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Abstract 

There is presently no unified methodology that allows the evaluation of supervised or non-supervised classification 
algorithms.  Supervised problems are evaluated through quality functions while non-supervised problems are 
evaluated through several structural indexes. In both cases a lot of useful information remains hidden or is not 
considered by the evaluation method, such as the quality of the sample or the structural change generated by the 
classification algorithm. This work proposes a unified methodology that can be used to evaluate both type of 
classification problems. This new methodology yields a larger amount of information to the evaluator regarding the 
quality of the initial sample, when it exists, and regarding the change produced by the classification algorithm in the 
case of non-supervised classification problems. It also offers the added possibility of making comparative 
evaluations with different algorithms 
Keywords: Supervised Classification, Non-Supervised Classification, Evaluation of algorithms, Methodologies. 
 
Resumen 
 
Actualmente no existe una metodología que permita la evaluación de algoritmos de clasificación tanto supervisados 
como no-supervisados.  Los algoritmos aplicados a problemas supervisados se evalúan mediante funciones de 
calidad mientras que los algoritmos aplicados a problemas no-supervisados se evalúan mediante diversos índices 
estructurales.  En ambos casos mucha información útil permanece oculta o no es considerada por el método de 
evaluación.  En este trabajo se propone una metodología unificada que puede ser usada para evaluar ambos tipos de 
problemas de clasificación.  Esta nueva metodología entrega una mayor cantidad de información al evaluador acerca 
de la calidad de la muestra inicial, cuando ésta existe y acerca de el cambio producido por el algoritmo de 
clasificación in el caso de problemas no-supervisados.  También ofrece la posibilidad de realizar evaluaciones 
comparativas con diferentes algoritmos. 
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1 Introduction 
 
While working  in the pattern recognition area, whether in field applications or in research, it is common to have to 
evaluate the result of a classification process. [1][2]. On many occasions the objective of such evaluation is, either to 
find out the behavior of the classification algorithm used or to establish the pertinence of the application of such 
algorithm to the type of problem being evaluated. Classification problems may be shown in two different ways [4] 
known as: Supervised Problems and Non-Supervised Problems.  Unfortunately, nowadays there is no methodology that 
allows us to evaluate the result of an algorithm under the same criteria.  

A classification problem is informally called Supervised when there is previous knowledge on the classes or 
categories into which objects or patterns being studied are classified and also, each one of these classes contains in it at 
least one previously classified pattern. This means that a problem is Supervised when a sample of previously classified 
patterns in each of the categories to be considered is available.  Such a sample is called Control Sample, Supervision 
Sample or Learning Information.   

A classification problem is considered Non-Supervised when such previous knowledge does not exist. Similarly, a 
classification problem is considered Non-Supervised when such previous knowledge does not exist. In that case, the 
problem shows itself as a universe of patterns without structure that must be classified, but the number and nature of the 
classes to be built are part of the initial definitions necessary to solve the problem.  For this reason there is not an initial 
sample for Non-Supervised problems. Some times researchers talk about a third form a classification problem  known as 
a Partially-Supervised problem which is an intermediate state between the two previous types of problems. A 
classification problem is considered Partially-Supervised when the previous knowledge regarding the nature of its 
solution is partial, e.g., when some, but not all of the classes in which the objects will be classified are known.   
Likewise, some, but not all  of the known classes contain previously classified patterns. 
The methods used to evaluate the algorithms that solve classification problems change considerably due to the intrinsic 
characteristics of each type of problem [3].    
 
2 Traditional Evaluation Methods 
 
In order to evaluate Supervised problems, the classification algorithm is applied to a previously studied problem and the 
result is compared with a previously known solution considered as valid [5][6]. This comparison is made through 
Quality Functions that generate a score, which is typically a real number and which synthesizes the evaluation of the 
problem and the effectiveness of the classification algorithm. Regardless of the type of problem: with multi – 
classification, with fuzzy classes or with absence of information, quality functions take into consideration the following 
criteria: 

1. The amount patterns classified by the algorithm. 
2. The correctness and precision of the degrees of membership assigned to the patterns in each class. 
3. The amount of patterns for which the algorithm does not assign a membership to any class (abstentions). 
4. A different weight for each type of mistake made.  

The quality function to be used in the evaluation of a specific problem depends to a large extent on the conditions 
and semantics of the problem, so there is an infinite amount of possible quality functions. In many cases, simple quality 
functions, such as the following one, are applied [3] [7] [10]:    

Let  A  be a supervised classification algorithm and let ( )AΦ  be the quality function that evaluates it and which 
expression is: 

zyx
xA

++
=Φ )(  

where    x    is the number of patterns correctly classified by the algorithm,   
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y    is the number of patterns erroneously classified, 
z  is the number of abstentions. 
 

Other times, much more detailed quality functions, such as the following, are applied.  

1 1 1
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where:  n is the total number of patterns in the control sample 
  k is the number of classes in the problem 

ijα
 is the amount of objects that belong to class i, mistakenly classified in class  j. 

ijE
 is the specific weighting of the mistake counted in ijα

 

sβ  is the amount of objects h that belong to class i in which the algorithms refrained from classifying. 

sA  is the specific weight of the error counted in  sβ  
 

Regardless of how complex the selected quality function may be, the result of the evaluation is always expressed 
with only one number which hides the details of the analysis made and the specific reasons for the assigned evaluation.  

In the case of Non-Supervised problems, there is no explicit formula to evaluate the quality of the classification 
algorithm. But, opposite to what happens in the supervised case, the idea of measuring the quality of the resulting 
covering in terms of its stuctural conditions [9] is quite common. This is known in literature as Analysis of Clusters.  
Given the fact that on many occasions it is not possible to anticipate the optimum number of classes that will be formed, 
it is necessary to validate each one of the clusters made and to decide if the selection of the number  k  of classes was 
right or if the selection must be modified and the patterns must be re-classified.  The validation is made through one or 
more Structural Indexes that evaluate different properties of the clusters defined by the classification algorithm and 
determine if there is a better option according to the evaluated parameters.  Many structural properties can be evaluated  
in a covering, but commonly aspects considered include the compacting of clusters, the separation between clusters, the 
max and min degree of membership of each cluster, etc. (See [10],[13] and [14]) 

Several indexes have been proposed to evaluate partitions and coverings.  Three of the more widely used are the 
Partition Coefficient and the Enthropy index proposed by Bezdek [9], like the Xie-Beni index [10].  Let us examine each 
one of them. 

For a Non-Supervised classification problem, with  n  patterns and with   being the pre-determined number of 

classes to be formed,  Bezdek defines the  Partition Coefficient ( ) in [9] as: 

k
PC

1 1

n k

ij
i jPC

n
= =

µ

=
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With  ijµ
 being the membership of pattern  to class .   i j

Under the same assumptions, Bezdek also defines the Partition Enthropy ( ) as: PE
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The main disadvantage of these indexes, as Bezdek himself states in [9] is that they evaluate each class by 
considering exclusively the degrees of membership assigned to the patterns and not their (geometric) structure or  the 
structure of the whole covering. 
X. L. Xie and G. Beni proposed an index that evaluated two structural aspects: the compactation and the separation of 
the classes [10].  For them, an optimum partition is that which has a strong compactation and a noticeable separation 
between clusters. Therefore, the index they proposed and which takes its name after them is made up as follows: 

The  Compactation,  of the e la partition is calculated as: Ψ

∑ ∑
= =
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with   being the centroid of each class. The second factor then represents the Euclidian Norm of the distance between 
each object and the corresponding centroid in the covering.   The  Separation, 

iv
Ξ  between classes, is calculated as: 
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Lastly, the Xie-Beni (XB) index is formed as the quotient of these two quantities: 

Ξ
Ψ

=XB  

Like in the case of Supervised problems, all of these Structural Indexes limit their evaluation to only one number 
which, in this case, represents the quality of the structuring in the solution covering generated by the classification 
algorithm. 

Most authors don’t even consider Partially Supervised problems as a different category of problems [12].  These 
problems are treated as Supervised in what regards the evaluation of the classification algorithms. Therefore in the rest 
of this paper no explicit reference will be made to Partially Supervised problems and the same conditions of Supervised 
problems will be assumed for them. 
 
3 Advantages and Disadvantages of Traditional Methods  
 
The evident advantage of evaluating Supervised problems through quality functions is the flexibility of the latter.  The 
researcher can build a quality function as thorough as the problem requires, and one that can encompass situations of 
very different kinds, such as the abstentions of the classifying algorithm or the different weighing for each type of error 
made in the assignment of the membership. In return for this, the way of evaluating Supervised problems has some 
evident disadvantages. The most noticeable one is the need of having a previously known solution for the problem being 
evaluated. This requirement makes it impossible to evaluate problems for which such a solution is not available and 
even more: the consideration of such solution as “the correct solution” may cause important biases for the evaluation 
process. There are two main reasons for these biases in the evaluation: first, the quality of the control sample used for 
the evaluated classification algorithm and for the previously known solution considered as correct is not analyzed.  This 
lack of evaluation of the control sample used for a Supervised problem seriously limits the ability to judge the action of 

 373  



Salvador Godoy Calderón 

the classifying algorithm. Second: the quality of the structure induced in the solution coverage by the evaluated 
algorithm is not measured.   

It is not hard to imagine that a very well built sample (with the more representative patterns of each class) may 
induce the generation of the same solution even for less effective algorithms for  the conditions of the problem being 
evaluated, while a poorly built sample (with patterns not very representative of each class) may induce errors or 
abstentions in the algorithms based on the similarity of the patterns to generate the classification.  These are not clear 
criteria to select a specific solution for a problem and to consider it as correct and as a point of reference to evaluate 
other algorithms.  Should the methodology include any type of measurement of the structure of the solution covering 
generated by the evaluated algorithm, the evaluation would not depend so much of the quality of the control sample. 
Nonetheless, the quality function is limited to comparing the membership to each of the classes assigned by the 
classifying algorithm to each pattern. Lastly, notice that most of the classification algorithms (both for Supervised and 
for Non-Supervised problems) are based on a specific form of measuring the similarity between two patterns.  The 
criterion or set of criteria through which the similarity is measured is called  Analogy Function Between Patterns and it 
is evident that in spite of the fact that this function is the most important element for the algorithm, it is in no way 
considered by the evaluation methodology for Supervised problems.  In summary, the following disadvantages may be 
noticed: 

1. The quality of the control sample is not measured. 
2. The structural quality of the solution covering is not measured. 
3. The Analogy Function between Patterns is not involved in the evaluation. 

The classic method to evaluate Non-Supervised problems has very different characteristics.  The evaluation is made 
based on the quality of the structure of the solution yielded by the algorithm instead of comparing it with a previously 
known solution.  This is by far the most evident advantage of this method.  In general, the elements considered to make 
the evaluation are precisely those which are not considered in Supervised problems. These are evaluation methods which 
are radically different in both cases, but the diverse conditions of each type of problem do not allow the indiscriminate 
use of the respective methods.  Nevertheless, in both cases the evaluation of the algorithm is reduced in its expression to 
only one number  which generally hides more information than the one it gives, because it does not allow an analysis of 
the specific situation of a pattern or category. Therefore, the list of disadvantages of classical methods may be completed 
as follows: 

4. The evaluation is synthesized in only one number which does not allow alternative interpretation. 
5. The evaluation methods are not unified for all types of problems.  

All the information above leads us to ask the following question: Is it possible to devise an evaluation methodology 
that can overcome the deficiencies found in the present methods and produces unified criteria to evaluate classification 
algorithms applied to any type of problem?  
 
4 The Main Definitions  
 
Before presenting the methodology proposed we now introduce the three most important theoretical concepts on which 
the design and methodology are based. These concepts are: the Covering, the Classification Problem  and the  
Classification Algorithm.  For a more detailed description (see [12]). 
Let  Ω  be a known universe of objects under study and let  O ⊆ Ω , 

Definition  #1.-  A Covering of  is a tuple O ( ), , , , , ,O Q Cc fℜ δ π  where O ,  and   (called 

Structural Sets) are respectively sets of Objects, Descriptive Features for the objects and Classes.  Components 

ℜ Q
δ  

and  (called Structural Relations) are, respectively, Description and Membership functional relations. The first 
one describes the objects of O in terms of the features in 

π
ℜ  and the second one assigns to each   object a 

membership to each of the  classes.  Last, Cc  and 
io

jC f  are respectively a set of Comparison criteria and the 

Analogy Function Between. (see [12]).  
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According to the definition given above, the following special types of coverings may be characterized: 
 

Table 1 Defferent types of Coverings 
 

A Covering 
is called: 

If the following condition is satisfied: 

Total 
Partial 
Blind 

Every object belongs to a category 
There is an object that does not belong to any category 
No object belongs to any category 

Stringent 
Flexible 

All categories are not empty 
There is an empty category 

 
Definition  #2.-   A Classification Problem is a tuple of the form ( )0 ,Z Θ   where: 

0Z      is a Partial covering  which we wish to transform in a Total one. 
Θ       is a  Restrictions Set imposed over the solution of the problem. 

• A problem is Supervised if and only if its initial covering is Stringent. 
• A problem is Partially Supervised if and only if its initial covering is Flexible. 
• A problem is Non-supervised  if and only if its initial covering is Blind. 

Definition #3.-   A Classification Algorithm is an algorithm of the form  ( ) 1A P Z=  such that, it 
takes a Classification Problem (in any of its forms) and delivers a Total Final Covering which is the 
solution to this problem. 

 
5 Proposed Methodology 
 
In designing this evaluation methodology two general objectives were established: 1) to safe keep the advantages of 
each classical method, but to overcome their disadvantages, and  2) to generate a unified methodology for all types of 
classification problem. According to the definitions in the previous section, the methodology designed to evaluate 
classification algorithms is based on the structural comparison between the Initial Covering of a problem and its Final 
Covering generated as a solution by the classification algorithm.  Such comparison can always be made, even in cases in 
which one of the two compared coverings is a blind covering (as is the case in Non-Supervised problems).  The 
measurement of all types of properties in the covering that involve the membership of patterns to classes and the 
similarity between them, in accordance with the analogy function between patterns is considered as a structural 
comparison.  

The proposed evaluation methodology obviously starts with the application of the classifying algorithm to the 
problem being solved. From that moment on, the evaluation process is developed in the following three stages: 

Stage #1 (Structural Analysis of the coverings) during this stage the initial and final coverings of the problem 
are analyzed separately, calculating the same set of structural properties for each of them. These 
properties are discussed in detail in a later section. The analysis takes place at three levels for each 
covering: 

• Level of Objects: The structural properties are calculated for each object, making 
reference to each class in the covering. 

• Level of Classes: The values corresponding to each of the structural properties in the 
patterns that form the support of each class are accumulated and averaged. 

• Level of the Covering: The indexes for the structural properties for the covering under 
study are calculated. 

 375  



Salvador Godoy Calderón 

Stage #2 (Comparison between Coverings) The difference in value of each structural property calculated for 
each covering during the previous stage is determined. The calculated set of differences is called 
Differences Tuple and it is the score assigned to the classification algorithm. This tuple expresses the 
structural change generated by the classifying algorithm in the initial covering of the problem. 

Stage #3 (Interpretation) Once we have the partial results of each of the previous stages, particularly those 
corresponding to the three levels of structural analysis of the coverings, the researcher interprets the 
obtained score. 

Unlike the classical methods, this one refrains from reducing all the evaluation process to only one final score that 
hides the details involved in the evaluation process.  The partial results obtained in each stage are valuable sources of 
information for the researcher, where he can study the particular situations regarding the problem being solved. Another 
distinctive characteristic of this methodology is the fact that it is useful independently of the quantity and specification 
of the structural properties that we want to calculate during the first stage. Sometimes the researcher may be interested in 
using a specific set of structural properties, according to the characteristics of the problem under study. For this reason, 
the methodology described above was introduced without any reference to the specific properties used in the analysis of 
coverings. In this sense, the set of structural properties that have been used and are described in the next section are 
shown for the sole purpose of clarifying all of the elements involved in the methodology.  Nonetheless, the researcher is 
free to use the set of properties that he deems to be more adequate for his particular study. 
 
6 Application Details  
 
For the structural analysis stage, only four properties, considered as determining factors in the structure of a covering, 
are calculated: 

• The Tipicity  (T ) of an object, with respect to a  class, understood as the degree to which the object is 

representative of such class  is calculated as follows: 
io jC

( )
( , ) * ( , )

,
( )

s i

i s s j
o o

i j
j

f o o o C
T o C

Sop C
≠

π

=
∑

 

where: 
 ( , )i sf o o  is the Analogy function between patterns. 

 ( , )s jo Cπ  is the Membership of the object to the  class io jC

 ( )jSop C  is the cardinality of the support of the  class jC
• The Contrast (C ) of an object with respect to a  class, understood as the degree to which the object is 

representative of all of the other classes in the covering: 
io jC

( , )

( , )
1

s j

i s
C C

i j

T o C

C o C
k

≠
=

−

∑
 

where: 

  is the Tipicity of the object, in the class ( , )i sT o C io jC
   is the total number of classes in the covering k
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• The  Discrimination Error ( ε ) of an object  with regard to a  class, understood as the degree of 

confusion of the object in the covering: 
io jC

( , ) ( , )
s j

i j i js
C C

o C o C
≠

ε = π∑  

where: 

( , )i jso Cπ  is the degree of membership  of  to the intersection of the  and io jC sC classes. 

• The Characterization Error ( ) of an  object with regard to a  class,  understood as the difference 

between the membership of the object to the class and its tipicity in this same class: 

γ io jC

( , ) ( , ) ( , )i j i j i jo C o C T o Cγ = π −  

During the analysis at the level of the classes, each of these structural properties is averaged in the analyzed class. 
During the analysis at the level of the covering, the structural indexes corresponding to each property are calculated.  In 
every case, the index is calculated as one minus the corresponding property averaged in the whole covering.  

Striving to give this methodology the same flexibility shown by the quality functions in Supervised problems, a 
special technique for the structural analysis of the coverings during the first stage was developed.  This technique 
consists of adding to each covering an additional class which represents the complementary set for the rest of the classes 
in the covering and then calculating all the structural properties, also regarding this class.  In the initial covering of a 
problem all of the patterns that are not classified will be considered to have maximum membership to the 
complementary class.  This technique allows the proposed analysis to account for the abstentions incurred by the 
classification algorithm although, evidently, without achieving the same degree of flexibility achieved by the quality 
functions. 
 
7 Conclusions 
 
Comparison between the initial and final coverings of a problem allow the evaluation of the behavior of the classifying 
algorithm independently from other circumstantial factors in the problem, such as the quality of the control sample in the 
case of Supervised problems.  Thanks to the definitions previously established, such comparison is a common element 
between Supervised and Non-Supervised problems and unifies the evaluation methodology.  

The specification of what is meant by structural properties allows us to include in the analysis of the coverings both, 
the basic elements considered by the quality functions (membership assigned to each pattern in each class), as well as 
those considered by most of the structural indexes with which Non-Supervised problems are evaluated.  At the same 
time, the main advantages of classic methodologies are avoided.  Notoriously, the discussed methodology does not 
require a previously known solution to the problem or evaluates the algorithm by considering such solution as a 
reference point.  

The flexibility of the discussed methodology is manifested in two main aspects: first, the possibility to change the set 
of structural properties to be used during the analysis of the coverings. Second, the possibility of accounting for the 
abstentions of the classifying algorithm by using the complementary class technique.  
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