055 == yx 1== yx ρρ . Here the distances between the 
sample points are smaller then the distances in the cases Fig. 1 - 6, but the covariance radii are the same and are equal to 
1. Here there is not big maximum in the centers of the Fig. 7 and 8. 

It is natural that the statistical dependences between the current point around the center of the square and the sample 
points are stronger. Hence, the reconstruction error is smaller, but not equal to zero. Therefore, one can not see the 
maximum in the center of the square in the chosen scale of the graphs. 

The anisotropic case is illustrated by Fig. 9 and 10. The locations of the samples are the same as in Fig. 1- 6. But the 
radii of the covariations are different. Here, instead of 1== yx ρρ  we have 2.1=xρ  and 8.0=yρ . The graphs 
on Fig. 9 and 10 show a very natural result: the reconstruction error along the axis y has the smaller values in 
comparison with the error along the axis x if the distances between the current point and the sample points are the same. 

The graphs of error reconstruction functions with the triangular sampling when the quantity of samples is equal to 7 
are presented in Fig. 11 - 14. In these Figures the parameters of the calculation are as follows: 

; ; 0;3.1 11 =−= yx 125.1;65.0 22 −=−= yx 125.1;65.0 33 −== yx ; 0;3.1 44 == yx ; 125.1;65.0 55 == yx ; 
; . The covariance functions are different: in Fig. 11 and 12 we have Gaussian 

covariance and in Fig. 13 and 14 - exponential. The covariance radii are equal: 

125.1;65.0 66 =−= yx 077 == yx

1== yx ρρ . The shapes of all curves 
are clear, so it is not necessary to give any other explanation. 

It is quite possible to consider some other types of uniform sampling. 
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Fig. 3. The error reconstruction function for uniform 
sampling. The covariance function is Gaussian.s  Fig. 4. The sections of error reconstruction function for 

uniform sampling. The covariance function is Gaussian.s 
 

 

 
Fig. 5. The error reconstruction function for uniform 
sampling. The covariance function is exponential.  Fig. 6. The sections of error reconstruction function for uniform 

sampling. The covariance function is exponential. 
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Fig. 7. The error reconstruction function for uniform 
sampling. The covariance function is Gaussian.  Fig. 8. The sections of error reconstruction function for 

uniform sampling. The covariance function is Gaussian. 
 

 

Fig. 9. The error reconstruction function for uniform 
sampling. The covariance function is Gaussian. The 
anisotropic case. 

 
Fig. 10. The sections of the error reconstruction function for 
uniform sampling. The covariance function is Gaussian. 
Anisotropic case. 
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4 The non-uniform SRP 
 
In this Section we consider three types of non-uniform sampling. There are polar, spiral, and arbitrary sampling. 
 
4.1 Polar Sampling 
 
In this type of sampling the sample points are located on concentric circles. Usually the distances between circles are the 
same. The location of the sample points on the circles is determined by the cross points of the circles and radii with 
different angles. Usually the angles between radii are identical. Below we used these rules of sampling. 
 

 

 
Fig. 11. The error reconstruction function for uniform 
sampling. The covariance function is Gaussian.  Fig. 12. The sections of the error reconstruction function for 

uniform sampling. The covariance function is Gaussian. 
 

 

 
Fig. 13. The error reconstruction function for uniform 
sampling. The covariance function is exponential.  Fig. 14. The sections of error reconstruction function for 

uniform sampling. The covariance function is exponential. 
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The result of the calculations of the reconstruction function of the Gaussian field with the Gaussian covariance 
function and with the identical covariance radii 67.0== yx ρρ  is presented in Fig. 15. The quantity of the radii is 

equal to 8, and the quantity of the rings is equal to 2. The distance rΔ  between the rings is equal to 1. The 
reconstruction error surfaces are presented in Fig. 16 and 17. Here the quantity of the radii is equal to 16 and the quantity 
of the rings is equal to 4. The distance rΔ  between the rings is equal to 1.2. The radii of the covariance are the 
same: 67.0== yx ρρ . In Fig. 17 the points of samples are marked by crosses. One can see that the surface of the 
error has deep pits and high hills. The values of the error in the pits are equal to zero. The height of the hills is nearly 
equal to one. This effect is explained by the large distances between the rings ( 21.=rΔ ) in comparison with the radii 
of the covariance 0.67. 
 

 

 

 
Fig. 15. The reconstruction function for polar sampling. 
The covariance function is Gaussian. The number of rings 
is 2, the number of radii is 8, the distance between the rings 
is 1, the covariance radii are equal to 0.67. 

 
Fig. 16. The reconstruction function for polar sampling. The 
covariance function is Gaussian. The number of rings is 4, the 
number of radii is 16, the distance between the rings is 1.2, the 
covariance radii are equal to 0.67. 

 

 

 

 
Fig. 17. The section of error reconstruction function for tpolar 
sampling. The covariance function is Gaussian.  Fig. 18. The error reconstruction function for polar sampling. 

The covariance function is Gaussian. The anisotropic case. 
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The anisotropy case is illustrated by Fig. 18 and 19. Here there is the exponential covariance function. Once again, 
the distance ( 1=rΔ ) between the rings is more then the radii of the covariance ( 33.0,67.0 == yx ρρ ). So there 
are large hills on the surface of the error. It is natural that slopes are steeper along the x axis than along the y axis. 

By the way, this algorithm gives a way to calculate the main characteristics of the polar SRP if the distances between 
rings are different and the angles between the radii are different as well. 
 

 

 

Fig. 19. The section of error reconstruction function for 
tpolar sampling. The covariance function is Gaussian. The 
anisotropic case. 

 Fig. 20. The reconstruction function for spiral sampling. The 
covariance function is exponential. 

 
 
4.2 Spiral Sampling 
 
Linear spiral sampling is usually described by the following expression (see, Bourgeois, (2001)): 
 

πϕπϕα 20),2( <≤+= kkjk jr  (13) 

where  is the sampling point on the revolution with the number j and on the row with the angle jkr kϕ ; α  is a constant 

parameter of the spiral; 1,...,2,1,0 −= ϕNk ;  is the quantity of the rows crossing the spiral or the number of 

samples on any revolution;  is the number of the revolution. For our aim it is necessary to determine the 
Cartesian coordinates of each sampling point following (13). The method of the calculations is based on the formulas 
(11) and (12). One example of the surface of the reconstruction function of the field with the exponential covariance 
function is presented in Fig. 20. The sample points are marked by peaks. In Fig. 21 - 24 the surfaces of the 
reconstruction error function are given. The covariance function is Gaussian for both cases. In these figures all 
parameters are the same: the quantity of rings is equal to 2; the quantity of rows is equal to 5; the parameter 

ϕN
,...2,1,0=j

2.0=α . 
There is one exception: in Fig 21 and 22 we have the isotropic case ( 1,1 == yx ρρ ); in Fig. 23 and 24 there is the 

anisotropic case ( 5.0,1 == yx ρρ ). This is the reason for the prolate character of the graphs in Fig. 23 and 24. In 
Fig. 21 - 24 one can see the central area with a very small error. It is very easy to understand this fact: the distances 
between samples in this area is rather small in comparison with the radii of the covariances. 
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There are not any difficulties in calculating the same SRP characteristics for any other types of sampling (a 
hyperbolic spiral, a logarithmic spiral, etc.). 
 

 

Fig. 21. The reconstruction function for spiral sampling. The 
covariance function is Gaussian.s  Fig. 22. The sections of the error reconstruction function for 

spiral sampling. The covariance function is Gaussian. 
 

 

Fig. 23. The reconstruction function for spiral sampling. 
The covariance function is Gaussian. The anisotropic case  

Fig. 24. The sections of the error reconstruction function for 
spiral sampling. The covariance function is Gaussian. The un-
isotropic case. 
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4.3 Arbitrary Sampling 
 
The statistical description of the SRP of the Gaussian fields on the basis of formulas (11) and (12) makes it possible to 
calculate the main SRP characteristics for an arbitrary location of samples. It is necessary to remember that there are not 
any problems with the SRP description of Gaussian stochastic processes with a non-uniform sampling. We can see the 
same situation in the statistical description of the Gaussian random fields. We illustrate this statement by the surfaces of 
the reconstruction error functions in Fig. 25 - 28. There are four samples on both figures. The covariance radii are equal: 

1== yx ρρ  in both cases. The Cartesian coordinates of the samples are following: 
 
 
 
Fig. 25 and 26 ; 75.011 −==− yx 5.0;5.0 22 =−= yx ; 25.0;5.0 33 == yx ; 5.0;75.0 44 −== yx . 
 
 
Fig. 27 and 28 ; 75.011 −==− yx 75.0;25.0 22 =−= yx ; 0;25.0 33 =−= yx ; 25.0;75.0 44 −== yx . 
 
 
 

As one can see, the locations of the sample points are arbitrary. The type of the covariance function is Gaussian. The 
character of the graphs does not now demand any special comments. 
 
 
 

 

 
Fig. 25. The reconstruction function for arbitrary sampling. 
The covariance function is Gaussian.  Fig. 26. The sections of error reconstruction function for 

arbitrary sampling. The covariance function is Gaussian. 
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Fig. 27. The reconstruction function for arbitrary sampling. 
The covariance function is Gaussian.  Fig. 28. The sections of error reconstruction function for 

arbitrary sampling. The covariance function is Gaussian. 
 
5. Conclusions 
 
The statistical description of the optimal Sampling-Reconstruction Procedure on the basis of the conditional mean rule 
was productively applied for many cases of stochastic processes. This work is the generalization of this approach for the 
optimal SRP description on random fields. We use the usual initial information in order to describe the random fields - 
their space covariance functions. But thanks to the fact that we concretize the type of probability density function of the 
fields (namely, the Gaussian pdf) we found it possible to apply the formulas for the conditional mean and for the 
conditional variance in order to describe the SRP of the Gaussian fields. We demonstrated the exceptional simplicity of 
the calculation of the main statistical characteristics of the SRP for many variants. 

The Gaussian fields are described by two types of space covariance functions: exponential and Gaussian. The 
corresponding spectrums are infinite. There are not any restrictions on the view of the covariance function or for the type 
of power spectrums. For instance, the space spectrum can be limited. A lot of both reconstruction and error 
reconstruction surfaces are obtained by the numerical calculation. The applied algorithm of the statistical SRP 
description of Gaussian fields makes it possible to reflect a lot of SRP details. We demonstrate how both the 
reconstruction and the error reconstruction functions are changed if the covariance functions, the types of sampling 
(uniform: triangular, square, etc. and non-uniform: polar, spiral, and arbitrary), the quantity of samples, the distances 
between samples, and radii of the covariance functions of both axes are changed as well. The results of the calculations 
have clear physical interpretations. 
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