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Abstract 
This paper presents a very simple multiplier-free finite impulse response (FIR) lowpass filter design procedure. It 
involves approximation of an equiripple FIR by rounding operation and application of the sharpening technique. 
In that way the overall filter is based on combining one simple filter with integer coefficients. The parameters of 
the design are the rounding constant and the parameters of the sharpening polynomials such as the order of 
tangencies m and l. Our analysis indicates that utilizing this approach the required number of total nonzero bits 
becomes quite low and less than in the minimum number of signed powers-of-two (MNSPT) design. The cost is 
the increase of the total numbers of sums and the delays.  
Key words: FIR filter, equiripple filter, multiplier-free filter, rounding, sharpening. 
 
Resumen 
En este artículo se describe un simple método para diseño de los filtros de pasa baja con la respuesta de impulso 
finito (FIR) sin multiplicadores. El método consiste de una aproximación del filtro diseñado con el método 
Remez usando el redondeo y técnica moldeado. De esta manera el filtro deseado se recibe combinando un filtro 
simple  con los enteros coeficientes. Los parámetros de diseño son la constante de redondeo y los parámetros del 
polinomio moldeado m y l. Nuestro análisis muestra que necesito numero de bits es bajo y menos que el mínimo 
numero de bits (MNSPT). El costo es un incremento total de sumas y retrasos. 
Palabras clave: Filtro FIR, filtro con iguales rizos, filtro sin multiplicadores, redondeo, moldeado. 
 

 
 

1 Introduction 
 
In many applications it is often advantageous to employ finite impulse response (FIR) filters, since they can be 
designed with exact linear phase and exhibit no stability problems (Mitra, 2006). However FIR filters have a 
computationally more intensive complexity compared to infinite impulse response (IIR) filters with equivalent 
magnitude responses. During the past several years, many design methods have been proposed to reduce the 
complexity of the FIR filters. The main approach is based on optimizing the filter coefficient values such that the 
resulting filter meets the given specification with its coefficient values represented in minimum number of signed 
powers-of-two (MNSPT) or canonic signed digits (CSD) representations of binary digits (Bhattacharya and 
Saramaki, 2003; Lim and Li, 1999; Lim and Liu, 1988; Lim at al., 1991; Kotteri at al., 2003; Wu-Sheng, 2006; 
Vinod at al., 2003).  In general, optimization techniques are complex, can require long run times, and provide no 
performance guarantees (Kotteri at al., 2003). Some authors have proposed to reduce the number of adders in the 
multipliers of FIR filters. The common subexpression elimination (CSE) focus on eliminating redundant 
computations in multiplier blocks using the most commonly occurring subexpressions that exist in the CSD 
representation (Chang at al., 2006; Winod at al. 2006; Winod at al., 2006; Gentili at al.,1996). Another approach is 
based on combining simple sub-filters (Vaidanathan and Beitman, 1985; Adams and Williamson, 1983; Jovanovic 
and Espinosa, 2000; Tai and Lin, 1992; Jovanovic at al., 2005; Bartolo at al. 1998; Jovanovic and Mitra, 2002).  
Approximation of an equiripple FIR by a rounding operation and implementation of the derived impulse response by 
a simple recursive equation have also been proposed (Bartolo at al., 1998).  In an earlier work (Jovanovic and Mitra, 
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2002) we used a stepped triangular approximation of the impulse response which can be implemented as a cascade of 
a recursive running sun (RRS) filter and another RRS filter with a sparse impulse response requiring no 
multiplications. 

The main motivation for this work is to propose simple multiplierless filter design procedure for a desired high 
performance of the designed filter. We propose a two-step procedure.  In the first step, the impulse response 
coefficients of an equiripple FIR designed to satisfy the given specifications are rounded to the nearest integers. As a 
difference to (Bartolo at al., 1998) no recursion equation is used. In the next step the sharpening technique (Kaiser 
and Hamming, 1997; Harnet and Boudreaux, 1995; Donadio, 2003) is applied to the filter with the rounded impulse 
response such that the given specification is met. As a difference to the method (Gentili at al., 1996), which uses the 
optimization technique not only for the subfilters but also for sharpening polynomials, we use the fixed simple 
sharpening polynomials. Methods (Tai and Lin, 1992; Jovanovic at al., 2005) also use the fixed sharpening 
polynomials but can be applied only for the narrowband filter design.  The paper is organized in the following way. 
In Section 2 and 3 we describe briefly the rounding and the sharpening techniques. The proposed method is 
described and illustrated with one example in Section 4. Section 5 presents the discussion of the proposed design . 
 
2 Rounding 
 
We use the result proposed in (Bartolo at al., 1998) for the impulse response rounding given as 

                                                    )/)(()()( ααα nhroundngng I ⋅=⋅=                                                  (1)               
where h(n) is an equiripple type  FIR filter which satisfies given specification, gI (n) is the new impulse response 
derived by rounding all coefficients of h(n) to the nearest integer, and round(.) means the round operation. The 
rounded impulse response gI (n) is scaled by α in order that gain in dB of the rounded filter has the value )0( pR± dB 
in the passband, where Rp is the passband ripple. The rounding constant α determines the precision of the 
approximation of g(n) to h(n). Considering that the integer coefficient multiplications can be accomplished with only 
shift-and-add operations, the rounded impulse response filter is multiplier-free. Besides the rounding constant is 

chosen to be in the form , where N is an integer. 
N−= 2α

Example 1: 
We consider the equiripple filter h(n) satisfying the next specification: the normalized passband and the 

stopband frequencies pω  and sω are 0.01 and 0.1, respectively, and the passband ripple and the stopband 
attenuation are Rp=0.2dB and A=40dB, respectively. 

Figure 1 shows the impulse response of the equiripple filter and the corresponding gain response in dB. The 
rounded impulse responses gI(n), and scaled rounded impulse responses g(n) are shown in Fig. 2. for two values of 
the rounding constant, α=1/128 (Figures 2.a and b), and  α=1/32 (Figures 2.c and d).  
From Figure 2 we can notice: 
 

• The process of rounding introduces some null coefficients in the rounded impulse response (10 in Fig. 2.b, 
and 20 in Fig. 2.d). The number of nonzero integer coefficients denoted as N1 corresponds to the number of 
the sums (35 and 25, for Figures 2.b and 2.d, respectively, and decreases with the increase of the constant α 
as shown in Figure 3 for the filter in Example 1. 
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                            a. Impulse response                                                         b. Gain response 

Fig. 1. Equiripple filter 

 
a.  g(n), α=1/128                                                        b. gI(n), α=1/128 

 

                                    c.  g(n), α =1/32                                                           d.  gI(n), α =1/32 

Fig. 2. Scaled rounded and rounded impulse responses  for different values of α 

• Some of nonzero coefficients of the rounded filter have the same values. Therefore the number of integer 
multiplications corresponds to the number N2 of a different positive integer coefficients values. (The values 

Computación y Sistemas Vol. 10 No. 3, 2007, pp 251-267  
ISSN 1405-5546 

 



           Gordana Jovanovic Dolecek and Sanjit K. Mitra 254 

1 and the corresponding negative values are not counted).  The integer multiplications for the rounding 
constants α=1/128 and α=1/32 are, respectively: 2, 3, 4, 5, 6, and 7, (N2=6), and 2, (N2=1). This number 
also decreases with the increase of the constant α, as shown in Figure 3.  

• For the rounded impulse response for α=1/128, the total number of nonzero bits is Nb1=11, (10 for 
coefficients and 1 for the rounding constant), while for α=1/32, Nb1=2, (1 for the coefficient and 1 for the 
rounded constant). Table 1 shows the values of Nb1 and the values of Q (maximum number of bits needed 
to present any coefficient). 

 

 Fig. 3. The numbers of sums (N1) and integer multiplications (N2) in Example 1 
 

Table 1.  Number of SPT terms for different values of α 

Rounded 
constant α 

Total number of 
nonzero bits, Rb1

Q (maximum number of bits 
needed to present any coefficient) 

2-4 1 1 

2-5 2 1 

2-6 4 2 

2-7 11 2  

2-8 25 3 

2-9 42 3 

2-10 42 4 
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Figure 4 presents the corresponding gain responses for the filters in Example 1. 

 
                                a. α=1/128                                                            b.   α=1/32     

Fig. 4. Gain response of rounded filters 

As expected, the rounding alters the original design. The gain response is more altered for a high value of the 
rounded constant.  
 Therefore the choice of the rounded constant α must be the compromise between the complexity (less sums and 
integer multiplications) and less distortion in the desired gain response of the rounded filter. To improve gain 
response of the rounded filter we propose to use the sharpening technique briefly described in the next Section. 
 
3 Sharpening Technique 

 
To improve the gain response characteristics, we propose to use the sharpening technique which can be used for 
simultaneous improvements of both the passband and stopband characteristics of a linear-phase FIR digital filter 
(Kaiser and Hamming, 1997; Harnet and Boudreaux, 1995; Donadio, 2003).  The technique uses the amplitude 
change function (ACF) which is a polynomial relationship of the form )(0 HfH =  between the amplitudes of the 

overall and the prototype filters,   and  respectively. To improve the prototype filter in both passband and 
stopband the amplitude function has to be horizontal at both H(z)=1 (near passband),  and H(z)=0, (near stopband) 
i.e. have a derivatives of zero at these points, denoted as m and l, respectively. Kaiser and Hamming, 1997, proposed 
the following expression for ACF for the given values of m and l ,  
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where  is the binomial coefficient.  The values of the ACF for some typical values of  m  and  , 
computed from (2) are given in Table II.  Figure 5 illustrates the improved magnitude responses of the rounded 
filters of Figure 4 using different polynomials from Table II. 

),( sslC + l
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Table 2. ACF Polynomials for  m = 1, 2, 3, and  l=1, 2, 3 
m l H0

0 1 H2

0 2 H3

0 3 H4

0 4 H5

1 0 2H-H2

1 1 3H2-2H3

1 2 4H3-3H4

1 3 5H4-4H5

1 4 6H5-5H6

2 0 H3-3H2+3H 
2 1 3H4-8H3+6H2

2 2 6H5-15H4+10H3

2 3 10H6-24H5+15H4

2 4 15H7-35H6+21H5

3 0 -H4+4H3-6H2+4H 

3 1 -4H5+15H4-20H3+10H2

3 2 -10H6+36H5-45H4+20H3

3 3 -20H7+70H6-84H5+35H4

 

 
                              a.   α=1/128, m=l=1                                                              b.  α=1/128, m=l=1                                                          
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                              a. α=1/32, m=2, l=3                                                           d.   α=1/32, m=2, l=3                                                            

Fig. 5.  Sharpened rounded filters in Example 1 
 
4 Filter Design Procedure 

 
The proposed design procedure is presented in the following steps: 
1. In the first step the equiripple filter h(n) satisfying the given specification is designed using Parks-McClelan 
algorithm.   

2. The value of the rounding constant α is chosen in the form , where N is an integer. The good starting 
point for N=6. (See section 2). 

N−= 2α

3. The coefficients of the filter h(n) are rounded  using (1) to obtain filter g(n). 
4. Chose the sharpening polynomial and verify if the specification is satisfied. Start with m=1, l=1.  
 If necessary cascade the sharpened filter or increase the values of m, and l. If the specification is satisfied try to 
increase the constant α in order to decrease the complexity of the rounded filter. (See Figure 2.) 
5. If the specification is not satisfied neither for m=3 and l=3, decrease the rounding constant α and repeat the steps 3 
and 4. 
 The procedure is illustrated with the following example. 

 
Example 2: 
The normalized passband and the stopband frequencies  are 0.1 and 0.15, and the passband ripple Rp=0.1dB and 

the stopband atenuation A=60dB. The length of the equiripple filter N=113.  For α =2-9, the number of sums N1= 89, 
the number of integer multiplications N2=15 and m=1, l=2 the specification is satisfied as shown in Fig. 6.a . To 
decrease the number of integer multiplications we increase the constant α to the value α =2-8  (Fig.6. b), and α =2-7  

(Fig.6. c). The resulting values are N1=75 and N2=11 for α =2-8  and  N1=53   and  N2=9 for α =2-7  . 
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a. α =2-9

      

b. α =2-8  
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c. α =2-7  

Fig. 6. Example 2 
 

5 Results And Discussion 
 
We compare the proposed design method with the results of some representative FIR filters (Bhattacharya and 
Saramaki, 2003), designed using a minimum number s of SPT terms. In (Bhattacharya and Saramaki, 2003) is 
proposed that one can either accept deviations in the passband and stopband tolerance specifications (passband ripple 
and the stopband attenuation) compared with the initial infinite-precision design or one can start with  a design with 
stricter specification in order that after quantization the specification is still met. 

Like in (Bhattacharya and Saramaki, 2003) we consider in more details the case of Filter 1 with the following 
specification: 

.40,2.0,3.0 15.0 dBAsdBR psp ==== πωπω  The equiripple design results in the filter of the order 
N=29 and requires 15 multiplications. 

Figure 7 illustrates different designs using different values of  α and the parameters m and l. 
Table 3 presents the corresponding values of N1, N2, m, l, Nb1, Nbm and Nb where Nb1 indicates the total number 

of nonzero bits for the filter g(n) , Nbm is  the average number of nonzero bits per multiplier coefficient, and  Nb is 
the total number of nonzero bits for the multipliers of the designed filter.   

Unlike (Bhattacharya and Saramaki, 2003) we consider here only the cases where the specification is satisfied. 
The results which are compared with (Bhattacharya and Saramaki, 2003) are presented in bold. 
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a. α=1/32, m=l=2 

 

b. α=1/64, m=l, l=2 

 

c. α=1/128, m=l=1 
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d. α=1/256, m=l=1 

Fig. 7. Filter 1 
 

Table 3. Results for Filter 1 

α N1 N2 m l Nb1 Nbm Nb R [dB] A[dB] 

1/32 15 3 2 2 6 2 42 0.05 40.5 

1/64 21 5 1 2 10 2 42 0.055 60 

1/128 25 8 1 1 17 2.125 52 0.001 42 

256 27 11 1 1 24 2.18 73 0.001 42.5 

(Bhattacharya and Saramaki, 2003) MNSPT design. 3.13 47 0.19 40.35 

 
Note that the average number of nonzero bits per multiplier coefficient  Nbm , and  the total number of nonzero 

bits for the multipliers Nb are less for the proposed design than for MNSPT design, while keeping less passband 
ripple and higher stopband attenuation. (See first two rows of the Table III). 
In the following we consider the revised design (Bhattacharya and Saramaki, 2003) where the filter with the 
passband ripple  Rp= 0.15 dB and  the stopband specification 45 dB, is designed resulting in the equiripple filter of 
the order 32. Table IV and Figure 8 illustrate the proposed design for α=1/64 and m=l=1, and the corresponding 
MNSPT design from (Bhattacharya and Saramaki, 2003), where we can notice that the proposed design is more 
efficient than the corresponding MNSPT design. 

 
Table 4. Revised design of the Filter 1. (Rp=0.15 dB , A=45 dB) 

α N1 N2 m l Nb1 Nbm Nb R [dB] A[dB] 

1/64 20 5 1 1 8 1.6 27 0.1 42 

(Bhattacharya and Saramaki, 2003) MNSPT 
design. 

1.81 29 0.16 41.2 
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Fig. 8. Proposed revised design of the Filter 1 

In the following we consider the Filters 2, 3 and 4 from (Bhattacharya and Saramaki, 2003) designed using the 
proposed method and the MNSPT design.. 

.50,5.0,3.0 2.0 dBAsdBRpsp == ωπ π = =Filter 2: ω  The results are summarized in Table 5. 
Note that the proposed design for α=1/64 is much better (See row 2 in Table V), than the MNSPT designs. 

 
Table 5. Results for Filter 2 

 
α N1 N2 m l Nb1 Nbm Nb R [dB] A[dB] 

1/32 17 5 2 3 8 1.6 62 0.3 50 

1/64 23 6 1 2 11 1.83 47 0.2 58 

1/128 35 9 1 1 16 1.77 51 0.05 51 

(Bhattacharya and Saramaki, 2003) Initial MNSPT 
design. 

3.71 78 0.42 51 

(Bhattacharya and Saramaki, 2003) Revised MNSPT 
design (Rp=0.5 dB , A=55 dB). 

2.68 59 0.49 52.1 

 
Filter 3: .60,3.0,2.0 1.0 dBAsdBR psp ==== πωπω The results are shown in Table 6. Best 

proposed design is obtained for α=1/32 and m=2 and l=3, and is much better than MNSPT design. 
 

Computación y Sistemas Vol. 10 No. 3, 2007, pp 251-267 
ISSN 1405-5546 
 



Computationally Efficient Multiplier-Free Fir Filter Design 263

Table 6. Results for Filter 3 

α N1 N2 m l Nb1 Nbm Nb R [dB] A[dB] 

1/32 20 3 2 3 4 1.33 34 0.1 61 

1/64 28 6 1 2 9 1.5 39 0.12 62.2 

1/128 38 8 1 2 14 1.75 59 0.07 72 

(Bhattacharya and Saramaki, 2003) Inicial MNSPT 
design. 

3.96 107 0.275 60.3 

(Bhattacharya and Saramaki, 2003) Revised MNSPT 
design (Rp=0.3dB , A=75 dB). 

2.68 83 0.272 62.25 

 

Filter 4: .50,1.0,15.0, 1.0 dBAsdBR psp ==== πωπω The results are given in Table 7. The 
proposed design again exhibits better results than the initial and revised MNSPT designs. 
 

Table 7. Results for Filter 4 

α N1 N2 m l Nb1 Nbm Nb R [dB] A[dB] 

1/64 39 6 3 3 9 1.5 103 0.07 72 

(Bhattacharya and Saramaki, 2003) Initial MNSPT 
design. 

3.4 177 0.093 50.5 

(Bhattacharya and Saramaki, 2003) Revised MNSPT 
design (Rp=0.09 dB , A=60 dB). 

2.36 135 0.095 52.01 

 
The proposed designs shown in bold for Filters 2, 3 and 4 are given in Figure 9. 

 
a. Filter 2 
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b. Filter 3 

 
 

Filter 4 
Fig. 9. Proposed design of Filters 2, 3 and 4 

 
In the following we compare our design with the method (Bhattacharya and Saramaki, 2003). The normalized 

passband and the stopband frequencies are 0.15625 and 0.1875, respectively. The resulting multiplierless filters must 
have at least attenuation of 80 dB. To this end the infinite precision filter hh(n) of an overall length of 123 and the 
stopband attenuation  of  67.37dB is designed. In the next this filter is optimized along with the corresponding 
sharpening polynomial . 
Using the rounded constant r=2-5= 0.313 we have the rounded impulse response of the filter 
hh(n) , shown in Fig.11.a. The corresponding impulse response with integer coefficients (See Eq (1)) is demonstrated 
in Fig. 10.b. 

The total length of rounded filter is 24 and there is 4 integer coefficients: 2, 3, 4, and 5, which require the total 
number of 6 bits. 

Using the sharpening polynomial (m=1, l=1), the sharpened rounded filter requires 20 bits. 
The cascade of four sharpened filters needs 80 bits and satisfies the required specification. Using the cascade of 

two sharpened rounded filters, where the parameters of the sharpening polynomial are m=1 and l=3, the specification 
is satisfied (Fig.11 ) but the total number of bits is less and equal to 64. In both cases the results are better than using 
optimization procedure (Bhattacharya and Saramaki, 2003). 
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a. b. 

Fig.10. Rounded impulse responses for filter (Bhattacharya and Saramaki, 2003) 

 
Fig. 11.  The sharpened rounded filter, r=2-5, m=1, l=3 

 
6 Concluding Remarks 
 
In general, optimization techniques usually used for multiplierless filter design are complex, can require long run 
times, and provide no performance guarantees (Koter at al., 2003). The main goal of our work was to propose 
simple efficient method for the design of multiplier-free FIR filters without optimization.  

The method uses the rounding to the nearest integer of the coefficients of the equiripple filter which satisfies 
the desired specification. Considering that the integer coefficient multiplications can be accomplished with only 
shift-and-add operations, the rounded impulse response filter is multiplier-free. 

The complexity of the rounded filter (the number of the sums and the number of integer multiplications) 
depends on the choice of the rounding constant. Higher values of the rounding constant lead to the less complexity of 
the rounded filter but also in a more distortion in the desired gain response. In the next step the sharpening technique 
is used to improve the magnitude characteristic and to satisfy the specification. In that way the overall filter is based 
on combining one simple filter with integer coefficients.  
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The parameters of the design are the rounding constant and the parameters of the sharpening polynomials. As 
illustrated in examples the magnitude characteristics can have very small ripples in the passband.  

Different examples show that the total number of nonzero bits in the proposed design is less than in the 
corresponding MNSPT design, while the magnitude response exhibits better characteristics. The cost is the increase 
of the total number of additions and delays which depends on the complexity of the sharpening polynomials.  

As demonstrated in examples, the same holds if the revised MNSPT design, (Bhattacharya and Saramaki, 
2003), using more strict specification, is applied.  

The proposed design uses the sharpened polynomials from (Kaiser and Hamming, 1997), and results in a better 
performances than the method based on simultaneous optimization of the subfilter and the corresponding sharpening 
polynomial coefficients. 

Unlike to methods (Tai and Lin, 1992) and (Jovanovic at al., 2005) there is no restriction in the specification of 
the filter. This way can be designed both the narrowband and the wideband multiplierless filters.  However, the 
method exhibits more efficient results if the order of the initial filter designed using Parks McClellan algorithm is 
less than 150. In that case the masking method (Lim, 1986) can be used to obtain less order component filters and to 
apply the proposed procedure for the model and masking filters. 
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