
Checking Untimed and Timed Linear Properties of the Interval Timed Colored
Petri Net Model

Verificación de las propiedades lineales síncronas y asíncronas del Modelo de la Red de Petri
Coloreado Intervalo Tiempo

Hanifa Boucheneb

Department of Computer Engineering,
École Polytechnique de Montréal,

P.O. Box 6079, Station Centre-ville, Montréal, Québec
 hanifa.boucheneb@polymtl.ca

Article received on July 30, 2004; accepted on December 11, 2006

Abstract
This paper deals with verification of timed and untimed linear properties of the Interval Timed Colored Petri Net
model. This model can simulate other timed colored Petri nets and allows describing large and complex real-time
systems. We propose here to contract its generally infinite state space into a graph that captures all linear properties of
the model. The resulting graph is finite iff, the model is bounded (the set of its reachable markings is finite). In this
case, linear properties of the model can be verified on the graph using, for example, the classical linear model
checking techniques.
Keywords: Formal methods, model checking, timed models, timed colored Petri net, state space contraction, linear
properties.

Resumen
Este artículo se ocupa de la verificación de las propiedades lineales temporizadas y no temporizadas del modelo de
redes de Petri coloreadas con intervalos temporizados. Este modelo puede simular otras redes de Petri coloreadas
temporizadas y permite describir grandes y complejos sistemas en tiempo real. Nosotros proponemos contraer el
espacio generalmente infinito, en un grafo que capture todas las propiedades lineales del modelo. El grafo resultante
es finito, si y solamenti si, el modelo tiene límites (el conjunto de sus marcas accesibles es finito). En este caso, las
propiedades lineales del modelo se pueden verificar en el grafo resultante, utilizando, por ejemplo, técnicas de
comprobación del modelo lineal clásico.
Palabras clave: Métodos formales, comprobación modelo, modelos temporizados, red de Petri coloreada con
intervalos temporizados, contracción del espacio del estado, propiedades lineares.

1 Introduction

Verification of concurrent systems is a complex task that requires powerful models and efficient analysis techniques.
Model checking is one of the most popular verification techniques of concurrent systems [1, 2, 3, 11, 12, 15]. In this
technique, the behavior of a system is represented by a finite transition system (state graph or state space), and the
properties to be verified are expressed in either a standard temporal logic (LTL, CTL, CTL*) [1, 2, 12, 21], or in its time
extension (MITL, TCTL) [1, 2, 18]. Properties are checked by exploring the state graph (an enumerative method). In
theory, the applicability of this method is restricted to finite graphs, but in practice, it also runs up against the state
explosion problem. To overcome these limitations, one solution consists in contracting the state graph into a finite and
compact structure allowing to verify properties of interest [3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 19, 20, 21].

This paper aims to apply the linear model checking techniques for timed colored Petri nets. Colored Petri nets
(CPNs) are successfully used to specify and analyze complex systems. In this model, a color (a value) is associated with
each token allowing to make much compact and manageable descriptions. To be able to analyze systems whose
behaviors are time dependant, several extensions to time parameter have been proposed for the CPN model (Van der
Aalst in [19], Christensen in [10], Pao-Ann Hsiung [16]). In Pao-Ann Hsiung's model, a time interval is associated with
each transition specifying its minimal and maximal firing delays. Time intervals of this model have the same semantics

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Hanifa Boucheneb 108

as those of Merlin's model (Time Petri Nets) [5]. In Christensen's model, a date is associated with each created token,
which indicates when the token will become available. An enabled transition will occur as soon as possible (when all its
required tokens become available). The Van der Aalst's model called Interval timed Colored Petri Net (ITCPN)
associates with each created token a time interval specifying when the token will become available (the earliest and
latest times). As in Christensen's model, an enabled transition will occur as soon as possible. Among these extensions,
the model proposed by Van der Aalst seems to be more appropriate since time intervals are associated with tokens
instead of transitions or places. But, unlike Pao-Ann Hsiung's model, the Van der Aalst's model does not allow
unbounded intervals and then expressing that a created token could be never available (be lost) is not possible. To
overcome this limitation, we extend this model by allowing unbounded intervals. With this extension, the model can
simulate other timed colored Petri nets and allows describing, in a concise way, large and complex real-time systems.

However, because of time density, the ITCPN state space is generally infinite. Therefore, its analysis by
enumeration needs an extra step to contract its state space into a finite graph preserving properties of interest (linear
properties: LTL, MITL). We say that a graph preserves linear properties of some model, if we can determine from it all
evolutions of the model.

Van der Aalst proposed in [19], a contraction method for the ITCPN model which is "sound" (i.e.: any occurrence
sequence in the state space of the model is also possible in the contracted state space) but not "complete" (i.e.: some
firing sequence in the contracted state space does not reflect any firing sequence in the model state space). Therefore, the
contracted space has not necessarily the same linear properties as the model. Moreover, for models allowing infinite
firing sequences, theVan der Aalst's method produces infinite graphs.

We propose here another contraction approach that generates finite graphs for all bounded ITCPNs. Our approach is
both "sound" and "complete" and the resulting graph preserves all linear properties of the model. It can be used to verify
linear properties of the model. Untimed linear properties can be verified using the standard linear model checking
techniques. To verify timed linear properties, we generally need to compute the minimal and maximal executing times
of some firing sequences (paths of the graph). We develop here an algorithm that computes for a given path of the graph,
its minimal and maximal path times.

Firstly, we give, in section 2, some definitions related to the ITCPN model and its behavior. We show afterwards, in
sections 3, 4 and 5, how to contract the ITCPN state space into a graph preserving linear properties of the model. We
distinguish two levels of contraction. In the first level (section 3), we agglomerate into one state class, all states
reachable by firing the same sequence independently of their firing dates. Section 4 is devoted to the simplification of
the firing rule given in section 3. We establish here an attractive characterization of state classes that simplify
considerably their computation and their comparison. Afterwards, we show by means of an example that this contraction
can produce infinite graphs for some bounded ITCPNs. For further contractions, we propose, in section 5, to relax state
classes. In section 6, we show that with this relaxation, we obtain finite graphs for all bounded ITCPNs. Section 7 shows
how to compute path times. Section 8 is devoted to an application example.

2 The Interval Timed Colored Petri Net model

The ITCPN model is a colored Petri net (CPN) augmented with time intervals associated with tokens. From the semantic
point of view, each created token has a time stamp which can be any value inside its associated interval. The time stamp
of a token indicates the delay required for the token to become available.

2.1 Formal definition of the ITCPN model
We introduce here only necessary definitions and notations. For further details, we refer to [17] for CPNs and to [19] for
ITCPNs.

Definition 1: (Time domain, multisets)

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Checking Untimed and Timed Linear Properties of the Interval Timed Colored Petri Net Model 109

- The time domain is the set of all non-negative real numbers plus ∞ , i.e.: R+ ∪ {∞}. Note that ∞ is considered here
as a particular value which satisfies the following relations: r+∞ = ∞+r=∞, r ≤ ∞, for each r ∈ (R+ ∪ {∞}), and ∞-
∞ = ∞.

- Let X be a set. A multiset over X is a function N which associates with each element of X, an integer number. It is
represented by the formal sum: ∑x∈ X N(x)•x, where N(x) is the occurrence number of x in N.

- Let X be a set, N1 and N2 two multi-sets over X. Operators +, - , ≤, = on multi-sets are defined as usual:
o N1 + N2 = ∑ x∈ X (N1(x)+N2(x))•x.
o N1 ≤ N2 iff, ∀x∈ X, N1(x) ≤ N2(x).
o N1 = N2 iff, ∀x∈ X, N1(x) = N2(x).
o if N1 ≤ N2 then N1 - N2 = ∑x∈X (N1(x)-N2(x))•x.
o The size of N1 denoted by |N1| is: ∑x∈X N(x).

We denote by XMS the set of all multisets over X, and by 0 or ∅ the empty multiset.

Definition 2: (ITCPN model)
An ITCPN is a tuple (∆, P, T, C, F, TM0) where:

- ∆ is a finite set of color sets. Each color set is finite.
- P is a finite and non empty set of places.
- T is a finite set of transitions such that: (P∩ T = ∅).
- Cd: P → Powerset(∆)1. Cd(p) ∈ Powerset(∆), is a finite set of all allowed colors in place p.
- Let CT be the set of all possible colored tokens, i.e.: CT = {(p, c) | p ∈ P ∧ c ∈ Cd(p)} and INT the set of all

intervals defined by: {[y,z] ∈ Q+ × (Q+ ∪ ∞) | y ≤ z}. Note that unlike Van der Aalst's model, we allow here
unbounded intervals.
F is the transition function over T. F(t): Dom(F(t)) → (CT × INT)MS, where Dom(F(t)) ⊆ CTMS. F(t) specifies
which tokens are consumed and produced by firing transition t. It also specifies the time stamp intervals of the
created tokens. Each transition is supposed to produce a finite set of tokens.

- TM0 is the initial marking indicating which tokens are present initially, their colors and their time stamps, i.e.: TM0
∈ (CT × (Q+∪ {∞})MS.

2.2 ITCPN behavior
We first explain the behavior of the model, using an example given in [19] and reported here in Figure 1.

Fig. 1. An ITCPN model of a Jobshop

1 Powerset(∆) is a set such that ∆⊆ Powerset(∆) and ∀ A,B∈ Powerset(∆), A×B∈ Powerset(∆).

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Hanifa Boucheneb 110

Figure 1 is the graphic representation of an ITCPN composed of three places {pin, pbusy, pfree}, two transitions t1, t2
and three color sets:
- M = {M1, M2,..., Ms} associated with place pfree,
- J = {J1, J2,.., Jr} associated with place pin, and
- M × J associated with place pbusy.

It represents a jobshop, where jobs of place pin are executed repeatedly. The jobshop is composed of one or several
machines. Each machine is represented by a token, which is either in place pfree or in place pbusy.
Tokens consumed and produced by firing transitions t1 and t2 are specified by functions F(t1) and F(t2) defined by:
- ∀ j ∈ J, ∀ m ∈ M,

 F(t1)((pin, j) + (pfree, m)) = (pbusy, (m, j), [1,3]).
F(t1) means that transition t1 consumes one token from each place pin and pfree , and produces one token in place pbusy.
When transition t1 occurs, the time stamp of the created token can be any value inside interval [1,3].
- ∀j ∈ J, ∀m ∈ M ,

F(t2)((pbusy, (m, j))) = (pfree,m, [2,2]) + (pin, j, [1,1]).
F(t2) means that transition t2 consumes one token from pbusy and produces two tokens one in each place pin and pfree.
When transition t2 occurs, the time stamps of the tokens created in places pfree and pin are respectively 2 and 1.

 Initially, there are three tokens: TM0=(pfree, M1,2)+(pin,J1,1)+(pin,J2,2).

2.2.1 States of an ITCPN
To characterize the model state, we associate with each token a variable, called clock, which measures the time elapsed
since the creation of the token. The clock is initialized to 0, when the token is created. Afterwards, its value increases
synchronously with time until its associated token is consumed.

Definition 3: (Timed tokens, states)
- A timed token is a tuple (p,c,v,[a,b]) where p is its place, c is its color, v is its clock value (or its clock name)

and [a,b] is its time stamp interval.
- A state σ of an ITCPN is a multi-set of timed tokens, i.e.: σ ∈ (CT × R+ × INT)MS.
- The initial state of an ITCPN is obtained from its initial timed marking TM0 by completing appropriately each

token.

 Note that there are other state definitions used in [6, 7, 19]. In [6, 7], a variable, called delay, is associated with
each token indicating the time to wait before the token becomes available. When a token is created, its delay is
initialized to any value inside its time stamp interval. Afterwards, its value decreases with time until its associated token
disappears. Delays are less appropriate than clocks to verify timed properties. The verification of these properties
generally needs to compute some path times. The computation of path times is simpler using clocks, as they measure the
time elapsed since they are initialized to zero.

In [19], each token is completed with a date interval indicating the minimal and maximal dates at which the token
will become available. If a token is created at date τ, its date interval is [a+τ, b+τ], where [a,b] is its time stamp
interval. This state definition is not appropriate for enumerative methods, since for models allowing infinite firing
sequences, the date will grow infinitely leading to infinite graphs.

2.2.2 State evolution
Initially, the model is in its initial state. Afterwards, its state evolves either by time progressions (clocks increase with
time) or by firings.

Definition 4: (State events)

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Checking Untimed and Timed Linear Properties of the Interval Timed Colored Petri Net Model 111

 Let σ be a state and M(σ) the marking obtained from σ by eliminating all time parameters (the underlying
marking).
- Let t be a transition of T. Transition t is enabled for σ iff all tokens required for its firing are present in σ , i.e.:

∃ m ∈ Dom(F(t)), m ≤ M(σ).
- An event of σ is a pair (t,in) where t is an enabled transition for σ and in is all tokens participating in its enabling.
- Let e be an event of σ. Jin(e) denotes the multi-set of timed tokens required for firing event e. We have: Jin(e)

≤ σ.
- We denote E(σ) the set of all events of σ.
- Two events e1 and e2 are conflicting for σ iff, Jin(e1) + Jin(e2) < σ. When an event is fired all event conflicting

with it are disabled.

In this model, an event shall occur as soon as possible (i.e.: when all required tokens become available). Its firing
takes no time but leads to a new marking: consumed tokens disappear and possibly new tokens are created.

Let σ be a reachable state of an ITCPN, ef=(tf,Jin(ef)) an event of σ and dv a non-negative real value.

Definition 5: (Time progression)
- Let (p,c,v,[a,b]) be a token of σ. The delay interval of this token is the domain of the time required to become

available, i.e.: [max(0,a-v),max(0,b-v)].
- Let e be an event of σ. The occurrence delay (i.e.: the firing delay) of e is the delay required for all tokens of

Jin(e) to become available. The minimal and maximal firing delays of e denoted respectively by FDmin(e) and
FDmax(e) are max(0, max(p,c,v,[a,b])∈Jin(e) (a - v)) and max(p,c,v,[a,b]) ∈ Jin(e) (b-v). From the semantic of the model (an
event shall occur as soon as possible), there is at least one token (p,c,v,[a,b]) in Jin(e) such that v ≤ b holds. By
convention, if Jin(e) is empty, FDmin(e) and FDmax(e) are equal to zero.

- A time progression of dv units can occur from the state σ (without any firing) iff, dv is smaller or equal to the
maximal firing delays of all events, i.e.: dv ≤ mine ∈ E(σ) FDmax(e). By convention, if E(σ) is empty,
(mine∈E(σ)FDmax(e)) is equal to ∞. This condition of time progression is denoted σ→dv.

- After this time progression, the clock of each token (p,c,v,[a,b]) of σ increases by dv time units. We denote (σ)+dv
the reached state: ∑(p,c,v,[a,b])∈ σ σ(p,c,v,[a,b]) • (p,c,v+dv,[a,b]).

We write σ→dv σ' iff the state σ' is reachable from σ by time progression of dv units.

Definition 6: (Event firing)
- Event ef can occur immediately from σ (without any progression of time) iff, its minimal firing delay is equal to 0,

i.e.: FDmin(ef) = 0. This immediate firing condition is denoted by σ→ef.
- If ef can occur immediately from σ, its occurrence is instantaneous and leads to the state σ' = σ - Jin(ef) +

Jout(ef), where Jout(ef) is obtained from F(tf)(M(Jin(ef))) by completing each token with the initial value of its
clock (i.e.: 0). Recall that F(tf) is the transition function of tf. This immediate firing is denoted by σ→ef σ'.

- Event ef can occur from σ after possibly some progression of time iff, its minimal firing delay is not greater than
the maximal firing delays of all other events, i.e.: (FDmin(ef) ≤ mine∈E(σ) (FDmax(e))).

- If ef can occur from σ, it will occur after any delay dv inside interval [FDmin(ef), mine∈E(σ) FDmax(e)]. Its occurrence
is instantaneous but leads to the state σ': σ'= (σ - Jin(ef))+dv + Jout(ef).

- An evolution of σ is a sequence of events and time progressions that can occur successively from σ. Evolutions of
an ITCPN are those of its initial state.

Note that for the ITCPN model, the evolution of a state σ depends only on its underlying untimed tokens M(σ) and

the delay intervals of its tokens.

Example 1: (State evolution)

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Hanifa Boucheneb 112

Consider the previous model (Figure 1). Its initial state σ0 consists of three tokens:
 (pfree,M1,0,[2,2])+(pin,J1,0,[1,1])+(pin,J2,0,[2,2]).

The first and the third one will become available after two time units while the second one will become available
after one time unit. State σ0 has two events:
e1= (t1,(pfree, M1, 0, [2,2]) + (pin, J1, 0,[1,1])) and e2= (t1, (pfree, M1,0, [2,2]) + (pin, J2,0,[2,2])).

Their minimal and maximal firing delays are:
 FDmin(e1)= FDmax(e1)= max(0,2-0,1-0) and FDmin(e2)= FDmax(e2)=max(0,2-0,2-0).

Both events can occur from the initial state after 2 time units. After 2 time units, the model will reach the state:

(pfree,M1,2,[2,2]) + (pin,J1,2,[1,1]) + (pin,J2,2,[2,2]).

The occurrence of event e1 leads to the state σ1= (pin, J2,2,[2,2]) + (pbusy, (M1,J1),0,[1,3]).

The occurrence of event e2 leads to the state σ2 = (pin, J1,2, [1,1]) + (pbusy, (M1,J2),0,[1,3]).

Definition 7: (State space)
The state space of an ITCPN is the graph of its evolutions. It is defined as a tuple (SS,→, σ0) where:

- σ0 ∈ SS is the initial state;
- → ⊆ (SS × (EE ∪ R+) × SS) is the transition relation defined in Definitions 5 and 6, EE is the set of all events;
- SS = { σ | σ0→∗ σ}, where →∗ is the reflexive and transitive closure of →.

Because of time density, the state space of the ITCPN model is generally infinite and then not useful for
enumerative analysis methods. Van der Aalst proposed in [19] a contraction method for the ITCPN state space which is
"sound" but not "complete". This is due to the fact that this method “forgets” the occurrence time to memorize only
intervals, i.e.: a state class (a set of states) is defined as a multiset of triplets of the form (place, color, interval).
Consequently, for event producing several tokens, the dependencies (relations binding intervals) are lost and resulting
classes may contain unreachable states (leading sometimes to unreachable markings). For instance, consider the model
shown in Figure 2. We suppose that the color domain of each place is {e}, the initial state is (p0,e,0) and transition
functions are defined as follows:

- F(t0)((p0, e)) = (p1, e,[0,2]).
- F(t1)((p1, e)) = (p2, e,[1,2]) + (p3,e, [1,3]).
- F(t2)((p2, e)) = F(t3)((p3, e)) = 0.

Using the Van der Aalst's method, the firing of transition t0 leads to the state class (p1,e,[0,2]). The firing of t1 from

this class produces the class (p2,e,[1+0,2+2]) + (p3,e,[3+0,4+2]) where states (p2,e,1) +(p3,e,6) and (p2,e,4) +(p3,e,3) are
represented but not reachable. From the former state, transition t2 is fired before t3 (1 < 6) while from the second,
transition t3 is fired before t2.(3 < 4).
Van der Aalst's method states that both markings (p2,e) and (p3,e) are reachable which is in fact wrong. The reason is
that after firing transition t1, the created token (p2,e) becomes available before token (p3,e) ([1,2]<[3,4]).

Therefore, transition t3 cannot be fired before t2. The firing of t2 leads to the marking (p3,e). Marking (p2,e) is then
not reachable. Due to these represented but unreachable states (markings), the resulting graph has not necessarily the
same properties as the initial model. Moreover, for some bounded ITCPNs allowing infinite firing sequences, Van der
Aalst's method produces infinite graphs.

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Checking Untimed and Timed Linear Properties of the Interval Timed Colored Petri Net Model 113

Fig. 2. ITCPN used to explain the Van der Aalst's method

We propose, in the following, another approach which is both "sound" and "complete". In addition, as we will show,

our approach generates finite graphs for all bounded ITCPNs.

3 Agglomerating states reachable by the same firing sequence

Separating time progressions and event firings is not appropriate for enumerative analysis. To contract the ITCPN state
space, we first combine time progressions with event firings and then agglomerate, into one state class, all states
reachable by firing the same sequence of events. The resulting graph called state class graph can be defined as follows.

Definition 8: (State class graph)
Formally, the state class graph of an ITCPN is a structure (CC,α,α0) where:

- α0 ∈ CC; α0 contains only the initial state of the model;
- α ⊆ (CC × EE × CC) is the transition relation between state classes defined by:

∀(α,e,α') ∈ (CC × EE × CC), (ααe α') iff
(∃ σ ∈α,∃ dv≥0, ∃ σ’ ∈α’, σ →dv (σ)+δϖ →eσ’) ∧ α'= {σ'| ∃ σ ∈α,∃ dv≥0, ∃ σ’ ∈α’, σ →dv (σ)+δϖ →eσ’}.

- CC = {α |α0 α∗ α}, where α∗ is the reflexive and transitive closure of α.

3.1 Characterization and computation of state classes

A state class agglomerates all states reachable by the same firing sequence. The initial state class consists of the initial
state of the model. We can characterize a state class by a marking and a logical formula as follows.

Definition 9: (State class)
A state class α can be defined as a pair (SM,FT) where:

- SM is a multi-set of timed tokens where clock values are replaced by clock names (one distinct clock name per
token).

- FT is a logical formula which characterizes the clock valuations of all states agglomerated in the class α. Each clock
valuation corresponds to a state of α.

Starting from the initial class, the successor state classes can be computed using the following firing rule. Events

and functions FDmin, FDmax, Jin and Jout are defined as in section 2.2.2 except that clock values are replaced by clock
names.

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Hanifa Boucheneb 114

Proposition 1: (Firing rule)

Let α=(SM,FT) be a state class and ef one of its events.
- Event ef can occur from α (i.e. α αef) iff:

FT ∧ (FDmin(ef) ≤ mine∈E{SM} FDmax(e)).
- Suppose that event ef can occur from the state class α. Its occurrence leads to the state class α' = (SM',FT'), where:

SM' = SM - Jin(ef) + Jout(ef) and FT' is computed in four steps:
o Initialize FT' with

FT ∧ FDmin(ef) ≤ dh ≤ mine ∈ E (SM) (FDmax(e)) ;
o Add for each clock h a new variable h and the constraint h=h+dh ;
o Add for each token (p,c,h,[a,b]) created by ef, i.e.: ((p,c,h,[a,b]) ∈ Jout(ef)), the constraint h = 0 ;
o Eliminate by substitution all variables h, dh and clocks of all tokens consumed by event ef (i.e.: tokens of

Jin(ef)). Afterwards, rename each variable h in h.

Proof: The firing condition is immediate from the Definition 4. The successor class can be computed in four steps.
Starting from the firing condition, we first introduce the variable dh representing the time progression before firing ef. As
clocks increase with time progression, we add for each clock h a new variable h and the constraint h =h+dh. Afterwards,
we add the time constraints of all newly created tokens. Their clocks are initially equal to 0. At the last step, we
eliminate by substitution old variables h, dh and clocks of all tokens consumed by ef. The old name of each remaining
variable h is then restored (i.e.: h is renamed in h).

Example 2: (Applying the firing rule)
The initial state class of the model in Figure 1 is α0 = (SM0, FT0), where:
SM0 = (pfree,M1,h1,[2,2]) + (pin,J1, h2, [1,1]) + (pin,J2, h3, [2,2]) and FT0 = (h1 = 0 ∧ h2 = 0 ∧ h3 = 0).

The state class α0 has two events:
e1= (t1, (pfree, M1, h1,[2,2]) + (pin, J1, h2,[1,1])) and e2= (t1, (pfree, M1, h1, [2,2]) + (pin, J2, h3, [2,2])).

Event e1 can occur from the state class α0 because the following formula is consistent:
h1=0 ∧ h2=0 ∧ h3=0 ∧ max(0,2-h1,1-h2)≤ min(max(2-h1,1-h2),max(2-h1,2-h3)).

Its occurrence leads to the class α1 = (SM1,FT1) where:
SM1 = (pin, J2, h3,[2,2]) + (pbusy, (M1, J1), h4,[1,3]) and
FT1 is computed as follows:

- Initialize FT1 with: h1=0 ∧ h2=0 ∧ h3=0 ∧ max(0,2-h1,1-h2) ≤ dh ≤ min(max(2-h1,1-h2),max(2-h1,2-h3)).
- Add for each clock h a new variable h and the constraint h=h+dh:
 h1=0 ∧ h2=0 ∧ h3=0 ∧ max(0,2-h1,1-h2) ≤ dh ≤ min(max(2-h1,1-h2),max(2-h1,2-h3)) ∧
 h1= h1+dh ∧ h2=h2+dh ∧ h3=h3+dh.
- Add for each token (p,c,h,[a,b]) of Jout(e1) , the constraint h = 0:

h1=0 ∧ h2=0 ∧ h3=0 ∧ max(0,2-h1,1-h2) ≤ dh ≤ min(max(2-h1,1-h2),max(2-h1,2-h3)) ∧
h1= h1+dh ∧ h2=h2+dh ∧ h3=h3+dh ∧ h4=0.

- Eliminate by substitution old variables h , dh and clocks of all tokens consumed by event e1 (i.e.: tokens of
Jin(e1)); Afterwards, rename each variable h in h: h3=2 ∧ h4=0.

The reachable class by firing event e1 from the class α0 is then α1 = (SM1, FT1) where:

 SM1 = (pin, J2, h3,[2,2]) + (pbusy, (M1, J1), h4,[1,3]) and
 FT1 = (h3 = 2 ∧ h4 = 0).

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Checking Untimed and Timed Linear Properties of the Interval Timed Colored Petri Net Model 115

In the state class graph, only states reachable by firing sequences are explicitly represented. States reachable by
time progression are not represented but, they can be computed from those represented in the state class graph.

3.2 State class evolutions
Let α=(SM,FT) be a state class. The set of its evolutions is the union of evolutions of its states. We give in the
following the basis operations useful to determine its evolutions (i.e.: time progression, immediate firing).

Proposition 2: (Time progression)
Let α=(SM,FT) be a reachable state class and dv a nonnegative real value.

- A time progression of dv units is possible from α iff the following formula is consistent:
FT ∧ (∧e∈E (SM) dv ≤ FDmax(e)).

- In this case, the set of all reachable states from α by time progression of dv units is (SM,FT') , where FT' is
computed as follows:
o Initialize FT' to: FT ∧ (∧ e ∈ E{SM} dv ≤ FDmax(e)) ;
o Replace each clock h in FT' by h-dv.

Proof: A time progression of dv units is possible for all states of α such that the maximal firing delays of their

events are all greater or equal to dv. The time progression condition isolates from α all states allowing a time
progression of dv units. If it is consistent, the formula characterizing the set of reachable states by this time progression
is obtained, from this condition, by replacing each clock h by h-dv. This substitution increments appropriately the values
of h: old(h) = new(h) - dv.

Example 3: (Time progression)
Consider the state class α1=(SM1,FT1) computed in Example 2. α1 has only one event: e3=(t2, (pbusy,

(M1,J1),h4,[1,3])).

A time progression of 2 units is possible from the class α1 because the following formula is consistent:
 h3=2 ∧ h4=0 ∧ 2 ≤ 3 - h4.
The set of all reachable states from states of α1 after 2 time units is α1'=(SM1,FT1') where:
SM1 = (pin, J2, h3,[2,2]) + (pbusy, (M1, J1), h4,[1,3]) and
FT1' is computed as follows:

- Initialize FT1' with: h3=2 ∧ h4=0 ∧ 2 ≤ 3 - h4.
- Replace each clock h by h-2: h3-2=2 ∧ h4-2=0 ∧ 2 ≤ 3 - h4+2.

Hence, FT1' = (h3 = 4 ∧ h4 = 2).

Proposition 3: (Immediate firing)
Let α=(SM,FT) be a reachable state class and ef an event of α.

- Event ef can fire immediately (without any time progression) from the state class α iff the following formula is
consistent: FT ∧ (FDmin(ef)=0).

- In this case, the set of all reachable states (SM,FT') from α by firing immediately event ef, can be computed as
follows:
o Initialize FT' to: FT ∧ (FDmin(ef)=0) ;
o Eliminate by substitution all clocks associated with tokens consumed by ef and add for each token (p,c,h,[a,b]) of

Jout(ef) , the constraint h=0.

Proof: Event ef can fire immediately (without any time progression) from all states of α such that their minimal
firing delays are equal to 0. The firing condition given in the proposition isolates from α all states allowing ef to fire
immediately. If it is consistent, the formula characterizing the set of reachable states is obtained, from this condition, by

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Hanifa Boucheneb 116

eliminating by substitution all clocks associated with tokens consumed by ef, and adding for each token (p,c,h,[a,b])
newly created, the constraint h=0. The initial value of clocks is 0.

Example 4: (Immediate firing)
Consider the state class α1' computed in Example 3. Its event e3= (t2, (pbusy, (M1,J1), h4,[1,3])) is immediately firable

from α1' since the following formula is consistent: h3=4 ∧ h4=2 ∧ max(0,1 - h4) = 0.
The set of all reachable states from states of α1' by firing immediately event e3 is (SM3,FT3) where: SM3 = (pin,

J1, h1,[2,2]) + (pfree, M1, h2,[1,1]) + (pin, J2, h3,[2,2]) and FT3 is computed as follows:
- Initialize FT3 with: h3=4 ∧ h4=2 ∧ max(0,1 - h4) = 0.
- Eliminate by substitution all clocks associated with tokens consumed by e3 and add for each token (p,c,h,[a,b])

of Jout(e3), the constraint h=0: h3=4 ∧ h1=0 ∧ h2=0.

By construction, all firing sequences as well as their reachable states are explicitly represented in the state class
graph. Moreover, we can deduce from the states represented in the graph, all evolutions of the model. Consequently, the
state class graph preserves all linear properties. However, the firing rule given in Proposition 1 is not simple to use since
it requires resolution of systems of inequations. Furthermore, as we will show, in the next section, this graph can be
infinite even if, the model is bounded.

4 Simplification of the firing rule

We show, in the following, how to simplify the firing rule, given in Proposition 1, into an attractive form more simple to
implement. This simplification leads to an attractive characterization of state classes which simplifies both the
computation and the comparison of state classes.

4.1 Clock bound function of a state class
The simplified form of the firing rule, established in Propositions 4 and 5, is based on the clock bound function of a state
class. This function indicates for each clock its bounds and for each pair of clocks, the bounds of their difference.

Definition 10: (Clock bound function)
Let α=(SM,FT) be a state class, VSM the set of all variables (clocks) in SM and o the symbol representing the

value zero.
We define the clock bound function H as follows:

 H: (VSM ∪ {o})2→ Q ∪{ ∞} , H(x,y) = max (x-y | FT).
In other terms, H(x,y) is the biggest value of x-y in the domain of FT.

The clock bound function H0 of the initial state class α0=(SM0,FT0) is:

 ∀(x,y) ∈ (VSM0 ∪ {o})2, H0(x,y) = 0.
The next theorem states that a state class can be characterized by its symbolic marking and its clock bound function.

This characterization is more useful for comparison of state classes. Two state classes α=(SM,FT) and α'=(SM',FT')
are equal iff, it is possible to rename clocks in (SM',FT') so as to obtain: SM = SM' and H = H’.
In this way, we avoid the equivalency test of formulas.

Theorem 1: (Canonical form)
Let α=(SM,FT) be a state class. The domain of FT is equivalent to: ∧(x,y) ∈ (VSM ∪ {o})

2 (x-y ≤ H(x,y))
This form is called the canonical form of FT.

Proof: (By induction)
The domain represented by FT0 is equivalent to:
 ∧ (x,y) ∈ (VSM0∪ {o})

2 x-y ≤ 0.

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Checking Untimed and Timed Linear Properties of the Interval Timed Colored Petri Net Model 117

Suppose that the domain of a class α=(SM,FT) is equivalent to:
∧ (x,y) ∈ (VSM ∪ {o})

2 (x-y ≤ H(x,y)).
Let α'=(SM',FT') be the successor of α=(SM,FT) by an event ef. From Proposition 1, domains of its clocks (h= h

+ dh) and the differences between its clocks (h-h') are continuous intervals. Moreover, the bounds of these intervals
belong to the domains. Therefore, the domain of FT' is equivalent to:

∧(x,y) ∈ (VSM’ ∪ {o})
2 (x-y ≤ H’(x,y)).

4.2 Firing rule using clock bounds
In the previous subsection, we have shown that state classes can be characterized by their markings and their clock
bound functions. This characterization simplifies the comparison of state classes. We establish in the following another
firing rule more appropriate and more simple (avoiding the resolution of systems of inequations).

Let α=(SM,FT) be a state class and H its clock bound function.
Let ji be a token of SM. We denote respectively hi, ai and bi the clock and bounds of the static delay interval of ji.
For any event e and any clock h of α, mina(h,e) and maxb(h,e) denote respectively minji∈Jin(e) H(hi,h)-ai and

maxji∈Jin(e) H(h,hi)+bi.

Proposition 4: (Computing clock bounds)
Let α=(SM,FT) be a state class, ef an event firable from α and α'=(SM',FT') the successor of α by ef.
The function H’ can be computed using H as follows:

- ∀x ∈ VSM’ ∪{o}, H’(x,x) = 0.
- ∀h ∈ VSM’ , if its token is created by ef: H’(o,h) = 0 and H’(h,o) = 0

 else H’(o,h) = min (H(o,h), mina(h,ef)) and
 H’(h,o) = mine ∈Ε(ΣΜ) maxb(h,e)
- ∀(h,h') ∈ VSM’

2, h ≠ h' ,
 if their tokens are not created by ef: H’(h,h') = min(H(h,h'), H’(h,o) + H’(o,h'))
 else: H’(h,h') = H’(h,o) + H’(o,h')

Proof: Recall the definition of H’: ∀(x,y) ∈ (VSM’∪{o})2, H’(x,y) = max (x-y | FT')
1) Then: ∀x ∈ VSM’∪ {o} , H’(x,x)=0 ;
2) Computing H’(h,o) and H’(o,h) , for h ∈VSM’:

- In case h is associated with some token created by event ef, the value of h is 0. Hence, H’(h,o) = 0 and H’(o,h) =
0.

- In case h is associated with some token not created by ef, H’(h,o) and H’(o,h) are respectively the biggest values
of h+dh and -(h+dh) satisfying the firing condition of ef, i.e.: FT ∧ FDmin(ef) ≤ dh ≤ mine∈E(SM) FDmax(e). After
developing FD, we can rewrite this firing condition to obtain: (FT ∧ max (0, maxjf∈Jin(ef) (af-hf)) ≤ dh ≤
mine∈E(SM) maxji∈Jin(e) (bi -hi)).

The biggest values of h+dh and -(h+dh) can be obtained by adding h to each member of the second term of the
formula, replacing in the upper bound of h+dh , each h-hi by the biggest value of h-hi satisfying FT (i.e.:
H(h,hi)) and finally replacing in the lower bound of h+dh , each h-hf by the smallest value of h-hf satisfying FT
(i.e.: -H(hf,h)).

3) Computing H’(h,h'), for (h,h') ∈VSM’
2:

- In case h or h' is associated with some token created by ef, we have H’(h,o) =0 or H’(o,h')=0. Therefore:
H’(h,h') = H’(h,o) + H’(o,h');
- In case h and h' are associated with tokens not created by ef, H’(h,h') is the biggest value of (h-h') satisfying the
firing condition of ef.
Consequently, H’(h,h') = min (H(h,h'),H’(h,o)+H’(o,h')).

Proposition 5: (Firing condition)

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Hanifa Boucheneb 118

Let ef be an event of α=(SM, FT). ef can occur from the state class α iff: minjf∈Jin(ef) e∈E(SM)(maxji∈Jin(e) b+H(hf,hi))-af
≥ 0.

Proof: The firing condition given in Proposition 1, can be rewritten to obtain: FT ∧
minjf∈Jin(ef),e∈E(SM)(maxji∈Jin(e)b+hf-hi)-af ≥0.

Since H(hf,hi) = max(hf-hi | FT), the previous formula is consistent iff:
minjf∈Jin(ef),e∈E(SM)(maxji∈Jin(e) b+H(hf,hi))-af ≥ 0.

Example 5: (Applying the firing rule)
Consider the initial state class α0 = (SM0,H0) of the model in Figure 1.

 o,h1,h2,h3

o,h1,h2,h3 0
H0 =

Using the clock bound function, the successor by event e1 of this class is computed as follows:

Event e1 can occur from the state class α0 because the following relation holds:
min(max(2+0,1+0)-2,max(2+0,2+0)-2 , max(2+0,1+0)-1, max(2+0,2+0)-1) ≥ 0.

Its occurrence leads to the class α1 = (SM1,H1) where: SM1 = (pin, J2, h3,[2,2]) + (pbusy, (M1, J1), h4,[1,3]) and non

null elements of H1 are computed as follows:
 H1(h3,o)=min (max(2+0,2+0), max(2+0,1+0))=2
 H1(o,h3)= min(0, 0-2, 0-1) = -2
 H1(h3,h4)= H1(h3,o)=2
 H1(h4,h3)= H1(o,h3)= -2

The reachable class by firing event e1 from the class α0 is then α1 = (SM1, H1) where:
 SM1 = (pin, J2, h3,[2,2]) + (pbusy, (M1, J1), h4,[1,3]) and

 o,h4 h3

o,h4 0 -2

h3 2 0

H1 =

4.3 State class evolutions
With the clock bound functions, we have been able to easy up the construction of the state class graph (computation and
comparison of state classes). In the following, we propose a simple way to determine using the clock bound functions
the state class evolutions. We focus on the computation of clock bound functions. The computation of markings is done
in the same way as shown in section 3.

Proposition 6: (Time progression)
Let α=(SM,FT) be a reachable state class and dv a nonnegative real value.

- A time progression of dv units is possible from the state class α iff: dv ≤ mine ∈E(SM) maxji∈Jin(e) (b+H(o,hi)).
- In this case, the clock bound function H’ of the set of states reachable from α by time progression of dv is

computed as follows:

o ∀x ∈ VSM ∪ {o}, H’(x,x) = 0

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Checking Untimed and Timed Linear Properties of the Interval Timed Colored Petri Net Model 119

o ∀h ∈ VSM , H’(o,h) = H(o,h)-dv and H’(h,o) = min(dv+H(h,o), min e∈E(SM) maxb(h,e))
o

Proof: The proof is similar to those of Propositions 4 and 5.
 ∀(h,h') ∈ VSM

2, h ≠ h', H’(h,h') = min(H(h,h'), H’(h,o) +H’(o,h'))

- Recall the time progression condition given in Proposition 2: FT ∧ dv ≤ mine∈E(SM) FDmax(e)
After developing FDmax, we obtain: FT ∧ (∧e∈E(SM) dv ≤ maxji∈Jin(e) bi-hi.

 This formula is consistent iff: dv ≤ mine∈E(SM) maxji∈Jin(ei) bi+H(o,hi).
- (1) By definition of the clock bound function, we have: ∀x ∈ VSM’ ∪{o} , H’(x,x)=0 ;
 (2) For each h ∈ VSM’, H’(h,o) and H’(o,h) are respectively the biggest values of h+dv and -
(h+dv) satisfying the time progression condition. After developing FD and add h to each member of the second term of
the formula, we obtain:

FT ∧ (h+dv) ≤ mine∈E(SM) maxji∈Jin(e) (bi - hi+h) Then:
H’(o,h) = H(o,h)-dv and H’(h,o) = min(dv+H(h,o), mine∈E(SM) maxb(h,e))

(3) For (h,h') ∈ VSM’
2 , H’(h,h') is the biggest value of (h-h') satisfying the time progression condition.

Consequently,
 H’(h,h') = min (H(h,h'), H’(h,o)+H’(o,h')).

Ω
Example 6: (Time progression)
Consider the state class α1 = (SM1,H1) computed in Example 2. A time progression of 2 units is possible from the

class α1=(SM1,H1) because the following relation holds: 2 ≤ 3-0.
The set of all reachable states from states of α1 after 2 time units is α1'=(SM1,H1') where:

 O h4 h3

o 0 -2 -4

h4 2 0 -2

h3 4 2 0

 H1’ =

Proposition 7: (Immediate firing)
Let α=(SM,FT) be a reachable state class and ef an event of α.

- Event ef can fire immediately (without any time progression) from the class α iff: maxjf∈Jin(ef) af-H(hf,o) ≤ 0.
- In this case, the clock bound function H’ of the state class reachable from α by firing immediately ef , can be

computed as follows:
o ∀x ∈ VSM ∪ {o}, H’(x,x) = 0
o ∀h ∈ VSM ,

 H’(o,h) = min(H(o,h), mina(h,ef))
H’(h,o) = H(h,o)

o ∀(h,h') ∈ VSM
2, h ≠ h',

 H’(h,h') = min(H(h,h'), H’(h,o) + H’(o,h'))

Proof: The proof is similar to the proofs of Propositions 4 and 5.
- Recall the immediate firing condition given in Proposition 3: FT ∧ (FDmin(ef)=0). After developing FDmin , we

can rewrite it to obtain: FT ∧ maxjf∈Jin(ef) af - hf ≤ 0
This formula is consistent iff: maxjf∈Jin(ef) af-H(hf,o) ≤ 0.

- (1) From the definition of the clock bound function, we have: ∀x ∈ VSM’ ∪ {o} , H’(x,x)=0;

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Hanifa Boucheneb 120

(2) For each h ∈ VSM’ , H’(h,o) and H’(o,h) are respectively the biggest values of h and -h satisfying the
immediate firing condition. After developing FDmin and adding h to each member of the second term of the formula,
we can rewrite it to obtain: FT ∧ maxjf∈Jin(ef) af - hf+h ≤ h.

 Then: H’(o,h) = min (H(o,h), minjf∈Jin(ef) (H(hf,h)-af))
 and H’(h,o) = H(h,o)

(3) For each (h,h') ∈ VSM’
2 , H’(h,h') is the biggest value of (h-h') satisfying the immediate firing condition.

Consequently, H’(h,h') = min (H(h,h'), H’(h,o)+H’(o,h')).

Example 7: (Immediate firing)
 Consider the state class α1' computed in Example 6. Its event e3= (t2, (pbusy, (M1,J1), h4,[1,3])) is immediately

firable from α1' since the following relation holds: 1 - 2 ≤ 0.
The set of all reachable states α3 by firing immediately event e3 is (SM3,H3) where:
 SM3 = (pin,J1, h1,[2,2]) + (pfree,M1, h2,[1,1]) + (pin,J2, h3,[2,2])

 H3 =

 o, h1, h2 h3

o,h1,h2 0 -4

h3 4 0

We have proposed another characterization of state classes which is more manageable and induces both more simple
computation and comparison of state classes. It also allows computing more easily the state class evolutions. However,
the state class graph can be infinite even if, the model has a finite number of reachable markings (bounded). This may
occur, for example, if there is some token which will never be consumed. Its clock will increase infinitely.

 For example, consider the model in Figure 1. The model has three reachable markings but an infinite number of
reachable state classes. From the initial state class, the token (pin, J2, h3,[2,2]) will never be consumed, if the model
executes repeatedly the sequence (e1,e3): e1= (t1, (pfree, M1, h1,[2,2])) + (pin, J1, h2,[1,1]) and e3= (t2, (pbusy, (M1,J1),
h4,[1,3])).

 The occurrence of this sequence leads to the state class α4 = (SM4, H4):
SM4 = (pfree, M1, h1,[2,2]) + (pin, J1, h2,[1,1]) + (pin, J2, h3,[2,2])
 and

 o, h1, h2 h3

o,h1,h2 0 -3

h3 5 0

H4 =

Each execution of this sequence generates a new state class. All state classes obtained share the same marking but
the domains of h3 are different. These domains are all beyond the time stamp interval [2,2] of the associated token. As
firing delays of events do not depend on values beyond the time stamp intervals of their tokens, we can add to the
domain of h3 all values greater or equal to 2. This operation, called relaxation, produces the same state class (SM13, H13),
when we apply it to all state classes reachable by firing repeatedly the sequence e1e3:

SM13 = (pin,J1, h1,[2,2]) + (pfree,M1, h2,[1,1]) + (pin, J2, h3,[2,2]) and

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Checking Untimed and Timed Linear Properties of the Interval Timed Colored Petri Net Model 121

 o, h1, h2 h3

o,h1,h2 0 -2

h3 ∞ 0

H13 =

For further contractions, we propose to relax each computed state class before comparing it with previously
computed state classes. As we will show, with this operation, we obtain finite graphs for all bounded ITCPNs.

5 Relaxation of state classes

The relaxation of a state class consists in adding, to the clock domains, some values which do not affect the evolutions
of the state class. This operation, known under the name k-approximation, is similar to the one used for timed automata
[9] and time Petri nets [13].

Let α=(SM,H) be a state class and (p,c,h,[a,b]) a token of α. Let kh be the constant defined by:
if (b ≠ ∞) then kh = b else kh = a.

In case the domain of h contains some values greater or equal to h, we can add to the domain of h all values greater

or equal to kh, without affecting the behaviour of the class. The reason is that when h reaches the value kh, the token
becomes available and stays available until its consummation.

Let α = (SM,H) be a state class. The relaxation of α is done as follows:

 For each h in VSM
 { // let [a,b] be the time stamp interval of h.

 • if (b ≠ ∞) kh = b else kh = a;
 • if (H(h,o) • kh) { //the biggest value of h is • kh
 H(h,o)=••∞;
 • if (-H(o,h) • kh) { //the smallest value of h is • kh
 H(o,h)= - kh ;
 For each h' in (VSM - {h})
 { • // let [a’,b’] be the time stamp interval of h’.
 if (H(h,h') • kh) //the biggest value of h-h’ is • kh

 H(h,h') =••∞;
 if (b’ ≠ ∞) kh’ = b’ else kh’ = a’;
 if (-H(h,h’) • kh’) //the smallest value of h’-h is •
kh’
 H(h,h’)= - kh’ ;
• }
 //compute tightest clock bounds ;

 For each x in VSM ∪{o}
 For each y in VSM∪{o}
 For each z in VSM∪{o}
 if (H(x,y) > H(x,z)+ H(z,y))
 H(x,y) = H(x,z)+ H(z,y)•;
• }

Example 8: (Relaxation of a state class)
 Consider the state class α1 = (SM1,H1) computed in Example 5. This state class has to be relaxed because -

H1(o,h3)≥ 2 and H1(h3,o)≥ 2. The relaxation of h3 in α1 consists in replacing its domain [2,2] by [2,∞]. After relaxation,
we obtain:

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Hanifa Boucheneb 122

 o,h4 h3

o,h4 0 -2

h3 ∞ 0

H1 =

The following theorem establishes that the relaxation of a state class has the same set of evolutions as itself.

Theorem 2: Let α= (SM,H) be a state group. Then α and its relaxation have the same evolutions.

Proof: We relax a domain of some clock h of VSM, iff some values of h in α are greater or equal to its kh. In this
case, the relaxation consists in replacing the domain of h by [min(-H(o,h), kh),∞]. This operation does not affect the
evolutions of the state class, because the delay interval [max(0,a-h),b-h] of the token (p,c,h,[a,b]) associated with h
is the same for each value of h greater or equal to kh. If b = ∞ , the delay interval is [0,∞]. Otherwise, the delay
interval is [0,0].

We relax the domain of h-h’, iff some values of h-h’ in α are greater or equal to kh (i.e.: H(h,h’) ≥ kh) or
smaller or equal to -kh’ (i.e.: H(h,h’) ≤ - kh’). Indeed, if H(h,h’) ≥ kh then H(h,o) ≥ kh. In this case, relaxation extends
the domain of h to infinite and then the domain of h-h’ has to be extended to infinite too. If H(h,h’) ≤- kh’ then H(o,h’)
≤ - kh. In this case, relaxation replaces H(o,h’) by -kh. Since h-h’ ≥ -h’ and (after relaxation) -h’ ≥ - kh., we have to
replace H(h,h’) by -kh’.

It comes that each added state has the same evolutions as some state of the class. Then, the added states when we
relax a class do not affect the evolutions of the class.

The state class graph of an ITCPN model is built by applying the firing rule given in Propositions 4 and 5 to the
initial state class and to each new state class. Each computed state class is relaxed before comparing it with the
previously computed state classes. As the relaxation of state classes does not affect their evolutions, the relaxed state
class graph preserves all linear properties of the model. If it is finite, it can be used to determine linear properties of the
model by applying the appropriate classical model checking techniques.

Theorem 3 below establishes one necessary and sufficient condition to obtain finite relaxed state class graphs. Its
proof is based on the following proposition proven in [5].

Proposition 9: Let Y be a finite linear combination of rational constants with integer coefficients. If Y is bounded
by finite rational constants (i.e.: inf ≤ Y ≤ sup and inf, sup ≠ ∞) then the value domain of Y is finite.

Theorem 3: An ITCPN has a finite relaxed state class graph iff, it is bounded (it has a finite number of reachable
markings).

Proof:
 →) is obvious.
 ←) If the model is bounded, it has a finite set of reachable markings. Since the number of different markings is finite, it
suffices to prove that for each marking, we have a finite number of different classes that share the same marking.

Consider a marking. We have to show that there is a finite number of different functions H for the considered
marking. For each pair of clocks (h,h') of VSM

2 , terms H(h,h') , H(o,h') and H(h,o) are finite combinations of rational
constants with integer coefficients (finite combinations because the number of different time intervals in the model is
finite).

These terms are bounded or equal to ∞. Let [a,b] be the time stamp interval associated with h and kh the value
defined by:

kh = b if b ≠ ∞, kh =a otherwise.
- H(h,o) is initialized to 0. The value of H(h,o) increases with time but the relaxation changes to ∞ all its values

greater or equal to kh. Then: 0 ≤ H(h,o) ≤ kh or H(h,o)= ∞.

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Checking Untimed and Timed Linear Properties of the Interval Timed Colored Petri Net Model 123

- H(o,h) is initialized to 0. Its value decreases with time but the relaxation changes to - kh all its values smaller than
- kh. Then: - kh ≤ H(o,h) ≤ 0.

- - kh' ≤ H(h,h') ≤ kh or H(h,h') = ∞.
From Proposition 9, the value domains of H(h,o), H(o,h') and H(h,h') are finite. Consequently, the number of

different H is finite.

This necessary and sufficient condition that ensures a finite relaxed state class graph may be difficult to use since we
have not a general procedure to decide whether or not an ITCPN has a finite number of reachable markings. However,
we have a straightforward sufficient condition using the underlying colored Petri net (CPN), and we know several
methods to decide this property on CPN, namely the invariant method: An ITCPN has a finite number of markings (i.e.:
bounded), if its underlying CPN has a finite number of reachable markings. The reverse is not true. Indeed, an ITCPN
can have a finite set of reachable markings but its underlying CPN has an infinite number of reachable markings. As an
example, consider the model shown in Figure 2 where the initial marking is M0 = (p1,prod), F(t1)(p1,prod) =
(p1,prod,[1,2]) + (p2,mess,[0,1]), and F(t2)(p2,mess) = 0.

This model has three reachable markings: M0, M1 = (p1,prod)+ (p2,mess) and M2 = (p1,prod) + 2 (p2,mess). But its
underlying coloured Petri net is unbounded (place p2 is unbounded).

p2

t2 F(t2) t1 F(t1)

p1

[0,1]

[1,2]

Fig. 2. Bounded ITCPN but unbounded CPN

Example 9: (Relaxed state class graph)
Applying our approach to the model in Figure 1 produces the state class graph shown in Figure 3. It consists of 5

state classes, 8 arcs and 4 events:

Fig. 3. The relaxed state class graph of the model in Figure 1

α0: SM0= (pfree,M1, h1,[2,2]) + (pin,J1, h2,[1,1]) + (pin,J2, h3,[2,2]),

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Hanifa Boucheneb 124

 o,h1,h2,h3

o,h1,h2,h3 0
H0 =

α1: SM1 = (pin, J2, h3,[2,2]) + (pbusy, (M1,J1), h4,[1,3]),

 o,h4 h3

o,h4 0 -2

H3 ∞ 0

H1 =

α13: SM13= (pfree,M1,h1,[2,2])+(pin,J1,h2,[1,1]) + (pin, J2, h3,[2,2]),

 o, h1, h2 h3

o,h1,h2 0 -2

H3 ∞ 0

H13 =

α2: SM2=(pin,J1,h2,[1,1])+(pbusy,(M1,J2),h5,[1,3]) ,

 o, h5 h2

o,h5 0 -1

H2 ∞ 0

H2 =

α24: SM24 =(pfree,M1,h1,[2,2]) + (pin,J1,h2,[1,1]) + (pin,J2, h3,[2,2]),

H24 =

 e1= (t1,(pfree, M1, h1,[2,2]) + (pin, J1, h2,[1,1]))

 o, h1, h3 H2

o,h1,h3 0 -1

h2 ∞ 0

 e2= (t1,(pfree, M1, h1,[2,2]) + (pin, J2, h3,[2,2]))
 e3= (t2, (pbusy, (M1,J1), h4,[1,3]))
 e4= (t2,(pbusy, (M1,J2), h5,[1,3])).

The Figure 4 shows the graph obtained by applying our approach to the model shown in Figure 2:

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Checking Untimed and Timed Linear Properties of the Interval Timed Colored Petri Net Model 125

Fig. 4. The relaxed state class graph of the model in Figure 2

α0: SM0= (p1,prod, h1,[1,2])

 o,h1

o,h1 0
H0 =

α1: SM1 = (p1, prod, h1,[1,2]) + (p2, mess, h2,[0,1]),

 o,h1,h2

o,h1,h2 0
H1 =

α3: SM3= (p1,Prod,h1,[1,2]),

 o h1

o 0 0

h1 1 0

H3 =

α2: SM2=(p1,prod,h1,[1,2])+(p2,mess,h2,[0,1])+(p2,mess,h2’,[0,1])

 o, h1,
h2’

h2

o,h1,h2’ 0 -1

H2 1 0

H2 =

 e1= (t1, (p1, prod, h1,[1,2]))
 e2= (t2, (p2, mess, h2,[0,1]))

Note that the state class graph obtained using the Van der Alst’s approach is infinite and contains unreachable
markings. Indeed, starting from the initial state class (p1,prod,[1,2]), event (t1, (p1, prod,[1,2])) may occur at any date
inside [1,2]. Its occurrence leads to the state class β = (p1,prod, [1+1,2+2]) + (p2,mess,[0+1,1+2]).

Both events (t1, (p1, prod,[2,4])) and (t2, (p2, mess,[1,3])) may occur respectively for the date intervals [2,min(3,4)]
and [1,min(3,4)].

The occurrence of event (t2, (p2, mess,[1,3])) from β leads to the class (p1,prod,[1+1,2+2]) which has the same
marking as the initial state class but the interval of its token is increased. The repetitive firing of the sequence t1 and t2

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Hanifa Boucheneb 126

will generate an infinite number of state classes. Hence, the graph of state classes obtained using the Van der Aalst’s
approach is infinite.

The occurrence of event (t1, (p1, prod,[2,4])) from β leads to
(p1,prod,[1+2,2+3])+(p2,mess,[1,3])+(p2,mess,[0+2,1+3]). From this state class, event (t1, (p1, prod,[3,5])) may occur
at date 3. Its firing leads to the state class (p1,prod, [1+3,2+3]) + (p2,mess,[1,3]) + (p2,mess,[2,4])+
(p2,mess,[0+3,1+3]).

Note that the marking of this class is, in fact, not reachable, and the firing sequence t1, t1, t1 cannot occur from the
initial state class (see Figure 4).

6 Analysis of the relaxed state class graph

The relaxed state class graph of an ITCPN, obtained using our approach, indicates the firing sequences and allows to
compute all evolutions of the model. Consequently, it preserves linear properties of the model. So, if it is finite, it can be
used to verify linear properties of the model. Untimed linear properties can be checked on the graph using the classical
linear model checking techniques [10, 14]. Concerning timed properties, a variety of real time extensions of Linear Time
Logic (LTL) have been proposed for expressing requirements of real time systems. Among these extensions, we consider
the Metric Interval Temporal Logic (MITL) which extendes LTL by associating a time interval with temporal operators
(always G, eventually F, and until U). The verification of these properties can be performed using a technique similar the
one developed in [1]. This technique consists in constructing some timed automaton for the negation of the property to
be The relaxed state class graph of an ITCPN, obtained using our approach, indicates the firing sequences and allows to
compute all evolutions of the model. Consequently, it preserves linear properties of the model. So, if it is finite, it can be
used to verify linear properties of the model. Untimed linear properties can be checked on the graph using the classical
linear model checking techniques [10, 14]. Concerning timed properties, a variety of real time extensions of Linear Time
Logic (LTL) have been proposed for expressing requirements of real time systems. Among these extensions, we consider
the Metric Interval Temporal Logic (MITL) which extendes LTL by associating a time interval with temporal operators
(always G, eventually F, and until U). The verification of these properties can be performed using a technique similar the
one developed in [1]. This technique consists in constructing some timed automaton for the negation of the property to
be verified and then constructing the synchronous product of the state transition system (graph of evolutions) of the
model with the timed automaton. Clock constraints and guards of the automaton are used to express time requirements
and atomic propositions of the formula to be checked. The property is satisfied iff the synchronous product is empty.

For example, the important bounded response requirement of real time systems is expressed by the MITL formula as
follows: G(p => F[0,c] q) which means that request p must be followed by a response q within c time units. The timed
Buchi automaton of the negation of this property is shown in Figure 5, where init is the initial summit and Err is an
acceptation node. The clock hp is used to measure the time elapsed since p is satisfied.

Fig. 5 Timed Buchi automaton of not G(p => F[0,c] q)

As clocks of the timed Buchi automaton are used to measure time elapsing between events, their values correspond

to some time paths. Therefore, for the synchronous product, we need to compute some time paths. We show, in the
following, how to compute the bounds of the sojourn time in a state class as well as the time required to execute the
firing sequence of a path or cycle of the graph.

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Checking Untimed and Timed Linear Properties of the Interval Timed Colored Petri Net Model 127

6.1 Sojourn time in each state class
Let α=(SM,H) be a state class and ef a firable event from α. The firing interval of event ef in class α is the domain of
the time needed for all its tokens to become available, i.e.: [max(0, maxjf∈Jin(ef) af-H(hf,o)), maxjf∈Jin(e) bf+H(o,hf)].

The lower and upper bounds of this interval are called the minimal and maximal firing delays of event ef in class α.
From α , event ef can occur (before other events of α) after any delay between the minimal firing delay of ef and the
smallest maximal delay of all events of α. Therefore, the firing interval of event ef before other events of α is:
 [max(0, maxjf∈Jin(ef) af-H(hf,o)), mine∈E(SM) maxji∈Jin(e) bi+H(o,hi)].

The model may sojourn in class α until firing one of its events. The domain of the sojourn time in α is then the
union of the firing intervals of all its events, i.e.: [max(0,mine∈E(SM) maxji∈Jin(e) ai-H(hi,o)), mine∈E(SM) maxji∈Jin(e)
bi+H(o,hi)].

Example 10: (Sojourn times)
For the state class graph given in Figure 3, the following table reports the domain of the sojourn time in each state

class graph.

Table 1 Sojourn times in each state class

α0 [2,2]
α1 [1,3]
α13 [2,2]
α2 [1,3]
α24 [2,2]

We have shown how to compute using the clock bound function of a class, the domain of the sojourn time in the

class. In the following subsection, we propose an algorithm which computes for a given path of the graph, the interval of
its running time (path time).

6.2 Path times
Let p be a finite path of the relaxed state class graph of an ITCPN model. To compute its path time, we add a new
variable named hp to all clock bound functions of the path classes. hp is used to measure the path time. Its value is
initialized to 0 in the first class of the path. Afterwards, its domain is iteratively computed for each arc of the path as
shown in Proposition 4.

Bounds RunningTime (Path p) {
 for the first class (SM,H) of the path p do {
 add a new variable named hp to H;
 // hp is null in the first class of the path
 H(hp,o):= 0;
 H(o,hp):= 0;
 for each h of VSM {
 H(h,hp):= H(h,o);
 H(hp,h):= H(o,h);
 }
 }

 for each arc ((SM,H),ef,(SM',H')) of the path p (from the first to the
last one) {
 add the variable hp to H' ;

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Hanifa Boucheneb 128

 //Compute H'(o,hp) = min(H(o,hp), minjf•• Jin(ef) (H(hf,hp)-af))
 H'(o,hp):= H(o,hp) ;
 for each (p ,c ,h ,[a ,b]) of Jin(e) { f f f f f f

 H'(o,hp):= min(H'(o,hp),H(hf,hp)-af);
 }

 // Compute H'(hp,o) = mine•E(SM) maxj•Jin(e)}b+H(hp,h)

 H'(hp,o):= •∞;
 for each event e of E(SM) {
 x:= 0;
 for each (p,c,h,[a,b]) of Jin(e)
 x:= max (x, b+H(hp,h));
 H'(hp,o):= min(H(hp,o), x);
 }
 for each h of VSM’ {
 // Compute H'(hp,h)
 H'(h,hp):= H'(h,o)+H'(o,hp);
 H'(hp,h):= H'(hp,o)+H'(o,h);
 if h is associated with a token not in Jin(ef) {
 H'(h,hp):= min (H(h,hp), H'(h,hp));
 H'(hp,h):= min (H(hp,h), H'(hp,h));
 }
 }
 }
 return (-H'(o,hp),H'(hp,o)) ;
 }

Example 11: (Path time)
Consider the relaxed state class graph of the model in Figure 1 and the MITL property G((pin,J1) => F[0,4] (pbusy ,

(M1,J1)). This property means whenever the job J1 is waiting for execution, it must be in execution within 4 time units.
To verify this property, we have to construct the synchronous product of the timed buchi automaton of the property and
the state class graph shown in Figure 3. The part of the resulting graph, which exhibits that the synchronous poduct is
not empty, is shown in Figure 6.

The property is not satisfied since there exists a cycle which passes over the acceptation node (Err).

Fig. 6. A part of the synchronous product of the class graph and timed automaton shown resp. in Figures 3 and 5.

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Checking Untimed and Timed Linear Properties of the Interval Timed Colored Petri Net Model 129

Table 2 shows how to compute time bounds of the path (α0 init) e2 (α2 int) e4 (α24 int) which corresponds to the bounds
of clock hp when the final node of the path is reached.

Table2 Computing bounds of some path time

(α0 init) H0(hp,o) = H0(hp,h1)= 0
 H0(hp,h2)= H0(hp,h3) = 0
 H0(o,hp)= H0(h1,hp) = 0
 H0(h2,hp) = H0(h3,hp) = 0

(α2,int) H2(hp,o) = H2(hp,h5)= 2;
H2(hp,h2)= 0 ;
H2(o,hp) = H2(h5,hp) =-2;
H2(h2,hp)= ∞.

(α24 int) H24(hp,o)= H24(hp,h1)= 5;
H24(hp,h2)= 0;
H24(hp,h3) = 5 ;
 H24(o,hp)= H24(h1,hp)= -3;
 H24(h3,hp)= -3;
H24(h2,hp) = ∞

7 Application

To illustrate our approach, we consider a more realistic example. In a hospital, each patient has a medical record
composed of various informations (administrative, medical, surgical... etc). These informations can be stored within a
single computer or distributed over a large number of interconnected systems. However, each user of the system should
only access needed information for which he has the right clearance. For instance, a doctor needs to access information
about his patient medical records. Whereas a secretary is only allowed to access administrative information such as the
name, the age, costs of the treatments...etc. We then consider a decision-making system to decide whether or not a
surgical operation is necessary according to patient state. Figure 7 shows the corresponding ITCPN model composed of
seven places p1 , p2 , …, and p7, representing message channels and five transitions t1, t2, …, and
t5 representing processes where:

- p1 is a database containing all medical records of the hospital patients. These records should be accessed only by the

director represented by t1.
- p2 is a database containing all the results of the analysis. The doctor which is represented by t3 is the only one who

is authorized to have access to it.
- p3 is the administrative information channel of the secretary t2.
- p4 is the doctor's message channel.
- p5, p6 and p7 are the message channels of the surgeon t4 and t5.

Transitions are the active entities of the system. We associate with each transition t a function F(t) which describes
the resources handled during its execution and those produced.

In order to insure confidentiality and integrity of information within the system, we use the multilevel security
model MLS proposed by Bell-LaPadula where security levels are assigned to the objects and subjects (users) of the
system. Security requirement are characterized by two axioms:
(a) No user may read information classified above his security level ("No read up");

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Hanifa Boucheneb 130

(b) No user may lower the classification of information ("No write down").
For our example, we consider the set of security classes SC={U (unclassified), C (confidential), S (secret)} with U

≤ C ≤ S. We link to each place the set of allowed security class in order to describe the clearance of the different subjects
to various informations. This set is specified as its color domain. For this example, we suppose that:
Cd(p1)= {U,C}, Cd(p2)= SC, Cd(p3)= {U},
Cd(p4)= {U,C}, Cd(p5)= {U}, Cd(p6)=SC, Cd(p7)= SC.

So, the security classes {U, C} of p1 (director's channel) means that the director is authorized to handle only data of
security classes C and U. For that, each information will have a security class which describes its confidentiality.

We also need to define the information flow assertions through all transitions. For need to simplification, we assume
the following security requirement such as information cannot be downgraded by a transition. This is to be applicable to
all transitions except transition t5. Each transition will be linked by a function F defined by:

- F(t1)((p1,E))= (p3, E, [1,2]) + (p4, E, [0,2]);
- F(t2)((p3,E))= (p6, E, [0,2]);
- F(t3)((p2, E) + (p4, E')) =(p5, max(E,E'), [1,3]);
- F(t4)((p5, E) + (p6, E')) =(p7, max(E,E'), [0,0]);
- F(t5)((p7, E)) = (p1, min(E,C), [0, ∞]) + (p2, E, [1,2])
where E, E' ∈ {U, C, S}.

F(t1) means that when the director decides to treat a medical record of a patient with a security class E, he produces
two data about this patient:
- Administrative information that will be transferred to the secretary's channel. This information will have a time

interval [1,2] and the security class of the consumed token.
- Medical information intended for the doctor's channel. Time interval and security class of this information are

respectively [0,2] and E.

To simplify the explanation, we suppose that we have only one patient in each database (p1 and p2). The initial state
class of the model is: α0 = (SM0, FT0), where: SM0 =(p1, C, h1, [0, ∞]) + (p2, S, h2, [0, ∞]) and FT0 = (h1 = 0 ∧ h2
=0).

Fig.7. Sample medical process

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Checking Untimed and Timed Linear Properties of the Interval Timed Colored Petri Net Model 131

Our interest is to verify some security properties such as integrity and confidentiality according to Bell-LaPadula's
rules: "No Read up" and "No Write down". "No Read up" states that a low-level subject is not allowed to read high-
level objects while "No Write down" states that no user may lower the classification of information.

Using LTL, these security requirements about states and flows can be expressed as follows:
- Integrity: G (SecureState). This property means that all reachable states are secure. The proposition SecureState is

evaluated to true for some state if and only if the security class of each token (p, c, h, [a,b]) of the state conforms
with the security classes of its place (i.e. c ∈ Cd(p)). It is a general way to ensure integrity because it helps to verify
that only authorized subjects are allowed to operate with the data in the system.

- Confidentiality: G (SecureFlow). This property means that all flows are secure. The proposition SecureFlow is
evaluated to true for some state if and only if the security class of each token conforms to the security classes of its
place and is not smaller than the security classes of all tokens participating to its creation.

In the state class graph, all states agglomerated within the same class share the same marking. Therefore, some state

within a state class satisfies proposition SecureState iff, all states within the state class satisfy the proposition. By
construction of the state class graph, if two state classes α and α’are connected by an arc then there is at least one state
in α which leads by the arc to some state in α’. These two features of our state class graphs make them suitable to verify
the security properties above. Hence the verification of these properties is performed on the state class graph by
exploring its nodes and arcs and checking whether propositions SecureState and SecureFlow are satisfied not.

As an example, consider the state class graph (Figure 8) of the model shown in Figure 7 and the state class α1=(SM1,
FT1) reachable by firing event e1=(t1, (P1, C, h1, [0, ∞]) from the initial state:
SM1= (p2, S, h2, [0,∞]) +(p3, C, h3, [1,2]) + (p4, C, h4, [1,2]),
FT1 = (0 ≤ h2 ≤ ∞ ∧ h3 = 0 ∧ h4 = 0).

States of this class are insecure because confidentiality and probably integrity of some information is compromised.
Indeed, the security class of token deposited in the place p3 does not belong to the set of security classes admitted in this
place, i.e.: C ∉ Cd(p3). This problem may result in a Read-up operation because the secretary may read information
classified above her clearance level. Therefore, both properties G (SecureState) and G (SecureFlow) are not satisfied.
Another problem concerns the arc (α5, t5, α0). This transition downgrades the security classes of information but is
supposed to act as a filter process to remove parts of information that are not eligible to be received by a particular
subject. It is defined in this way in order to prevent secret information to be handled by unauthorized subjects.
Therefore, insecure information flows should occur only in the filter process of the system that is considered as a trusted
component.

Note that to verify both properties (and some others such as reachability and invariant), we can use an abstraction by
inclusion to further attenuate the state explosion problem. When a state class is explored, there is no need to explore
another state class which is included in it. During the construction process, classes are computed in the same way as in
section IV, but when a new class is computed, we check for inclusion instead of equality. All classes such that one of
them englobes the others are grouped together. In [9], authors have shown that abstraction by inclusion has a good
impact on performances. Both computation times and graph sizes are reduced by a factor reaching hundred in certain
cases.

Another important feature of our state class representation is that it simplifies the test of inclusion. Indeed, a state
class α =(SM,FT) is included in a state class α'=(SM',FT') iff, it is possible to rename clocks in (SM',FT') so as to
obtain:
SM = SM' and ∀(x,y) ∈ VSM

2, H(x,y) ≤ H’(x,y).
Table 3 compares graph sizes obtained with and without abstraction by inclusion for the model shown in Figure 7.

We have considered different initial markings; parameter n is the number of patients in each database (i.e.: number of
tokens initially in each place p1 and p2).

Table 3 Using abstraction by inclusion

n Using = Using ⊆ Ratio

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Hanifa Boucheneb 132

2 Nodes
Arcs
CPU(s)

193
430
0,01

54
128
0

3,6
3,4
-

3 Nodes
Arcs
CPU(s)

7572
25956
0,97

686
2466
0,10

11
10,5
9,7

4 Nodes
Arcs
CPU(s)

358681
1681788
130,54

11376
54949
3,7

31,5
30,6
35,3

5 Nodes
Arcs
CPU(s)

-

232872
1414042
191,1

Fig. 8. The state class graph of the ITCPN of Figure 7

8 Conclusion

This paper has considered the Interval Timed Colored Petri Nets (ITCPNs) proposed by Van der Aalst in [19]. This
model allows to describe, in a concise way, large and complex systems, but due to time density, its state space is
generally infinite and then not useful for model checking techniques. To apply the linear model checking techniques to
this model, we have to contract its state space into a finite graph preserving linear properties of the model. In this way,
linear properties of the model can be checked on the obtained graph using the classical linear model checking
techniques.

Van der Aalst proposed a contraction for the ITCPN state space which does not necessarily preserve the linear
properties of the model. Moreover, this technique generates infinite graphs for models allowing infinite firing sequences.
We developed here an efficient contraction which does not have these drawbacks. For bounded ITCPNs, our approach
generates finite graphs which preserve linear properties. The resulting graphs are then useful to model check linear
properties of the model. In addition, to deal with timed linear properties, we showed how to compute by exploring a
path of the state class graph, the minimal and maximal times to execute the firing sequence of the path. Finally, we
showed by means of an example how to verify using Büchi automata the timed linear properties.

Note that we have considered here only equivalences based on clocks for further agglomerations, state class graphs
can be more contracted with equivalences based on colors as shown in [6].

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Checking Untimed and Timed Linear Properties of the Interval Timed Colored Petri Net Model 133

Finally, we think our approach opens interesting research paths in analysis of timed colored Petri Nets that we
intend to explore further. Our immediate goal is to complete the implementation of our approach while trying to contract
more state spaces without wasting linear properties of the model. Afterwards, we will interest to the contraction of state
spaces, preserving CTL* properties. A similar work has already been done in [4, 14, 18, 21] for the Time Petri Net
model (TPN).

9 References

1. R. Alur, T. Feder, T. Henzinger, The benefits of relaxing punctuality, Journal of ACM 43(1), 1996.
2. R. Alur, D. Dill, Automata for modeling real-time systems, 17ème ICALP, LNCS 443, Springer-verlag, 1990.
3. J. Bengtsson, Clocks, DBMs and States in Timed Systems,.PhD thesis, Dept. of Information Technology, Uppsala

University, 2002.
4. B. Berthomieu, F. Vernadat, State class constructions for branching analysis of Time Petri nests, LNCS 2619, 2003.
5. B. Berthomieu, M. Diaz, “Modeling and verification of time dependent systems using time Petri nets”, IEEE

Transactions on Software Engineering, vol 17, n°3, March 91.
6. G. Berthelot, H. Boucheneb, Occurrence graphs for interval timed coloured nets, 15th International Conference on

Application and Theory of Petri Nets, Zaragoza (Spain), LNCS 815, Springer-verlag, June 1994.
7. H. Boucheneb, G. Berthelot, “Contraction of the ITCPN state space”, ENTCS vol.6, Issue 5, June 2002.
8. H. Boucheneb, G. Berthelot, Towards a simplified building of time Petri Net Reachability graphs, in proc. of Petri

Nets and Performance Models PNPM'93, IEEE Computer Society Press, October 1993.
9. P. Bouyer, Timed Automata May Cause Some Troubles, Research Report LSV-02-9, 2002.
10. S.Christensen, L.M.Kristensen, T.Mailand, Condensed state spaces for timed Petri Nets, 22nd International

Conference On Application and Theory Of Petri Nets, 2001.
11. C. Daws, A. Olivero, S. Tripakis and S. Yovine, The tool Kronos, In Hybrid Systems III, Verification and Control,

LNCS 1066, Springer-verlag, 1996.
12. K. Etessami, G. Holzmann, Optimizing Buchi automata, 11th International Conference on Concurency Theory

(CONCUR), 2000.
13. G. Gardey, O. H. Roux, O. F.Roux,Using Zone Graph Method for Computing the State Space of a Time Petri Net,

Conference on Formal Modeling and Analysis of Timed Systems (FORMATS), 2003.
14. R. Hadjidj, H. Boucheneb., Much compact time petri net state class spaces useful to restore CTL* properties, in

Proc. of the Fifth International Conference on Application of Concurrency to System Design (ACSD'2005), IEEE
Computer Society Press, 2005.

15. T. A. Henzinger, P-H. Ho, H. Wong-Toi, HyTech: A Model Checker for Hybrid Systems, Software Tools for
Technology Transfer 1: 110-122, 1997.

16. Pao-Ann Hsiung, Chuen-Hau Gau, “Formal synthesis of real-time embedded software by time-memory scheduling
of Colored Time Petri Nets”, ENTCS, vol. 6, June 2002.

17. K. Jensen, Coloured Petri Nets: Basic concepts, Analysis Methods and Practical use, volumes 1 and 2, EATCS
Monographs on Theoretical Computer Science, Springer-verlag, 1982.

18. W. Penczek, A. Polrola, Abstraction and partial order reductions for checking branching properties of time Petri
nets, In Proc. Of ICATPN, LNCS 2075, pages 323-342, 2001.

19. W.M.P.Van der Aalst, Interval Timed Coloured Petri Nets and their Analysis, 14th International Conference of
Application and Theory of Petri Nets, Chicago, 1993.

20. E.Vicaro, “Static Analysis and Dynamic Steering of Time Dependent Systems”, IEEE Transactions on Software
Engineering, Vol.2, No.8, 2001.

21. T.Yoneda, H. Ryuba, “CTL Model Checking of Time Petri Nets Using Geometric Regions”, IEICE Trans. Inf. &
Syst., Vol.E99-D, No.3, 1998.

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

Hanifa Boucheneb 134

Hanifa Boucheneb is a Professor at the Department of Computer Engineering of École Polytechnique of Montréal
(Canada). Her research areas deal with formal verification of timed and complex systems. She is interested in
developing and applying model checking techniques to real time and security systems.

Computación y Sistemas Vol. 10 No. 2, 2006, pp 107-134
ISSN 1405-5546

	1 Introduction
	Formal definition of the ITCPN model
	ITCPN behavior
	States of anITCPN
	State evolution
	Characterization and computation of state classes

	State class evolutions
	Clock bound function of a state class
	Firing rule using clock bounds
	State class evolutions
	Sojourn time in each state class
	Path times

