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Abstract 
 
We present a geometric error concealment scheme for Discrete Cosine Transform (DCT) based image/video data 
based on the Bezier Curves (BC). Our scheme unlike the original proposal of Zeng and Liu, 1999, makes use of the 
average edge direction and local curvature (extracted from healthy blocks around the damaged block) as boundary 
conditions to create an n-degree BC. The BC is then used to interpolate the edge of the lost block (8x8 pixels), as well 
as to directionally reconstruct its low frequency data. In those cases where more than one edge is found to cross the 
lost area, a cost function defined in terms of the local and global edge curvature is used to find their best match. 
Results show that our approach provides an almost perfect reconstruction and excellent subjective quality of the 
restored data, outperforming current linear interpolations schemes in the literature. 
Keywords: Error Concealment, DCT-based compression, Bezier Curves. 
 
Resumen 
 
Se presenta un esquema nuevo para el  ocultamiento de errores de transmisión (pérdidas de paquetes) en imágenes y 
video basado en las Curvas de Bezier (BC). El esquema propuesto a diferencia de la propuesta original de Zeng y Liu, 
1999, hace uso de la dirección promedio de los bordes y curvatura local alrededor de la zona dañada como 
condiciones de frontera para crear una curva de Bezier de grado n. La BC es usada para interpolar los bordes del 
bloque perdido (8x8 pixels), así como también para la reconstrucción de la información correspondiente a las bajas 
frecuencias. En casos donde más de un borde atraviesa la zona dañada, se propone una función de costo en términos 
de sus curvaturas local y global para encontrar sus correspondientes pares y proceder con el proceso de interpolación 
(reconstrucción) de la información perdida. Los resultados muestran que nuestro esquema reconstruye casi 
perfectamente la información perdida (durante la transmisión) lo que repercute en una excelente calidad subjetiva de 
la imagen/video reconstruido. Nuestro esquema es muy superior a los interpoladores lineales encontrados en la 
literatura. 
Palabras Clave: Ocultamiento de Errores, Compresión basada en la DCT, Curvas de Bezier. 

 
 
1 Introduction 
 
Error Concealment by post-processing (EC) is a widely used technique for data recovery in which the receiver takes full 
responsibility of the reconstruction process. It attempts to recover the lost data without relying on additional information 
from the source-end [Salama, et al., 2000]. EC does not guarantee a perfect recovery, but it can recover from errors 
when other techniques such as Forward Error Control (FEC) or data retransmission fail to do their job [Hasimoto, 2001]. 
Error concealment can be classified into two broad categories: temporal and spatial error concealment. In this work we 
concentrate on Spatial Error Concealment, where the corrupted area (lost block) is filled in by using information from 
adjacent error free blocks, rather than using information from previously decoded frames (as in temporal error 
concealment). In this category there are three main approaches found in the literature for recovering from transmission 
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errors [Hasimoto, 2001; Pei-Chun, et al., 2002; Shahram, et al., 1999]: Minimum Distance Interpolation (MDI), 
Directional Interpolation (DI), and Bayesian Interpolation (BI). The first category makes use of the smoothness property 
among neighboring blocks, and the best reconstruction is achieved by an energy constrained minimization approach 
[Zhu, et al., 1993; Wang, et al., 1993; Hemami and Meng, 1995]. These methods in general, have a tendency to blur 
edges because the spatial variations are measured by calculating the difference between two adjacent pixels, which are in 
turn minimized by a cost function. DI schemes have been proposed to solve this problem. DI is based on the extraction 
of the local structure (e.g. direction of edges) around the missing block for its reconstruction [Kwok and Sun, 1993; 
Jung, et al., 1994]. These techniques have become very popular because of their simplicity and efficiency to recover low 
and high frequency components. Kwok and Sun, 1993, proposed a spatially correlated edge information scheme to 
perform a multidirectional interpolation (along 8 different paths) to restore the missing blocks. Jung, et.al, 1994, 
developed an algorithm similar to Kwok and Sun, 1993, except that they used the first layer of pixels surrounding the 
lost block to obtain the average direction for the interpolation process. Zeng and Liu, 1999, proposed a directional 
interpolation based on the geometric structure around the lost block as a viable alternative for a more pleasant 
reconstruction. In this approach, the direction of every edge transition is quantified and inserted in a cost function for the 
edge matching process. The use of a priori model along with the smoothness assumption among neighboring blocks is 
considered in the BI schemes. Markov Random Fields (MRF) has been used to model the image properties, because of 
its tractability and the ability of the model to capture non-Gaussian aspects of the image such as edges [Shahram, 1999]. 
Even though BI uses a priori model, not necessarily produces better results than the DI schemes. 

In general, the above techniques give relatively good results under simple edge patterns, such as straight line crossing 
throughout the lost block.  In this work, we propose a generalized interpolation scheme based on Zeng and Liu’s 
scheme, capable of representing more complicated edge geometries (such as curved edges, rounded corners, etc.) by 
considering the average edge direction, local and global edge curvature and adaptive Bezier curves to model the 
geometric structure of the lost blocks. Figure 1 describes the entire scheme. The surrounding 4 layers of the lost block 
are first converted into a binary pattern by thresholding. The structure of the edge is inferred based on the position of the 
control points and curvature values at each transition point. Finally, directional interpolation along the curve is applied 
to the missing pixels in each region. A rough difference between our scheme and the one presented by Zeng and Liu is 
shown in Figure 2. Figure 3 shows the limitation of Zeng and Liu’s scheme when a lost block is surrounded by curved 
edges. We will show that our proposed scheme produce high quality results, which are visually undistinguishable from 
the original information.  

 
 

 
 
 

Ej 
Gij

Fig. 1. General diagram of the proposed scheme. (a) The lost block; (b) binary pattern; c) 
inferred structure; and (d) reconstructed block through Bezier interpolation. 
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This paper is organized as follows. Section 2 provides a theoretical overview of BC; section 3 describes the proposed 
model, and presents a simplified scheme for the computation of the local edge curvature. Section 4 demonstrates the 
effectiveness of the model for restoring missing information with 1, 2, and 3 edge patterns (representing 2, 4, and 6 edge 
transition points respectively). Finally, conclusions are presented in section 6.   
 
 
2 Bezier Curves (BC) 
 
Bézier curves different than other curve modeling techniques (splines curves) are not constrained to pass through all the 
specified points, instead they only approximate the given points (called control points), as shown in Figure 4 [Farin, 
1993]. Once the control points are given, the curve shape is determined. This behavior of the BC is an important 
characteristic useful to transform them into a powerful error concealment scheme. When a block is lost, the average 
features such as edge position and average tangent of the surrounding blocks can be entered into the BC model as 
control points (edge curvature is used for the edge matching process). The model will then find the best fitting curve 
under the current boundary conditions. Another characteristic of the BC is that it is not needed to specify additional 
dependencies of the control points in the lost block, as in the case of the spline curve model, the dependencies are 
already fixed by the model. Therefore, the key point consists in defining the best properties representing the lost block, 
in order to minimize the difference between the restored block and the neighboring blocks. For this to happen additional 
constrains and assumptions must be set forth as explained later on this section. The Bezier curves can be defined by a 
parametric function of the following form: 
 
 

Edge Detection 

Geometry Inferring 
Based on Edge Direction

Directional Filtering based on 
Linear Interpolation

Edge Detection 

Geometry Inferring 
Based on Edge Direction 

And Edge Curvature 

Directional Filtering based on 
Bezier Interpolation 

(a) (b)Fig. 2. (a) Zeng and Liu’s EC scheme, (b) our proposed scheme. 

Fig. 3. Lost block (left) and its reconstruction based on Zeng and Liu, 1999 (right). 
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where the vectors Pi represent the n+1 vertices or control points of a characteristic polygon (Figure 5),  n
iB are the 

Berstein Polynomials for u ∈ [0,1], defined as: 
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and where C(n,i) is the familiar binomial coefficient: 
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There are several properties of the Bézier curves that are important for the design of our EC scheme; these are [Farin, 
1993]: 

 
1. Endpoint interpolation: The function interpolates the first and last control points; that is, the curve segment must 

start on P0 and end on Pn. This property comes from the fact that the Berstein Polynomials form a partition of unity: 
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Fig. 4. Bezier curves and control points 
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This fact can be proved with the help of the binomial theorem: 
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Figure 5 shows the blending functions for n = 2 and 3.  
 
 

2. Symmetry: It does not matter if the Bézier curves are labeled P0,P1,…,Pn, or Pn,Pn-1,…,P0. The curves that 
correspond to the two different orderings look the same; they differ only in the direction they are traversed. 

3. Linear Precision: This can be expressed as: 
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When the control points are uniformly distributed on a straight line joining two points a and b, the curve that is 
generated is also a straight line. 

Fig. 5. Berstein polynomials. (a) Three points, n=2; (b) Four points, n=3. 
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4. Pseudo-local control: The Berstein polynomials n
iB  have only one maximum and attains it at t=i/n. If we move 

only one control point say Pi, then the curve is mostly affected by this change in the region of the curve around the 
parameter value i/n. Roughly speaking, the maximum of each n

iB  is 1/3; thus the change of Pi  by 3 units. 

For any Bezier curve, each Pi is weighted by its associated n
iB ; when u=0, P0 is given a weight of 1.0 and P1 through 

Pn a weight of zero. Less weight is given to P0 and more to each succeeding Pi as u increases; reaching a maximum 
weight for each Pi then u becomes i/n (property 4). When u=1 the effect of all control points is zero, except Pn, which is 
1.0. Another important property of the Bézier curve is derived in terms of its derivative at the end points, which can be 
expressed as: 
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3 Reconstruction Scheme 
 
In our proposed scheme we assume that a lost block (8x8 pixels) is surrounded by all its neighbors (undamaged blocks). 
In current image/video standards this is difficult to achieve since contiguous blocks are usually inserted in one packet, 
meaning that the loss of a packet during transmission represents the loss of several blocks (or at least one block). In 
order to deal with this problem we can make use of block-based interleaving schemes, which transforms the loss of a 
sequence of block into a random loss. Interested readers are referred to reference to Posnak, et al., 1995, for more 
information on data interleaving.  

Our EC scheme introduces a curvature analysis, average edge direction and higher order interpolation to the scheme 
presented by Zeng and Liu, 1999. The algorithm can be described in 4 main steps: 
1) Extraction of edges, edge directions and curvature around the lost block; 2) Edge matching analysis and determination 
of the interpolation scheme based on global (edge to edge transition curvature) and local curvature (edge curvature) 
measurements; 3) Edge modeling based on BC; and 4) Interpolation of low frequency information between the edge 
structures (Figure 1). 
 
3.1 Edge Detection 
 
One of the main factors that affect the overall performance of directional interpolators is the selection of a good edge 
detector scheme. All further analysis (curvature extraction and edge matching process) depends on this first step. If the 
algorithm does not detect a visually active edge, it will be reflected in the final quality of the reconstructed block. On the 
other hand, if the algorithm detects every single change in luminance, it will complicate the decision process. After 
careful experimental consideration and for comparison purposes, we decided to use a generalized version of the binary 
edge detection scheme presented in [Zeng and Liu, 1999]. The generalized binary edge detector works as follows: The k 
largest values LAk and the k smallest values SMk  among the T surrounding layers of the lost block are first determined, 
for k=T2. Their average value (Lk + Sk)/2 is then used as the threshold (producing a bi-level image). A median filter of 
length 3 is applied after the threshold operation to eliminate isolated white or black points in the binary layers (see 
Figures 1 and 13). Since edge curvature needs to be computed at each transition point, the number of layers T around the 
lost block has to be T ≥ 3. Experimentally, T=4 gave the best results [Hasimoto, 2001]. 
 
3.2 Local and Global Curvature 
 
After edge detection, the number of transitions in the inner layer is identified. A transition point indicates that an edge is 
passing through this point. If more than 2 transition points are detected, outer layers (for k > 1) are used for the 
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estimation of both the local and global curvature at each transition point. These estimations are important for the edge 
coupling (matching) as well as to define the type of directional interpolation needed for the linking process (order of the 
BC), as shown below. Local edge curvature can be defined by the following equation [Farin, 1993]: 
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which represents the curvature of a twice differentiable function y=f(x) at a point (x,y). For digital images, this equation 
is not easy; it requires mapping down the edge starting from the transition point in the inner layer up to the value of k 
(number of layers surrounding the lost blocks). In addition, it may be too sensitive to small variation in pixel direction. 
Instead, a simpler scheme that analyzes the average behavior of the curvature is proposed, as described next. 
 

Consider a transition point E(x,y) at the upper side of the lost block, as shown in Figure 6. A squared path is traced 
(shaded pixels), starting at E(x+m,y), and ending at E(x-m,y) for m = T-1. The difference between the current and next 
pixels is computed for all points in the path. If there is a point (i,j) for x-m≤i≤x+m and y-m≤ j≤y, whose value (after the 
difference) is different than zero, a transition point E(i,j) has been found.  Otherwise it proceeds with the next pixel in 
the path. If no transition is found after reaching the end of the square path, m is set to m-1 and the process is repeated as 
previously described. The transition point E(i,j) is connected to E(x,y) through a straight line L. The local curvature is 
approximated by counting the number of white (#W) and black (#B) pixels in the new square region delimited E(i,j) and 
E(x,y), except those falling on L.  Curvature values are assigned as follow: 
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where kl  is the approximated local curvature.  

m
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E(i,j) 
Transition with  

Local 
Curvature

L

Fig. 6. Computation of local curvature at transition point E(x,y). Shaded pixels represent the searching path 
(with radius m) for a corresponding transition point. W and B are white and black pixels respectively after the 
edge detection. 
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Global curvature is computed differently than the local curvature. The objective here is to determine the curvature 
between 2 different edge transitions Ei and Ej connected by a straight line Gij (see Figure 1c).  The global curvature is 
defined as [Zeng and Liu, 1999]: 
 
 

jigk φφ +=  

 
 

where iφ  and jφ  are the angles between Gij and the edge at transition points  Ei and Ej  respectively. The curvature 
values kl and kg are used to define a cost function for the edge matching process (and for the direction of the 
interpolation as well). The cost function for transition points i and j is defined as: 
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The symbol ~ represents the logical not (~0 = 1, ~a = 0, for a ≠ 0). If no local curvature is found on the edges under 
consideration, only the first term is used in the cost function (Cij = kg). Both terms are used with equal weight, if a local 
curvature is detected in one of the edges; finally, only the second term is used when local curvature is detected in both 
edges ( j

j
li

i
lij kkC θθ −= ). This is closely related to the physical meaning of each term in eq. 1. The first term on the 

right side of eq. 1 represents the contribution of the global curvature to the cost function. It states that changes in edge 
direction inside a block are smooth (in particular for an 8x8 pixel block, as used in this work); that is if two edges belong 
together, kg must takes on small values. When local curvature is significant (high frequency components), the 
smoothness assumption is not always satisfied, that is the reason of the local curvature term in eq. 1. This term 
represents the states that local curvature is maintained along the edge; that is if two edges belong together, they will be 
in general on the same side of the line Gij, with small iφ - jφ . Drastic changes on the edge curvature are penalized by the 
cost function (Zeng and Liu cost function, depends on kg only). The complete edge geometry of the missing block is then 
obtained as follow: 
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with the restriction that no edge crossing is allowed.. 
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3.3 Edge Modeling 
 
The next step after the edge detection and matching processes is the edge modeling. The number of possible transitions 
is divided into 5 cases: 0, 2, 4, 6 and more than 6 transitions on the inner layer. Each transition is analyzed as follow:  

1. No-edge transition: If the range of gray levels is less than a specified threshold Tg = 20, the missing block is 
classified as a smooth block. A simple method based on bi-linear transformation can be effectively applied in this kind 
of situation.  In the first method, a missing pixel is reconstructed by the following equation: 
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with di and gi as defined in Figure 7.  
 

 
2. Two edge transitions: This is the most common case for the binary edge detector.  Since the edges (denoted by E1 
and E2) have to be linked to each other, the only decision to make is about the interpolation process between them. For 
this, we use kg as follow: 

 
• If kg = 0, all pixels are interpolated using bi-linear interpolation along the direction of θ12 (angle of G12 respect to the x-

axis connecting edge 1 and edge 2); that is: 
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• If kg > 0 and л-kg ≥ л/2, all pixels are interpolated using a second or third order Bezier curve depending on the 
structure of the edge. A fundamental problem here is finding all the points that will minimize the interpolation error. 

g1 

g2 g4 

g3 

P

d1 

d3 

d2 d4 

Fig. 7. Bi-linear pixel reconstruction for homogeneous regions (no transition points). 
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Fig. 8. Determination of the control point P1 based on the derivatives L1 
and L2 at points P0 and P2 respectively. 
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We found that 3 control points in the BC can represent all possible links between any two edges in an 8x8 pixel region, 
and rarely 4 are needed. Two of the control points are already known the start (P0) and end (Pnp-1) points, where np is 
the number of control points. These are located at the transition points E1 and E2 respectively. If we consider a BC with 
3 control points, the third control point (P1) is selected to be the intersection point between the lines L1 and L2 (see 
Figure 8). The point P1 satisfies the derivative properties of the BC defined in section 2.1. Once all the control points 
are defined, the directional interpolation is performed along the BC, considering only the extreme points as in the case 
of bi-linear interpolation. 
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Fig. 9. Avoiding cross-border interpolation in wrong intersection points by setting 
new control points (cross marks) on the inner layer. 

Fig. 10. Bad intersection points. (a) Transition points on the same side respect to G12; and 
(b) Transition point on the opposite side with respect to G12. 
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There are some cases that need special attention: a) when the interpolated pixels cross the limits of the lost block 
(Figure 9), b) when the lines L1 and L2 do not intersect or intersect in the same side as L1 and L2 (Figure 10a), and c) if 
L1 and L2 are in opposite sides with respect to G12  (Figure 10b). The solution in all cases is the inclusion of additional 
control points in order to increase the curve rate change (curvature). In the first case (a), a new pair of intermediate 
control points is defined on the intersection of L1 and L2 with the inner layer (making a total of 4 control points). We 
then performed the interpolation of the missing pixels as in the previous cases. For the solution of the second case (b), 
the distance between each control point and the inner layer is computed along the direction of their respective tangents 
(Li). The new control points are positioned at the minimum distance in the direction of their respective tangents (L1 and 
L2).  Finally, when the edges are on the opposite side to G (case c), the new control points are P1 = [E1y, E1x+ (E2x – 
E1x)/2] and P2 = [E2y, E2x - (E2x – E1x)/2] for transition point E1 and E2 respectively. If the new control points are off 
the block limits in either or both control points they are set to the inner layer. 

• If kg > 0 and л-kg < л/3 the decision is up to the local curvature at each edge. If 0=i
lk  and 0=j

lk , it is assumed 
that a corner exist, and bilinear interpolation is performed using 2 or 4 extreme points along L1 and L2, as shown in 
Figure 11. Otherwise ( 0≠i

lk  or 0≠j
lk ) BC is used for the interpolation process. 

 

3. Four edge transitions: A decision process for matching edges based on eq.1 is needed here. Let us denote the 
transition points as 1, 2, 3, and 4, in a clockwise direction along the inner layer.  The direction of the interpolation is 
obtained by calculating the ),,,min( 34231412 CCCC . Once the first edge couple is defined, the second is 
automatically known. Because no edge crossing is allowed, C13 and C24 are not possible combinations. Next, the 
interpolation algorithm (BC or bi-linear interpolation) is decided as in the case of the two-edge transition points. Four 
transition points divides the original missing block into three regions, as depicted in Figure 12. Missing pixels in region 
1 and 3 are interpolated using BC and bi-linear interpolation, which represent the interpolation schemes for E14 and E23 
respectively. Region 2 is influenced by both BC and bi-linear interpolation schemes, therefore the missing pixels closer 
to region 1 are interpolated using BC, while those pixels closer to region 3 are interpolated using bi-linear interpolation. 

Fig. 11. Linear interpolation using 2 extreme points (•) for the reconstruction of the missing pixels. 

          

1
2

3

M34 

Average 
Curve 

BC 
interpolation 

Bi-linear 
Interpolation 

M12 

Fig. 12. Two-edge transition interpolation scheme. Missing pixels in region 2 are interpolated using 
interpolation schemes in region 1 and 3. The average curve marks the limit between both schemes. 
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The transition curve between the two interpolation schemes in region 2 is found as follow:  
• A middle point (Mij) is calculated between the unmatched transition points (see Figure 12).  
• Let L34 = (L3+L4)/2 and L12 = (L1+L2)/2 represent the average tangent between the unmatched edges at the 
middle points M43 and M12 respectively. A second order BC is obtained using the extreme points M43 and M12 and 
the third control point P, which is obtained as depicted in Figure 8. Missing pixels along this curve are then 
interpolated.  

A simpler approximation not requiring the computation of a new BC can be used instead. Region 2 can be 
interpolated until BC in region 1 and bi-linear interpolation in region 3 meet each other. The remaining missing pixels 
can be interpolated linearly using the surrounding information. 

4. Six  edge transitions: A pair of transition points with the smallest Cij is identified. The rest of the procedure is 
similar to step 3, except that all missing pixels within a region are interpolated using bi-linear interpolation instead of a 
combined interpolation process. There are some important remarks that need to be pointed out for this case. Because of 
the assumption that no edge crossing is allowed, we have 9 possible pairs of transition described by the odd number |i-j| 
odd. For some selected pairs of transition, the other four are fixed. For example, if the transition points 1 and 4 have 
been selected, then the transition point 2 has to be connected to point 3, and transition point 5 has to be connected to 
transition point 6. 

5.  Six+ edge transitions: For an 8x8 pixel block, more than six transitions are seen very infrequently. In this case, 
we concentrate on finding the most dominants direction using the gradient operator over the two innermost layers. 
Regions with similar edge direction are bi-linearly interpolated. 
When the number of edge transition points is odd, the interpolation of the paired edge transitions is performed first. The 
stand alone transition is just elongated to the center of the missing block at the most, without getting across any other 
pair of edge transition interpolation.  

 

(a)                               (b)                              (c)                                 (d)         

i) 

ii)

iii) 

iv) 

Fig. 13. Block reconstruction (8x8 pixels) using a second degree Bezier polynomial for a) 2, b) and c) 4, 
and d) 6 edge transition points. Row sub-images (16x16 pixels) represent:  i) original data, ii) damaged 

block, iii) detected transition points, and iv) interpolated block. 
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4 Results 
 
The performance of the described scheme is shown in Figure 13 for 2, 4, and 6 transition points around the lost block 
(8x8 pixels) using a second degree BC (3 control points). Results are presented in a 16x16 pixel sub-image of Lenna 
with the following format: i) original, ii) damaged, iii) detected binary edge, and iv) reconstructed sub-image. Figure 13a 
shows a missing block with visually 3 edge regions, one in the pupil, another in the iris and other in the sclera (white 
area of the eye). Because we are using a binary edge detector (see section 2), only two regions were detected (sclera and 
the rest). Despite of this, our scheme was able to reproduce the natural curvature of the eye (different from Zeng and 
Liu’s method, see Figure 3 for comparison), as well as to almost perfectly recover all the three regions in the 
interpolated area. The reason for this is that we use the same BC to directionally interpolate all the information of the 
missing block (including the low frequency components). In situations with more than 2 transition points around the lost 
block, the use of the cost function defined in eq.2 is required for the edge matching process. If the edge matching 
process fails to reconstruct the original structure of the lost block, it is very likely that the reconstruction process will 
give the wrong result. With this regard, the proposed (improved) cost function showed an outstanding performance as 
shown in Figures 13(b-c) and 13d corresponding to 4 and 6 transition points. At normal resolution (entire Lenna image) 
the reconstructed and original image are indistinguishable, at small detail the differences are due to small variations in 
the tangents of the linked edges. 
 
5 Conclusions  
 
We have proposed a new geometric error concealment scheme, which takes the edge direction and edge curvature (local 
and global) as boundary conditions to generate an n-degree BC (for n ≤ 3). The generated BC is used for the 
reconstruction of the missing block information. The proposed scheme has shown its ability in reconstructing complex 
high frequency information and high degree of accuracy during the edge transition matching (coupling) process. 
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