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Abstract 
 
In this work, a new technique to define cut-points in the discretization process of a continuous attribute is presented. This 
method is used as a prior step in a regression problem, considered as a learning problem in which the output variable can 
be either quantitative (continuous or discreet) or qualitative defined over an ordinal scale.  The proposed method 
emphasizes the concept of location to determine discretization cut-points.  In the case of continuous outputs, the method 
is based on the maximization of the difference between distributions by using intervalar distances.  In the case of 
qualitative outputs, a qualitative distance is defined over a structure of absolute orders of magnitude.  The main 
characteristics of the method presented are illustrated through three examples, two for continuous outputs and the last for 
a qualitative output.  
Keywords: Supervised Discretization, Regression, Qualitative Reasoning, Intervalar distance. 
 
Resumen 
 
En este trabajo se presenta una nueva técnica para definir las fronteras en el proceso de discretización de una variable 
continua. Este método es usado como paso previo en un problema de regresión, considerado como un problema de 
aprendizaje en el cual la variable de salida puede ser cuantitativa (continua o discreta) o cualitativa definida sobre una 
escala ordinal. El método propuesto enfatiza el concepto de “localidad” para determinar las fronteras de las 
discretización. En el caso de variables continuas, el método se basa en la maximización de la diferencia entre 
distribuciones usando distancias intercalares, y en el caso de salidas cualitativas, en una distancia definida sobre una 
estructura de órdenes de magnitud absolutos. La principal característica del método se ilustra con tres ejemplos, dos para 
salidas continuas y un último con salidas cualitativas.  
Palabras Clave: Discretización Supervisada, Regresión, Razonamiento Cualitativo, Distancia Intervalar. 
 

1 Introduction 
 
Discretization is the process by which a continuous attribute is transformed into a discreet attribute. It is obtained by 
grouping different values from the continuous attribute and assigning each a unique label. One of the main reasons for 
following a discretization process is to allow the use of patterns with continuous variables in learning algorithms that, 
like decision trees, require discrete variables [Fayyad & Irani (1993)]. In addition, the use of discreet variables reduces 
computational costs in learning algorithms, as well as simplifying the interpretation of results [Liu et al. (2002)], 
[Dougherty et al. (1995)]. Sometimes these considerations justify the loss of information that can take place in the 
discretization process. 

In this paper, a method of discretization is specifically set out for the problem of learning known as regression (or 
ordinal regression, if the output space is finite). This method takes into account the order existing in the output variable, 
whether this order comes from a real valued variable, or from a variable defined on an ordinal scale. 

314 



A Supervised Discretization Method for Quantitative and Qualitative Ordered Variables 
 

 315

The new method is inspired by the idea of location, obtained through a distance.  If the exit is continuous, the 
distance will be defined by a supervised kernel function [Agell et al. (2004b)] and the method will be specially adapted 
when it is used jointly with a learning process based on this type of kernel function.  However, if the ordered output is 
based on orders of magnitude space, a distance based on the idea of location function proposed in [Rovira et al (2004)] 
will be used. 

The traditional methods of discretization can be classified as bottom-up, that is to say, they have an incremental 
search for borders, or top-down, decreasing an initial set of borders of high cardinality.  Unlike previous methods, this 
new method, finds the cut-points of the discretization in one single step, which drastically improves the computational 
speed with respect to others.  In addition, the number of intervals does not have to be previously defined by the user, as 
in the stopping conditions of iterative algorithms. This algorithm will only depend on the nature of the handled data and 
the concept of the border location, which can be considered as a measurement of the border quality. 

From the location concept, it is inferred that the effectiveness of a cut-point depends on the length of the intervals 
that this point separates. A cut-point can be a good fit for intervals of short length but not for intervals of greater length, 
in the same way that a geographic border can be a good fit for separate regions but not for separate countries. 

In the following section, the state-of-the-art of classic discretization methods is briefly introduced, and the 
motivation of the present methodology is given.  Then the distances that the proposed method uses are defined and 
described. In section four, the method of discretization is explained, based on the previously defined distances. Next, the 
main characteristics of the method presented are illustrated with three examples.  Finally, the conclusions and 
indications for future works are given. 
 

2 Discretization 
 
Discretization has to be considered as a prior stage in the global process of inductive learning.  This stage can be 
conducted directly by an expert, or automatically by means of a suitable methodology.  In any event, the discretization 
process entails an implicit knowledge of the data.  This knowledge is explicitly introduced into the learning process 
when considering experts’ opinion, or implicitly extracted from data when discretization is done automatically.  

The existing methods of discretization can be classified into two main categories: supervised and not supervised. 
Supervised methods do not consider the class to which the training patterns belong.  Among these, the most significant 
are: the equal width intervals method, and the equal frequency intervals method [Dougherty et al. (1995)]. These 
methods are very simple to implement, and have a low computational cost; on the other hand, the results obtained are 
not very satisfactory in most cases. 

Nevertheless, supervised methods consider the interdependence between the variable to be discretized and the class 
to which the patterns belong. 

Some representative methods in this category are based on the entropy concept, such as D2 [Catlett (1991)] and 
MDLP [Fayyad & Irani (1993)], which optimizes a measurement of the entropy on the discretization considered. On the 
other hand, some techniques use statistical methods such as test or classical clustering techniques, ChiMerge [Kerber 
1992], Chi2 and ConMerge [Wang & Liu (1998)]. Finally, other methods are based on the mutual information measure 
between class and variable, for example Zeta [Ho et al. (1997)], CADD [Ching et al. (1995)], CAIR [Wong & Liu 
(1975)], and CAIM [Kurgan & Cios (2004)].  

Regarding the way the interval cut-points are obtained, discretization methods can also be considered as top-down or 
bottom-up methods.  

The former begin with an empty list of cut-points that is increased iteratively. To this type belongs, for instance, the 
CAIM method.  Nevertheless, the second group of methods begins with the complete list of variable values as possible 
cut-points, which are eliminated by joining the corresponding intervals. This is how the ChiMerge method operates.  

In pattern recognition problems, the discretization methods used are mainly based on the maximization or 
minimization of a coefficient. This coefficient depends exclusively on the contingency table (joint frequencies table) 
defined from the discrete output and input variables.  

In these methods, the order existing in the output variable is never considered.  However, they take advantage of the 
fact that values of the patterns in the same interval belong to the same class. This paper considers that when information 
related to the ordering of the output variable exists, it must be regarded as a crucial point for improving the discretization 
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process. In addition, the method introduced highlights the fact that distributions of two contiguous intervals must have 
significant differences, which allows classes from the same interval to be distributed with a greater deviation. For 
instance, the variable age as input variable and income as an output variable. What allows us to distinguish, for example, 
between the age intervals (14, 25] and (25, 37], is not that the former have a low income and the later a high income, but 
that most people in the first interval have a low income while those in the second interval have either low, average or 
high incomes, that is to say, the deviation of incomes in the first and the second intervals are very different.  
 

3 Distance Construction  
 
3.1 Intervalar Distances over Continuous Variables  
 
When considering real numbers, as in any Euclidean space, distances can be directly defined from the Euclidean 
product; but when considering a non-Euclidean space, as is the case of intervals, a different way of introducing distance 
functions must be found. 

The natural way of introducing a concept similar to a distance between intervals is to consider the minimum between 
the two intervals. Nevertheless, this application is not a distance. 

On the other hand, considering intervals as subsets of the real line the Hausdorff distance, defined as the maximum 
between the distances from any point of the interval to another interval (where the distance from a given point to an 
interval is defined as the minimum distance between this point and any one of the interval points) fulfils all the distance 
properties. In [González et al. (2004)] it is shown that this distance can be expressed as follows,  
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In [González et al. (2004)] another methodology is proposed to transfer a structure of Euclidean space to the 
intervals. Each point in the real line is associated to a point in R2. The composition between this map and the usual 
Euclidean product in R2 defines a kernel function in the set of intervals. This kernel allows the defining of a new 
distance. By associating to each interval the point , where c is the centre and r the radio of the interval, 
the expression of this distance is, 
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Finally, in the set of intervals we can also consider distance associated to the intersection. In [Agell 1998] it is 
demonstrated that the intersection of intervals is a kernel function in the set of intervals, and the induced distance is 
defined as, 
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where is the intersection between the intervals 21 xx ∩  and , and  is the intersection 
length,  

( 21 xx ∩l )
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3.2 Distance in OM(n) 
 
The absolute orders of magnitude models [Travé (2003)] are defined via a finite set of ordered symbols or qualitative 
ordered labels. These models introduce a structure that unifies the sign algebra and the intervalar algebra throughout a 
continuum of qualitative structures. In this section, the orders of magnitude model is briefly introduced [Agell (1998)] 
and a methodology to define distances on the model is considered. 

The absolute order of magnitude model with granularity n, OM(n), is defined via a symmetric partition of the real 
line in 2n+1 segments (Figure 1) where Ni=[–ai, –a ), 0={0} and Pi–1 i=(a ,ai–1 i]. In OM(n), the basic elements  are 
denoted by a set of ordered labels from the  S1={Nn, Nn–1,…, 0 , P1, …, Pn–1, Pn}.  

The Quantity Space S≡OM(n), is the set of labels like [X,Y] for all X,Y ∈S1, with X≤Y, i.e. x≤y for all x∈X, y∈Y. The 
interval [X,Y]  can be considered as the union of all the basic labels between X and Y.  

, to be more precise than, X,Y ∈S , X is more precise than Y (X≤The binary relation ≤P P Y) if X⊆ Y, is an order 
relation defined in S (directly obtained from the properties of the inclusion).  

For all X∈S–{0} the base of X is considered as the set B ={B∈ S – {0} : B≤ X} and, given a basic element U∈SBX 1 P 1, 
the U-expansion of X is X =min{Y∈S : X≤  Y ∧ U≤U P P Y }, i.e. the smaller interval with respect to the inclusion containing 
X and U. 

To be able to define a distance in OM(n), a strategy in two steps is considered:  
• Firstly, a location function is considered to associate a k-dimensional real vector to each label in S. 
• Then, a metric defined in Rk is considered. 

The location function and the metric have to be chosen in such a way that they capture the significance of the labels 
in the qualitative space in relation to the scenario considered in each application. 

For example, we can consider the location function defined in [Rovira et al (2004)]. Following this function, each 
element X in S is codified by means of a pair of integer numbers l(X)=(l1(X), l2(X)) as follows: 
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Fig. 1. Symmetric partition of the real line in 2n+1 basic elements. 
  

 
so l1(X) is the number of basic elements in S1–{0} that are between the base of X and Nn, and l2(X) is the number of 
elements in S1–{0} that are between the base of X and Pn. This codification by points of R2 takes into account not only 
the label’s position but also its precision. The Euclidean distance between these points allows a distance in S to be 
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defined as follows: 
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The function d inherits all the properties of the distance in R2, measuring the similarity between two labels based on 
the distance between its codifications.  

 

4 Supervised discretization algorithm 
 
Let us initially consider that there is a set of L sample patterns, each characterized by means of a set of attributes or input 
variables and an output variable, numerical or qualitative, but ordered. During the process of discretization, as usual, 
only uni-dimensional input variables will be considered jointly with the output variable. Let both X be one of the 
continuous input variables to be discretizated and Y the output set, whether continuous, discrete or qualitative. The 
training set can partially be represented by the set of values,  

 

(10) {(x

 318

1, y1), (x2, y2),…, (xL, yL)}⊂ X×Y 

 

Definition. A discretization D with granularity n of the variable X, obtained from the above training set, is defined as 
a set of disjoint intervals,  

D={[d0,d1] , (d1,d2] ,…, (dn-1,dn]} (11) 

 

d0=min{x1,…,xL}, dn=max{x1,…,xL} and di ∈{x1,…,xL} with d0<d1<d2<…<d   n .

As a general criterion to be applied, any point di∈{x1,…,xL} will be an adequate frontier when it separates intervals 
on the variable X with different behaviour according to the specific learning problem being considered. Let us be more 
precise.  

When di is being considered as a good candidate to be a frontier for the discretization, do not explicitly consider both 
adjacent intervals (d , di–1 i] and (di, di+1], or else the fitness of each candidate will be analyzed independently from the 
others, by using two intervals defined with the same number of data, Δ. This parameter, indicating the number of values 
of the variable X on the left and right of di to be considered when comparing both intervals, attempts to capture the 
concept of localisation that has been previously announced. The Δ value is also associated with the desired intensity of 
discretization: a high value will provoke a reduced number of frontiers, and similarly a low Δ value will increase their 
number. In the following, let us suppose that the L patterns in the training set, {(x1,y1),…,(xL,yL)} have been ordered such 
that xi<xi+1 ∀i.  
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For a fixed parameter Δ, a pair of sets will be associated for each of the values xi , i ≥ Δ and i<L–Δ,  
(12) D–( xi)={xi–Δ+1,…, xi} 

 
(13) D ( x+ i)={xi+1,…, x } i+Δ

 
corresponding to the Δ patterns with their value on the input variable closer to and both before and after xi , respectively. 
A couple of sets will also be associated,  

D– (14) Δ( xi)={yi–Δ+1,…, yi} 

 

D+ (15) Δ( xi)={yi+1,…, y } i+Δ

 

corresponding to the outputs of the patterns in D–(x ) and D (xi + i) respectively. Note that these sets are not defined for the 
first Δ–1 and the last Δ patterns of the ordered series, so these patterns will never be selected as frontiers in the 
discretization.  

Sets D–(x ) and D (xi + i) must be represented by intervals. One possibility is to associate each of these sets to their 
complete range, as can be appreciated in Figure 2 for Δ=4. Using the complete range as associated interval is a more 
direct way to establish the association; however this presents two problems. First, the entire range is very influenced by 
possible outliers. Secondly, and related to the former disadvantage, the complete range will generate very similar 
associated intervals, so comparison between them is more difficult. Therefore, it would be preferable to associate an 
interval for each distribution with shorter length than the range; for instance, an interval centred at the mean, like 
( σ+σ− yy , ) ( )σ+σ− kyky ,, where is the mean of the distribution and σ its standard deviation; or more generally, y , 
with a new parameter to be adjusted. It is also possible to associate an interval centred at the median, like the inter-
quartile range.  

(DSimilarly, when outputs are qualitative, it is possible to define SP –(xi)) (respectively, S (D (xP + i))) as the qualitative 
expression with higher precision for the outputs corresponding to, at least, a P % of the patterns with values in D–(xi) 
(resp. D (x+ i)), with P<100 a positive parameter previously fixed, as discussed above. When different qualitative 
expressions with equal precision satisfy this condition, those with the larger number of patterns are chosen.  

It is important to note that in this methodology, the set of the pair of patterns being separated as the candidate to be a 
frontier, di, is not represented by its input, the variables to be discretized, but by its output values. In this way, patterns 
are not represented by themselves, but by what they represent in the specific learning problem to be solved.  

Maximization of the interval distance between D (x- i) and D (x+ i), for both continuous and ordinal discrete cases, or 
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the qualitative distance between SP - i)) and S (D (xP + i)), for the qualitative case, will be the criterion that allows the 
selection of  frontiers for the discretization. Hence, the criterion selects as frontier those values of xi that are significant 
local maxima for the distance function.  

 
 

 
 

Example 3 

 
Fig. 3. Data distribution along the different examples. 
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5 Examples 
 
The proposed methodology will be illustrated in this Section through three artificially generated examples. They will 
allow the frontiers selection process and the global features of the entire method to be shown. For the first example, a set 
of data with discrete output will be generated, in such a way that results obtained can be compared with the state-of-the-
art discretization method CAIM. The second example will consider a continuous output variable, the kind of problem 
that standard discretization methods are not able to deal with. Thirdly, a set of patterns with ordered qualitative output in 
OM(3) will be considered.  

5.1 Quantitative Examples 
 
The first example is based on a training set with 500 patterns characterized by one continuous input variable and one 
ordinal discrete output variable taking values on six classes labelled as {1,2,3,4,5,6}. Data is displayed such that, ordered 
by the input variable, the first 100 patterns are distributed into classes 2-6, patterns from 101 to 250 are distributed in 
classes 4-5, patterns through 251 to 370 in classes 1-6 and, finally, the last 80 are in classes from 2 to 5. This distribution 
is illustrated in Figure 3(a).  

Ideal frontiers were artificially laid out on patterns 1, 100, 250, 370 and 500. The CAIM algorithm was initially 
applied with granularity level 4. The discretization obtained is shown in Table 1. It can be noted that the result obtained 
is not exactly as expected. The same Table also shows results based on the presented method for several values of the 
parameter Δ. The interval Euclidean distance has been employed. It can be observed that increasing the parameter value 
results in a decrease in the number of frontiers: for Δ=30 the expected frontiers are obtained.  

 
Table 1. Results for Example 1. 

 
Method Time Frontiers 

CAIM 52.1 s {1, 149, 270, 486, 500} 

Δ=10 0.03 s {1,27,37,…(n=11),...,392,500} 

Δ=20 0.03 s {1,41,61,100,231,340,369,500} 

Δ=30 0.03 s {1,100,245,369,500} 

 
Table 2. Results for Example 2. 

 
Method Time Frontiers  

Δ=10  0.03 s {1,10,24,.(n=26).,482,500}  

Δ=20  0.03 s {1,22,100,..(n=10),..475,500}  

Δ=30  0.03 s {1,31,100,252,372,467,500}  

Δ=40  0.03 s {1,100,251,372,500}  

 
The same Table displays the time calculation for each of the two algorithms. The new method improves this feature 

in three orders of magnitude with respect to CAIM, so overcoming the need for evaluating several values of Δ until the 
definitive selected result.  

Figure 4 shows the distance function between adjacent intervals for Δ equal to 10, 20 and 30, respectively. A low 
value in this parameter allows many frontiers to be considered and determined with high precision. Increasing the 
parameter value implies fewer frontiers with lower precision. Detection of local maxima is performed with a voting 
algorithm that extracts those points that are absolute maxima to local range with length Δ. The right-hand graphics in 
Figure 4 represent the result of this votation in Example 1.  
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For the second example, a 500-pattern set has also been generated, in this case with the continuous output variable 
having values between 0 and 6 (Figure 3(b)). The first 100 patterns are distributed on the interval [1,6], the next 150 
patterns in [3,5],  

 
Fig. 4. Distance between intervals image of adjacent sets (left) and locating local maxima (right) for Example 1. 

from 251 to 370 in [0,6] and the remainder in [1,5]. Previously, data were ordered according to their input variable. The 
same methodology as in the first example is used. Results are presented in Table 2 for several values of parameter Δ . A 
similar discussion is possible for this example: a low value of Δ Δ deserves a high number of frontiers. A fitted  value 
selects the expected frontiers.  

No comparison is possible in this example with the CAIM method because this method cannot deal with continuous 
output variables.  
 

5.2 Qualitative output example 
 
A set of 200 patterns is generated: patterns from 1 to 50 are associated to labels from N to P3 3; patterns from 51 to 100 
are labelled between N

 322

3 and P1; from 101 to 150, outputs run between N1 and P3, and the last 50 patterns take values 
from N3 to N2 (Figure 3(c)). The discretization method should be able to determine frontiers 50, 100 and 150.  

Several values of the parameter P, related to the frequency of patterns associated with qualitative expressions, 
generate results shown in Figure 5 for the same value Δ=15. Best results are obtained for the range from 70 to 100. 
However, a value of 100 signifies considering the less precise qualitative expression, hence taking into consideration 
outliers during the discretization process.  
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Fig. 5. Results varying the value of the parameter P. 

 
6 Conclusions and future work 
 
This work offers a new methodology to deal with the problem of supervised discretization for continuous variables 
taking into consideration ordination in the output variable; in this way, it is possible to make a discretization of variables 
for regression problems, whether the output variable is continuous, discrete (ordinal regression) or qualitative. The main 
feature of the method is that it considers that it is not mandatory for data from the same discretizated interval to be 
associated to similar data for the output variable. It has been proved that more valuable information can be captured even 
when frontiers are separating intervals with different distributions in the output variable. The new method selects how to 
cluster information based on a measure of the interval distance or a qualitative distance; other alternatives could be 
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considered. Artificial examples have allowed the efficiency of the algorithm to be analysed with respect to a Standard 
discretization algorithm.  

Future work will be carried out on new distances to measure the difference between data distributions on adjacent 
intervals. It could also be noted that the new methodology is a starting point for dealing with the problem of 
discretization on several simultaneous variables on real data.  
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