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Abstract 
In this work we introduce a new modeling paradigm for developing decision process representation for shortest-path 
problem and games. Whereas in previous work, attention was restricted to tracking the net using as a utility function 
Bellman's equation, this work uses a Lyapunov-like function. In this sense, we are changing the traditional cost 
function by a trajectory-tracking function which is also an optimal cost-to-target function for tracking the net. This 
makes a significant difference in the conceptualization of the problem domain, allowing the replacement of the Nash 
equilibrium point by the Lyapunov equilibrium point in shortest-path game theory. Two different formal theoretic 
approaches are employed to represent the problem domain: i) Markov decision process and, ii) place-transitions Petri 
Nets having as a feature a Markov decision process, called Decision Process Petri nets (DPPN). The main point of 
this paper is its ability to represent the system-dynamic and trajectory-dynamic properties of a decision process. 
Within the system-dynamic properties framework we prove new notions of equilibrium and stability. In the 
trajectory-dynamic properties framework, we optimize the trajectory function value used for path planning via a 
Lyapunov-like function, obtaining as a result new characterizations for final decision points (optimum points) and 
stability. We show that the system-dynamic and Lyapunov trajectory-dynamic properties of equilibrium, stability and 
final decision points (optimum points) meet under certain restrictions. Moreover, we generalize the problem to join 
with game theory. We show that the Lyapunov equilibrium point coincides with the Nash equilibrium point under 
certain restrictions. As a consequence, all the properties of equilibrium and stability are preserved in game theory 
under certain restrictions. This is the most important contribution of this work. The potential of this approach remains 
in its formal proof simplicity for the existence of an equilibrium point. To the best of our knowledge the approach 
seems to be new in decision process, game theory and Petri Nets. 
Keywords: shortest-path problem, shortest-path game, stability, Lyapunov, Markov decision process, Petri nets. 

 
Resumen 
En este trabajo se introduce un paradigma nuevo de modelado para representar procesos de decisión relacionados con 
el problema de la trayectoria más corta y teoría de juegos. Mientras que trabajos anteriores han restringido su 
atención a recorrer la red utilizando la ecuación de Bellman como función de utilidad, en este trabajo se utiliza una 
función de tipo Lyapunov. En este sentido, se está cambiando la función de costo tradicional por una función de 
trayectoria y costo a objetivo óptima. Esto genera una diferencia significativa en la manera que el dominio del 
problema es conceptuado permitiendo el cambio del punto de equilibrio de Nash por el punto de equilibrio de 
Lyapunov en teoría de juegos. Se utilizan dos aproximaciones teóricas diferentes para representar el dominio del 
problema: i) procesos de decisión de Markov, y ii) redes de Petri lugar-transición teniendo como característica un 
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proceso de decisión de Markov. El punto principal del escenario propuesto es la habilidad de representar las 
propiedades de la dinámica del sistema y la dinámica de las trayectorias de un proceso de decisión. Dentro del marco 
de las propiedades dinámicas del sistema se muestran nuevas características de equilibrio y estabilidad. Dentro del 
marco de las propiedades de dinámicas por trayectoria del sistema se optimiza la función para calcular la 
trayectoria de planeación con una función del tipo Lyapunov, obteniendo como resultado una 
caracterización nueva para puntos finales de decisión (puntos óptimos) y estabilidad. Además, se muestra 
que las propiedades dinámicas del sistema y las propiedades dinámicas por trayectoria del sistema de 
equilibrio, estabilidad y puntos finales de decisión (puntos óptimos) convergen bajo ciertas restricciones. 
Inclusive, se generaliza el problema para desembocar en teoría de juegos. En ese contexto, se muestra que 
el punto de equilibrio de Lyapunov coincide con el punto de equilibrio de Nash bajo ciertas restricciones. 
Como consecuencia todas las propiedades de equilibrio, estabilidad y punto final de decisión persisten en 
teoría de juegos. Esta es la contribución más importante de este trabajo. La potencialidad de esta 
aproximación está en la simplicidad de la prueba formal para la existencia de un punto de equilibrio. 
Hasta lo que nuestro conocimiento alcanza este trabajo parece ser nuevo en procesos de decisión, teoría 
de juegos y redes de Petri. 
Palabras clave: problemas de la trayectoria más corta, juegos con trayectoria más corta, estabilidad, Lyapunov, 
procesos de decisión de Harkov, redes de Petri. 

 
1 Introduction 
 
Markov decision processes can be used to analyze shortest-path and minimum cost-to-target problems, in which a 
natural form of termination ensures that expected future costs are bounded, at least under some classes of policies. 
The stochastic shortest-path problem ([1], [2], [5], [10], [23], [41], [44]) is a generalization of the deterministic 
shortest-path problem through which at each node there exists a probability distribution over all possible successor 
nodes. Given a starting node and a selection of distributions we wish that the path would lead to a final point with 
probability one, and that it would have minimum expected length. Note that the case where at each node the 
probability distribution of transitions associates a unit probability to exactly one successor, is precisely the case of 
the deterministic shortest-path problem. 

In this sense, finite action-state and action-transient Markov decision processes with positive cost functions 
were first formulated and studied by Eaton and Zadeh [12]. They called this a problem of pursuit, which consists of 
intercepting in minimum expected time a target that moves randomly among a finite number of states. In the study, 
they established the idea of proper policy and supposed that at each state, except for the final state, and the set of 
controls is finite. Pallu de la Barriere [35] supported and improved their results. Derman [10] also extended these 
results under the title of first passage problems, observing that the finite-state Markovian decision problem is a 
particular case. Veinott [43] obtained similar results to those of Eaton and Zadeh [12] proving that the dynamic 
programming mapping is a contraction under the assumption that all stationary policies are proper (transient). 
Kushner [23] enhanced the results of Eaton and Zadeh [12] allowing the set of controls to be infinite at each state, 
and restricting the state space with a compactness assumption. Whittle [44], under the name transient programming, 
supported the results obtained by Veinott [43]. He extended the problem presented by Veinott [43] to infinite state 
and control spaces under uniform boundedness conditions on the expected termination time. 

Bertsekas and Tsistsiklis ([1], [2], [3]), denoting the problem as stochastic shortest-path problem, improved the 
results of Eaton and Zadeh [12], Veinott [43] and Whittle [44], by weakening the condition that all policies be 
transient. They established that every stationary deterministic policy can have an associated value function that is 
unbounded above. Bertsekas and Tsistsiklis [4], in a subsequent work, strengthened their previous result by relaxing 
the condition that the set of actions available in each state be finite. They assumed that the set of actions available in 
each state is compact, the transition kernel is continuous over the set of actions available in each state and the cost 
function is semi-continuous (over the set of actions available in each state) and bounded. Hinderer and Waldmann 
([17], [18]) improved the result presented by Mandl [26], Veinott [43] and Rieder [38] for finite Markovian decision 
processes with an absorbing set. They were interested in the critical discount factor, defined as the smallest number 
such that for all discount factors β smaller than this value, the limit ν of the n-stage β-discounted optimal value 
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function exists and is finite for each choice of the one-stage reward function. Pliska [36] assumed that the cost 
function is bounded and that all policies are transient, additionally to the already mentioned assumptions of compact 
action space, continuous transition kernel, and lower semi-continuous cost function. It is important to note that this 
work was the first one to extend the problem to Borel states and action spaces. Hernandez-Lerma et.al [15] expanded 
the results of Pliska by weakening the condition that the cost function was bounded and supposing that the cost 
function is dominated by a given function. 

The optimal stopping problem is directly related with the stochastic shortest-path problem and was investigated 
by Dynkin [11], and Grigelionis and Shiryaev [13], and considered extensively in the literature by others ([10], [23], 
[40], [44]). It is a special type of transient Markov decision process where a state-dependent cost is incurred only 
when invoking a stopping action which leads the system to the destination (finish); all costs are zero before stopping. 
For the optimal stopping problems, the associated value function of the policy (under which the stopping action is 
never taken) is equal to zero at all states, however it is not transient. 

Shortest-path games are usually conceptualized as two-player zero-sum, games. On the one hand, the 
"minimizing" player seeks to drive a finite-state dynamic system to reach a terminal state along an expected least 
cost path. On the other hand, the “maximizer” player seeks to maximize the expected total cost interfering with the 
“minimizer’s” progress. In playing the game, the players implement actions simultaneously at each state, with full 
knowledge of the state of the system, but without knowledge of each other's current decision. 

Shapley [39] provided the first work on shortest path games. In his paper, two players are successively faced 
with matrix-games of mixed strategies, where both the immediate cost and transition probabilities to new matrix-
games are influenced by the decisions of the players. In this conceptualization, the state of the system is the matrix-
game currently being played. Kushner and Chamberlain's [21] took into account undiscounted, pursuit, stochastic 
games. They assumed that the state space is finite with a final state corresponding to the evader being trapped and 
they considered pure strategies over compact action spaces. Under these considerations, they proved that there exists 
an equilibrium cost vector for the game which can be found through value iteration. Van der Wal [42] explored a 
particular case of Kushner and Chamberlain [21] research. He produced error bounds for the updates in value 
iteration, considering restrictive assumptions about the capability of the pursuer to capture the evader. Kumar and 
Shiau [22], for the case of non-negative additive cost, proved the existence of an extended real equilibrium cost 
vector in non-Markov randomized policies. They showed that the minimizing player can achieve the equilibrium 
using a stationary Markov randomized policy. In addition, for the case where the state space is finite, the maximizing 
player can play ε-optimally using stationary randomized policies. 

Patek and Bertsekas ([32], [33]) analyzed the case of two players, where one player seeks to drive the system to 
termination along a least-cost path and the other seeks to prevent termination altogether. They did not assume non-
negativity of the costs, the analysis is much more complicated than the corresponding analysis of Kushner and 
Chamberlain's [21] and generalize (to the case of two players) those for stochastic shortest path problems [4]. Patek 
and Bertsekas proposed alternative assumptions which guarantee that, at least under optimal policies, the terminal 
state is reached with probability one. They considered undiscounted additive cost games without averaging, 
admitting that there are policies for the “minimizer” which allow the “maximizer” to prolong the game indefinitely at 
infinite cost to the “minimizer”. Under assumptions which generalize deterministic shortest-path problems, they 
established (i) the existence of a real-valued equilibrium cost vector achievable with stationary policies for the 
opposing players and (ii) the convergence of value iteration and policy iteration to the unique solution of Bellman's 
equation. The results of Patek and Bertsekas did imply the results of Shapley [39], as well as those of Kushner and 
Chamberlain [21]. Because of their assumptions relating to termination, they were able to derive stronger 
conclusions than those made by Kumar and Shiau [22] for the case of a finite state space. In a subsequent work, 
Patek [34] reexamined the stochastic shortest-path formulation in the context of Markov decision processes with an 
exponential utility function. 

Whereas previous efforts have restricted attention to track the net using Bellman's equation as a utility function, 
this paper uses a Lyapunov-like function as a tool for path planning ([6], [7], [8], [9]). Two different formal theoretic 
approaches are employed to represent the problem domain: i) Markov decision process and, ii) place-transitions Petri 
Nets having as a feature a Markov decision process, called Decision Process Petri nets (DPPN). The main point of 
this paper is its ability to represent the system-dynamic and the trajectory-dynamic properties of a decision process 
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application. We will identify the system-dynamic properties as those characteristics related only with the global 
system behavior, and we will identify the trajectory-dynamic properties as those characteristics related with the 
trajectory function at each state that depends on a probabilistic routing policy. 

Within the system-dynamic properties framework we show notions of stability. In this sense, we call 
equilibrium point to the state in a MDP/DPPN that does not change, and it is the last state in the net. 

In the trajectory-dynamic properties framework we define the trajectory function as a Lyapunov-like function. 
By an appropriate selection of the Lyapunov-like function, under certain desired criteria, it is possible to optimize the 
trajectory. By optimizing the trajectory we understand that it is maximum or minimum reward (in a certain sense). In 
addition, we use the notions of stability in the sense of Lyapunov to characterize the stability properties of the 
MDP/DPPN. The core idea of our approach uses a non-negative trajectory function that converges in decreasing 
form to a (set of) final decision states. It is important to point out that the value of the trajectory function associated 
with the MDP/DPPN implicitly determines a set of policies, not just a single policy (in case of having several 
decisions states that could be reached). We call "optimum point" the best choice selected from a number of possible 
final decision states that may be reached (to select the optimum point, the decision process chooses the strategy that 
optimizes the reward). 

As a result, we extend the system-dynamic framework including the trajectory-dynamic properties. We show 
that the system-dynamic and the trajectory-dynamic properties of equilibrium, stability and optimum-point 
conditions converge under certain restrictions: if the MDP/DPPN is finite then we have that a final decision state is 
an equilibrium point. 

The paper is structured in the following manner. The next section discusses the motivation of the work. Section 
3 presents the Markov decision model, and all the structural assumptions are introduced there. Section 4 presents a 
detailed analysis of the equilibrium, stability and optimum-point conditions for the system-dynamic and the 
trajectory-dynamic parts in terms of the DPPN. Thereafter, we introduce the main results of the paper, giving a 
detailed analysis of the definitions to join game theory and introduce the Lyapunov-Nash equilibrium point 
properties, in sections 5 and 6. Finally, in section 7 some concluding remarks are outlined. 
 
2 Motivation 
 
The definition of system stability has attracted the attention of many past and present mathematicians and physicists 
including Torricelli, Laplace, Lagrange and others. However, it became a transparent criterion with the publication of 
the work of Lyapunov in 1892 [20]. The main idea of Lyapunov is attained in the following interpretation: given an 
isolated physical system, if the change of the energy E for every possible state s is negative, with the exception of the 
equilibrium point  then the energy will decrease until it finally reaches the minimum at  Intuitively, this 
concept of stability means that a system perturbed from its equilibrium point will always return to it. 

,∗s .∗s

In this paper we consider dynamical systems in which the time variable changes discretely, and the system is 
governed by ordinary difference equations. Let us consider systems of first-order difference equations given by 

 0
0

 , ),,( 01
n

nnnn nssasfs ++ ∈== N  (1) 

where    with    are the state variable of the system,   is the initial state,  with   are the action of 

the system, . The system is specified by the state transition function f, which is 
always assumed as a one-to-one function for any fixed a and 

is N∈i 0s ia N∈i

{ 0,,...,...,1, 0000
0 ≥++=+ nknnnnN }

,n N∈  continuous in all its arguments. 
Lyapunov defined a scalar function L, called a Lyapunov-like function, inspired by a classical energy function, 

which has four important properties that are sufficient for establishing the domain of attraction of a stable 
equilibrium point: a)    such that   , b)   for , c)  when ∗∃s 0)( =∗sL 0)( >sL ∗≠∀ ss ∞→)(sL ∞→s , and d)  

 . The condition (a) requires the equilibrium point to have zero potential by 
means of a translation to the origin, b) means that the Lyapunov-like function to be semi-positive defined, c) means 
that there is no  reachable from some s, and d) means that the Lyapunov-like function has a minimum at the 

,0)()( 1 <−=Δ + ii sLsLL i∀ ∗≠ ssi
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equilibrium point. 
A system is stable ([24], [25]) if for a given set of initial states the state of the system ensures: i) to reach a 

given set of states and stay there perpetually or, ii) to go to a given set of states infinitely often. The conventional 
notions of stability in the sense of Lyapunov and asymptotic stability can be used to characterize the stability 
properties of discrete event systems. An important advantage of the Lyapunov approach is that it does not require 
high computational complexity but the difficulty lies in specifying the Lyapunov-like function for a given problem. 

At this point, it is important to note that the Lyapunov-like function L is not unique, however the energy 
function of a system is only one of its kind. A system whose energy E decreases on the average, but not necessarily 
at each instance, is stable but E is not a Lyapunov-like function. 

Lyapunov-like functions [20] can be used as trajectory-tracking functions and optimal cost-to-target functions. 
As a result of calculating a Lyapunov-like function, a discrete vector field can be built for tracking the actions over 
the net. Each applied optimal action produces a monotonic progress (of the optimal cost-to-target value) toward an 
equilibrium point. In this sense, if the function decreases with each action taken, then it approaches an 
infimum/minimum (converges asymptotically or reaches a constant). 

From what we have stated before, we can deduce the following geometric interpretation of distance: 
a)   is a measure of the distance from the starting state  to any state s in the state space. This is 

straightforward from the fact that  such that  and  for .  

)(sL 0s
∗∃s 0)( =∗sL 0)( >sL ∗≠∀ ss

b) The distance from the stating state  to any state  in the state space decreases, when  It is because 

. 
0s ns .∞→n

0)()( 1 <−+ ii sLsL i∀
∗≠ ssi

A Lyapunov-like function can be considered as a distance function denoting the length from the initial state to 
the equilibrium point. However, it is not necessarily optimal, it usually makes a monotonic convergence to the 
equilibrium point. It is important to note that the Lyapunov-like function is constructed to respect the constraints 
imposed by the difference equation of the system. In contrast, a Euclidean metric does not take into account these 
factors. For that reason, the Lyapunov-like function offers a better understanding of the concept of the distance 
required to converge to an equilibrium point in a discrete dynamical system. 

By applying the computed actions, a kind of discrete vector field can be imagined over the search graph. Each 
applied optimal action yields a reduction in the optimal cost-to-target value, until the equilibrium point is reached. 
Then, the cost-to-go values can be considered as a discrete Lyapunov function. 

In our case, an optimal discrete problem, the cost-to-target values are calculated using a discrete Lyapunov-like 
function. Every time a discrete vector field of possible actions is calculated over the decision process. Each applied 
optimal action (selected via some ‘criteria’) decreases the optimal value, ensuring that the optimal course of action is 
followed and establishing a preference relation. In this sense, the criteria change the asymptotic behavior of the 
Lyapunov-like function by an optimal trajectory-tracking value. 
Usually, the criterion in optimization problems is related with the choice of whether to minimize or maximize the 
optimal action. If the problem is related with energy transformations, as is classically the case in control theory, then 
the criterion of minimization is applied. However, if the dilemma involves a reward, typical in game theory, then 
maximization is considered. In this work we will arbitrary consider the criterion of minimization. 

The Lyapunov-like function can be employed as a trajectory-tracking function through the use of an operator, 
which represents the criterion that selects the optimal action that forces the function to decreases and approaches an 
infimum/minimum. It forces the function to make a monotonic progress toward the equilibrium point. The 
Lyapunov-like function can be defined for example as 

 )),(( min )( 1
∗

∈
+

∗
∗

= nn
Aa

n asfLsL  (2) 

which means that the optimal action is chosen to reach the infimum/minimum. The function ∗L  works as a guide 
leading the system optimally from its initial state to the equilibrium point. 

There exist different methods to calculate a trajectory (given a trajectory-tracking function) for tracking the net. 
The cost function established by the algorithm of Dijkstra working backward from the equilibrium point result in an 
optimal function for tracking the net. In this sense, if we consider the cost as the number of states in the net that 
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would be traversed from the initial state to the equilibrium point. The algorithm of Dijkstra will backward-produce 
the shortest path in terms of the number of states needed to reach the equilibrium point. 

In Dijktra's algorithm it is supposed that every edge Z in a state transition graph has associated a nonnegative 
cost. The cost is interpreted as the expense of applying the related action. It is usually symbolized as    
representing the cost of apply action a from state s. The total cost is given by the sum of the    along the 

trajectory from the initial state to the equilibrium point. The optimal cost  is given by the least cumulative cost 
calculated by summing the  over all possible trajectories from  to . 

),( asc
),( asc

∗C
),( asc 0s ∗s

By induction the optimal cost is calculated as following. The cost at the initial state    is 0. The next state is 
selected by considering the optimal condition that no other state can be reached with a lower cost. Continuing with 
the induction, let us suppose that every state has been appropriately selected by the optimal cost condition. At the end 
of the process, Dijkstra's algorithm produces the shortest paths in a graph in terms of the cost needed to reach the 
equilibrium point . The complexity time of Dijkstra's algorithm is 

0s

∗s )log( ZXXO + , where X  and Z  are the 
numbers of vertices and edges respectively in a state transition graph representation. 

In fact, we can make use of backward search algorithms like: 1) Breadth First with complexity  )( ZXO + ; 2) 

Depth First with complexity )( ZXO + ; 3) ∗A : search algorithm, which is an extension of Dijkstra's algorithm, 
attempting to reduce the total number of states by incorporating a heuristic function to improve the cost; and others 
similar, where the distance corresponds to the cost given by every state reached when the net is tracked back from 
the equilibrium point to the initial state. 

 
3 Decision Model 
 
The aim of this section is to introduce the decision model and all the structural assumptions related with the Markov 
model ([14], [16], [37]). 
Notation 3.1  As usual, let  be the set of real number and let  be the set of non-negative integers. R *N
 
Definition 3.1  A Markov Decision Process is a 5-tuple  
 },,,,{ UQASMDP ϒ=  (3) 
where: 
• S is a countable set of feasible states,  endowed with discrete topology,S *N⊂ 1. 
• A is the set of actions, which is a metric space. For each ,Ss∈ AsA ⊂)(  is the non-empty set of admissible 

actions at state . Without loss of generality we may take    Ss∈ ).(sAA
SsU ∈

=

•  is the set of admissible state-action pairs, which is a measurable subset of  { )(,|),( sAaSsas ∈∈=ϒ } AS ×  . 
• [ ]kijqQ |=  is an array of probabilities, where ),|(| kjikij assPq ≡  representing the probability associated with 

the transition from state  to state  under an action is js ).( ik sAa ∈  Note that for any fixed k,   is a 
stochastic matrix. 

kQ |

•  is a trajectory function, associating to each state a real value. Note that U is a function bounded +→ RSU :

                                                 
1Note that the existence of a topology on S is trivial, since S is countable. We introduce it for definition 
compatibilities. 
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from below. (e.g., it is convenient to use )(sup sUU Ss∈= ). 
 
Interpretation: The control model (3) represents a discrete-time controlled stochastic system that is observed at time  

  Denoting by    and    the state of the system and action applied at time n, respectively, the 

interpretation of the MDP dynamics is as follows. At each discrete time    the state of the system  

*N∈n ns ka
*N∈n Sssn ∈=   

is observed. For every action    the probability of the system to find itself in the next state    at 
time  is  Considering the previous states of the trajectory (path, orbit)    the 
value of the trajectory function U is obtained, and then the next state  is selected according to U applying some 
‘criteria’. This is the Markov property of the decision process in (3). 

),(sAaan ∈= 1+ns
1+n ).,|( 1 aasssP knn ==+ ),...,,( 10 nsss

1+ns

For each    the cross product    is the set of admissible histories up to time n. The vector *N∈n SH n
n ×ϒ=

nnnnn Hsasash ∈= −− ),,,...,,( 1100  denotes the history of the process at time n. Considering the previous states of the 
trajectory   and for every action ),,...,,( 10 nsss ),( in sAa ∈  the probability of the system to find itself in state Ss j ∈  is 

 A policy π is a (possibly randomized) measurable rule for choosing actions, which depends on the current 

state. The policy 

.|kijq

)|(| ikik saP≡π  represents the probability measure associated with the occurrence of an action  
from state  The set of all policies is denoted by Π. 

na
.is

We define a process over S as a finite or infinite sequence of elements of S. If   is a finite 
process, we say that  is the end state of p, and we denote it 

)...,,( 10 nsssp =

ns nsplast =)( . For completeness,  0)( spfirst =  denote 

the state in which p starts. Let us define the sample space ( ) ,∞×=Ω AS  i.e. Ω represents the set of infinite processes 
over S. Let us define the random variables SX n →Ω:  for each  ,n N∈  so that we have: nn xX =)(ω  for 

,...).,,( 100 xax=ω  
Let    be a measurable space with F a σ-algebra of subsets of the previously defined sample space Ω. We 

define a probabilistic process over S as a pair   where P  is a probability measure on F. If there is an element 
 such that  we say that  is the initial state of the probabilistic process  Let  be 

a finite process. 

( F,Ω )
),,( PS

Ss ∈0 ,00 sX = 0s ).,( PS ),...,( 0 nssp =

We define the likelihood of p by  Intuitively,  is the probability measure of p to occur in an 
execution of the system. Be aware however that the likelihood function does not define a probability measure on the 
set of finite processes, since it does not sum to 1. 

).( pP )( pP

Let  be a probabilistic process, and let ),( PS ),...,( 00 ssp =  be a finite process over S with  Let us 
consider the mapping  defined by: 

.0)( >pP
Ω→pg : ,...).,,(,...),,,...,,( 212110 ++++ = nnnnnn XXsXXsssg  

The mapping g let us define a probability measure  on P ),( FΩ  as follows: ,FA∈∀   
where 

),|)(()( 1 pAgA −= PP
)( p⋅P  is the probability conditional on p. We call the new probabilistic process  the probabilistic future 

of process p. We denote by the symbol  the expectation under probability . By construction,  is the 
initial state of the probabilistic future of p. 

),( PS
E P )( plastsn =

 
Definition 3.2  Two given processes p  and  p’ represent a Path of the following type: 
1) OR if one has associated a better probability    to occur at the same time, P
2) AND if having associated any probability    they occur at the same time, P
3) Concur if they have associated the same probability  to occur at the same time. P

 
From the previous definition we have the following remark. 
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Remark 3.1  In a Concur-Path, we have )'()( plastplast =  and therefore we also have  ).'()( pp PP =
 Consider an arbitrary  and for each fixed action Ss j ∈ Aak ∈  we look at the previous states  of the state 

denoted by 
is

,js }:{ jkh hss
jk

ηη ∈=  where { },),,(: jkhjk sash=η  that materialize the concurrent state-action pair 

 and form the sum ϒ∈),( kh as
 )(

||
| hk

jk

hkhjhk
h

Uq π

η

π∑
∈

 (4) 

 
Notation 3.2   With the intention to facilitate the notation we will represent the trajectory function U as follows: 
1)  representations of the value of U at state  )( ii sUU ≡ .is

2)  for an arbitrary policy π. )(π
ii UU ≡

Continuing with all the  we form the vector indexed by the sequence k identified by  as 
follows: 

sak ' ),...,,( 10 fkkk

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∑∑∑
∈∈∈

hkhjhk
h

hkhjhk
h

hkhjhk
h

UqUqUq
ff

fjkjkjk

|||||| ,...,,
11

1

00

0

πππ
ηηη

 (5) 

the index sequence k is the set ),,,(:{ jkhk sasak ∈=λ  and  running over the set  and hs },
jk

sη )(# λ=f  is the 

number of actions to state   .js

Intuitively, the vector (5) represents all the possible trajectories through the actions  where   to 

a state  for a fixed j. 
ka ),...,,( 10 fkkk

js
Continuing the construction of the definition of the trajectory function U, let us introduce the following 

definition. 
 
Definition 3.3 Let  be a Markov Decision Process, let  be a realized trajectory 

of the system and let  be a continuous map. Then L is a Lyapunov-like function [20] if it satisfies the 
following properties: 

},,,,{ UQASMDP ϒ= ),...,,( 10 nsss

+→RRnL :

1)   such that    ∗∃s ,0)( =∗sL

2)   for    0)( >sL ,∗≠∀ ss
3)   when  ∞→)(sL ,∞→s   

4)      . 0)()( 1 <−=Δ + ii sLsLL i∀ ∗≠ ssi

 
From the previous definition we have the following remark. 

 
Remark 3.2 In definition 3.3 point 3 we state that ∞→)(sL  when ∞→s  meaning that there is no  reachable 
from some s. 

∗s

Then, formally we define the trajectory function U as follows: 
 
Definition 3.4 For the discrete time  the trajectory function U with respect a Markov Decision Process  

 is represented by 

*N∈n
},,,,{ UQASMDP ϒ=
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⎩
⎨
⎧

>
=

=
0                                  )(
0                                      0

nifL
nifU

U j α
 (6) 

where 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= ∑∑∑

∈∈∈
hkhjhk

h
hkhjhk

h
hkhjhk

h

UqUqUq
ff

fjkjkjk

|||||| ,...,,
11

1

00

0

πππα
ηηη

 (7) 

the function  is a function that optimizes the reward through all possible transitions (i.e. trough 

all the possible trajectories defined by the different  

++ →⊆ RRnDL :

ak  's), D is the decision set formed by the k’s:  fkl ≤≤0  of all 
those possible transitions  ),,,( jkh sas jkη  is the index sequence of the list of previous places to  through action 

 and 
js

ka hs )(
ljkh η∈  is a specific previous place of  through action  js .ka

From the above definition we have the following remark. 
 
Remark 3.3 
• Note that the Lyapunov-like function L guarantees that the optimal course of action is followed (taking into 

account all the possible paths defined). In addition, the function L establishes a preference relation because by 
definition L is asymptotic; this condition gives to the decision maker the opportunity to select a path that 
optimizes the reward. 

• The iteration over time    for U is as follows: *N∈n
1. for    the trajectory function value is  at state  and for the rest of the states  the value is 0, 0=n 0U 0s is
2. for  the trajectory function value is  at each state  is computed by taking into account the 

value of the previous states   

0>n jU ,js

.is
 
Property 3.1  The function U satisfies the following properties: 
1)   such that Δ∃s

a) if there exists an infinite sequence  with  (  converge at ) such that  

 then  is the infimum of the infinite sequence, i.e.  

∞
=1}{ iis Δ

∞→
→ ss

n
n ns Δs

,......0 11 UUU nn <<<≤ − )( ΔsU ,0)( =ΔsU

b) if there exists a finite sequence  with  (  converge at ) and there exists a 

constant  such that 
nss ,...,1

Δ→ sss n,...,1 nss ,...,1
Δs

R∈C ,... 11 UUUC nn <<= −  then  is the minimum of the finite sequence, i.e. 

  . 

)( ΔsU

,)( CsU =Δ )( nssandC =∈ ΔR

2) there exists a constant    such that  R∈C { },,0max)( CsU i >  is∀  such that  .Δ≠ ssi

3)  such that  then 1, −∀ ii ss iUi ss ≤−1 i∀ 01 <−=Δ −iii UUU  (a trajectory function  is consistent with 
the preference relationship of a decision problem 

R→SU :
( )≤,S  if zwSzw u≤∈∀ :,  if and only if  ). zw UU ≤

 
Property 3.2  The trajectory function U is a Lyapunov-like function. 
 
Explanation. Intuitively, a Lyapunov-like function can be considered as routing function and optimal cost function. 
In our case, an optimal discrete problem, the cost-to-target values are calculated using a discrete Lyapunov-like 
function. Every time a discrete vector field of possible actions is calculated over the decision process. Each applied 
optimal action (selected via some `criteria') decreases the optimal value, ensuring that the optimal course of action is 
followed and establishing a preference relation. In this sense, the criteria change the asymptotic behavior of the 
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Lyapunov-like function by an optimal trajectory tracking value. It is important to note, that the process finished when 
the equilibrium point is reached. This point determines a significant difference from Bellman's equation. 
 
Remark 3.4  From property 3.1 and 3.2 we have that: 
•    or   (for a given C) means that a final state is reached. Without loss of generality we can 

say that    by means of a translation to the origin. 

0)( =ΔsU CsU =Δ )(

0)( =ΔsU
• In property 3.1 we determine that the Lyapunov-like function  approaches to an infimum/minimum when  )(sU

s   is large thanks to property 4 of definition 3.3. 
• Property 3.1, point 3 is equivalent to the following statement: { },iε∃ 0>iε such that  iii UU ε>− −1  ,  1, −∀ ii ss  

such that    .1 iUi ss ≤−

• Property 3.1, point 3 means that the Lyapunov-like function  will progress without cycling and the 
equilibrium point will eventually be reached. 

)(sU

 
For instance, the trajectory function U being equal to the entropy is a particular Lyapunov-like function used in 

information theory as a measure of the informational disorder.  
 
Remark 3.5  It is important to note that the trajectory function value can be re-normalized after each transition of 
the net. That is, when 0≠π  and  implies a re-normalization of the π’s. 0=q
 
Remark 3.6 In property 3.1 point 3 we state that 01 <−=Δ −ii UUU  for determining the asymptotic condition of 
the Lyapunov-like function. However, it easy to show that such property is convenient for deterministic systems. In 
Markov decision process systems is necessary to include probabilistic decreasing asymptotic conditions to guarantee 
the asymptotic condition of the Lyapunov-like function. 
 
Remark 3.7  We are using [ ]  to denote the OR-Path, ∑  to denote the AND-Path, and {  to denote the Conc-Path. 
 
4 Decision Petri Nets Model 
 
We introduce the concept of Decision Process Petri nets (DPPN) by locally randomizing the possible choices, for 
each individual place of the Petri net ([Clempner1], [Clempner3]). 
 
Definition 4.1  A Decision Process Petri net is a 7-tuple },,,,,,{ 0 UMWFQPDPPN π=  where 
•   is a finite set of places, },...,,,{ 210 mppppP =
•    is a finite set of transitions, },...,,{ 21 nqqqQ =
•    is a set of arcs where OIF ∪⊆ )( QPI ×⊆  and )( PQO ×⊆  such that ∅=∩QP  and ,∅≠∪QP  

•   is a weight function, 1: +→NFW
•   is the initial marking, N→PM :0

•  +→ RI:π  is a routing policy representing the probability of choosing a particular transition (routing arc), 
such that for each  ,Pp∈ ,1)),((

),(:
=∑

∈
j

Iqpq
qp

jj

π   

•   is a trajectory-tracking function. +→ RPU :
 

The previous behavior of the DPPN is described as follows. When a token reach a place, it is reserved for the 
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firing of a given transition according to the routing policy determined by U. A transition q must fire as soon as all the 
places  contain enough tokens reserved for transition q. Once the transition fires, it consumes the 
corresponding tokens and immediately produces an amount of tokens in each subsequent place  

Pp ∈1

.2 Pp ∈  When 
0)( =ιπ   for I∈ι  means that there are no arcs in the place-transitions Petri net.  

 

1/3

p1 p2
q1

 

1/6

1/6

p1 p2
q1

 
Figure 1. DPPN Routing policy case 1 Figure 2. DPPN Routing policy case 2 

 
In Figures 1 and 2 we have represented partial routing policies π that generates a transition from state  to state 

 where   
1p

2p :, 21 Ppp ∈
• case 1. In figure 1 the probability that  generates a transition from state   to  is 1/3. But, because   

transition to state  has two arcs, the probability to generate a transition from state  to  is increased to 
2/3. 

1q 1p 2p 1q

2p 1p 2p

• case 2. In Figure 2 we set by convention for the probability that  generates a transition from state   to  is 
1/3 (1/6 plus 1/6). However, because  transition to state  has only one arc, the probability to generate a 
transition from state  to  is decreased to 1/6. 

1q 1p 2p

1q 2p

1p 2p
• case 3. Finally, we have the trivial case when there exists only one arc from  to  and from  to  1p 1q 1q .2p

It is important to note, that by definition the trajectory-tracking function U is employed only for establishing a 
trajectory tracking, working in a different execution level of that of the place-transitions Petri net. The trajectory-
tracking function U in no way changes the place-transitions Petri net evolution or performance. 

(.)kU  denotes the trajectory-tracking value at place Ppi ∈  at time k and let  denote the 
trajectory-tracking state of  DPPN at time k.  is the number of arcs from place p to transition q (the 
number of arcs from transition q to place p).  

T
kkk UUU (.)](.),...,[=

+→ RFFN :

Consider an arbitrary  and for each fixed transition Ppi ∈ Qq j ∈  that forms an output arc  ,),( Opq ij ∈  we 

look at all the previous places  of the place  denoted by the list (set)  hp ip }:{ ijh hpp
ij

ηη ∈=  where 

{ },),( & ),(: OpqIqph ijjhij ∈∈=η  that materialize all the input arcs  Iqp jh ∈),(   and form the sum 
 )(),,( hkijh

h

pUpqp
ij

∗Ψ∑
∈η

 (8) 

where ),(
),(

),(),,(
jh

ij

qpFN
pqFN

jhijh qppqp ∗=Ψ π  and the index sequence j is the set   

running over the set . 

hijjhj ppqqpqj  &),(),(:{ ∩∈

}
ij

pη
Proceeding with all the  we form the vector indexed by the sequence j identified by    as 

follows: 
sq j ' ),...,,( 10 fjjj

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
∗Ψ∗Ψ∗Ψ ∑∑∑

∈∈∈

)(),,(),...,(),,(),(),,(
1

1

0

0

hkijh
h

hkijh
h

hkijh
h

pUpqppUpqppUpqp
f

fijijij ηηη

 (9) 

Intuitively, the vector (9) represents all the possible trajectories through the transitions   where  

 to a place  for a fixed i. 

sq j '

),...,,( 21 fjjj ip
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Then, formally we define the trajectory-tracking function U as follows: 
 
Definition 4.2  The trajectory-tracking function U with respect a Decision Process Petri net  

},,,,,,{ 0 UMWFQPDPPN π=   is represented by the equation 
 

⎩
⎨
⎧

>≥=>
==

=
0,0 & 0,0            )(
0,0                               )(

)( 0

kikiifL
kiifpU

pU k
i

q
k

j

α
 (10) 

where 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∗Ψ∑

∗Ψ∑∗Ψ∑
=

∈

∈∈

)(),,(

),...,(),,(),(),,( 1
1

1

0
0

0

h
q
kijh

h

h
q
kijh

h
h

q
kijh

h

pUpqp

pUpqppUpqp

fj

f
fij

j

ij

j

ij

η

ηη
α  (11) 

the function  is a Lyapunov-like function, which optimizes the trajectory-tracking value through 

all possible transitions (i.e. trough all the possible trajectories defined by the different  

++ →⊆ RRnDL :

qj  s),  D is the decision set 

formed by the j’s;  of all those possible transitions fj ≤≤0 Opq ij ∈),( ,  ),(
),(),(),,(

jh

ij

qpFN
pqFN

jhijh qppqp ∗=Ψ π  ,  

ijη   is the index sequence of the list of previous places to    through transition   ,   ip jq hp )( ijh η∈   is a specific 

previous place of  through transition  ip .jq
 

From the previous definition we have the following remark. 
 
Remark 4.1  The iteration over  for U  is as follows: k
• for    and   the trajectory-tracking value is  at place  and for the rest of the places  the 

value is 0, 
0=i 0=k )( 00 pU 0p ip

• for  and  the trajectory-tracking value is  at each place  is computed by taking into 
account the trajectory-tracking value of the previous places   for k  and k-1 (when needed). 

0≥i 0>k )( i
q
k pU j ,ip

hp
 
4.1 DPPN Mark-Dynamic Properties 
 
Theorem 4.1  The Decision Process Petri net  },,,,,,{ 0 UMWFQPDPPN π=  is finite and bounded by a place p. 
 
Theorem 4.2  Let },,,,,,{ 0 UMWFQPDPPN π=  be a Decision Process Petri net bounded by a state s. Then, a 
Lyapunov-like trajectory function can be constructed iff p is reachable from . 0p
 
Definition 4.3 An equilibrium point with respect a Decision Process Petri net  },,,,,,{ 0 UMWFQPDPPN π=  is a 

place  such that ,  and  is the last place of the net. Pp ∈∗ ∞<=∗ SpMl )( kl ≥∀ ∗p
 
Theorem 4.3  The Decision Process Petri net },,,,,,{ 0 UMWFQPDPPN π=  is uniformly practically stable iff there 

exists a Φ strictly positive m  vector such that  ([31]). 0≤Φ=Δ Auv T

 
4.2 DPPN Trajectory-Dynamic Properties 
 
Definition 4.4  A final decision point Pp f ∈  with respect a Decision Process Petri net 
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},,,,,,{ 0 UMWFQPDPPN π=  is a place Pp∈  where the infimum is asymptotically approached (or the minimum 
is attained), i.e.   or (for a specified C) . 0)( =pU CpU =)(
 
Definition 4.5 An optimum point  with respect a Decision Process Petri net  Pp ∈Δ },,,,,,{ 0 UMWFQPDPPN π=  
is a final decision point  where the best choice is selected ‘according to some criteria’. Pp f ∈

 
Property 4.1  Every Decision Process Petri net },,,,,,{ 0 UMWFQPDPPN π=  has a final decision point. 
 
Remark 4.3  In case that  such that ,,...,1 Ppp n ∈∃ ,0)(...)( 1 === npUpU  then  are optimum points. npp ,...,1

 
Theorem 4.4 Let ( UMWFQPDPPN ,,,,,, 0 )π=  be a finite and non-blocking Decision Process Petri net and let 

...... )()2()1(0 kkkk UnUUU pppp ≤≤≤≤= ςςς  a realized trajectory which converges to  such that  Δp

)()()()( )()(: jijj pUpU ςςςς εε >−∃  with ( )0)( >jςε .Let },min{ )( jςεε =  then the optimum decision point  is 

reached in a time step bounded by 

Δp

)./)(( 0 εpUO   
 
Theorem 4.5  Let ( UMWFQPDPPN ,,,,,, 0 )π=  be a finite and non-blocking Decision Process Petri net. Then, U 

converges to an optimum (final) decision point  Δp ).( fp
Explanation. Bellman's equation is expressed as a sum over the state of a trajectory needs to be solved backwards in 
time from the equilibrium point. It results in an optimal function when is governed by Bellman's principle, described 
by Poznyak [37], producing the shortest path needed to reach a known equilibrium point. Notice that the necessity to 
know the equilibrium point beforehand when applying the equation is a significant constraint, given that, in many 
practical situations, the state space of a DPPN is too large for an easy identification of the equilibrium point. 

Moreover, algorithms using Bellman's equation usually solve the problem in two phases: pre-processing and 
search. In the pre-processing phase, the distance is usually calculated between each state and the equilibrium points 
(final states) of the problem, in a backward direction. Then, in the search phase, these results are employed to 
calculate the distance between each state and the equilibrium points, leading the search process in a forward search. 

Lyapunov-like functions can be used as forward trajectory-tracking functions. Each applied optimal action 
produces a monotonic progress toward an equilibrium point. Because it is a solution to the difference equation, it will 
naturally lead the system from the starting state to the equilibrium point. Tracking the state space in a forward 
direction lets the decision maker to avoid invalid states that occur in the space generated by a backward search. In 
most cases, the forward search gives the impression to be more useful than the backward search. The explanation is 
that in the backward direction, when the case of incomplete final states arises, invalid states appear, which cause 
obvious problems. 
 
Proposition 4.1 Let },,,,,,{ 0 UMWFQPDPPN π=  be a Decision Process Petri net and let  an optimum 

point. Then   such that  

Pp ∈Δ

),()( pUpU ≤Δ Pp∈∀ .Δ≤ pp U

 
Theorem 4.6  The Decision Process Petri net },,,,,,{ 0 UMWFQPDPPN π=  is uniformly practically stable iff 

 .0)()( 1 ≤−+ ii pUpU
 
4.3 Convergence of the DPPN Mark-Dynamic and Trajectory-Dynamic Properties 
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Theorem 4.7 Let },,,,,,{ 0 UMWFQPDPPN π=  be a Decision Process Petri net. If  is an equilibrium point 
then it is a final decision point. 

Pp ∈∗

 
Theorem 4.8  Let },,,,,,{ 0 UMWFQPDPPN π=  be a finite and non-blocking Decision Process Petri net (unless 

 is an equilibrium point). If  is a final decision point then it is an equilibrium point. Pp∈ Pp f ∈

 
Corollary 4.1  Let },,,,,,{ 0 UMWFQPDPPN π=  be a finite and non-blocking Decision Process Petri net (unless 

 is an equilibrium point). Then, an optimum point  is an equilibrium point. Pp∈ Pp ∈Δ

 
Remark 4.4  The finite and non-blocking (unless Pp∈  is an equilibrium point) condition over the DPPN can not 
be relaxed: 
1) Let us suppose that the DPPN is not finite, i.e. p is in a cycle then, the Lyapunov-like function converges when  

 to zero i.e.,  but the DPPN has no final place, and therefore, it is not an equilibrium point. ,∞→k 0)( =pL
2) Let us suppose that the DPPN blocks at some place (not an equilibrium point) .Ppb ∈  Then, the Lyapunov-like 

function has a minimum at a place  lets say ,bp CpL b =)( , but  is not an equilibrium point, because it is not 
necessarily the last place of the net. 

bp

 
5 Game Theory Model 
 
The interaction among players obligates each player to develop a belief about the possible strategies of the other 
players. Nash equilibria are supported by two premises: i) each player behaves rationally given the beliefs about the 
other players' strategies; and ii) these beliefs are correct. Both premises allow us to regard the Nash equilibrium point 
as a steady-state of the strategic interaction. In particular, the second premise makes this an equilibrium concept, 
because when every individual is acting in agreement with the Nash equilibrium, no one has the need to take another 
strategy. 
 
Notation 5.1  As usual let  be the set of real number and let  be the set of non-negative integers. Let  R *N R∈C  
be a given constant, let 0  be the vector dR∈)0,...,0(  and let C  be the vector of constants  dCC R),...,( ∈  . 

A game is a finite set of states  for each player and a trajectory function  for each player mapping  iS iU nSS ×× ...1  
to the integers. 
 
Definition 5.1   A Game Markov Decision Process is a 6-tuple },,,,,{ UQASNGMDP ϒ=  where: 
•   denotes a finite set of players. { nN ,...,2,1= }
•   is a countable set of feasible states, endowed with discrete topology. nSSS ××= ...1

•   is the set of actions, which is a metric space. For each  nAAA ××= ...1 ,Ss∈    is the nonempty set of 

admissible actions at state . Without loss of generality we may take    

AsA ⊂)(

Ss∈ ).(sAA
SsU ∈

=

•   is the set of admissible state-action pairs, which is a measurable subset of  { )(,|),( sAaSsas ∈∈=ϒ } AS ×  . 

•  [ ]ι
kijqQ |=   such that  N∈ι  , is an array of probabilities, where  represents the probability 

associated with the occurrence transition from state  to state  under an action    for player  

),|(| kjikij assPq ιι ≡

is js )( ik sAa ∈ .ι   

Note that for any fixed k,    is a stochastic matrix. kQ |

•   is a trajectory function, associating to each state a vector of real values.  is a trajectory nSU +→R: ιU
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function for player ι mapping  to a corresponding integer. Note that U is a function bounded from 
below. 

nSS ×× ...1

 
Definition 5.2  Let  be a Markov Decision Process, let  be a realized 

trajectory of the system and let  be a continuous map. Then, L is a vector Lyapunov-like function [20] 
if it satisfies the following properties: 

},,,,,{ UQASNGMDP ϒ= ),...,,( 10 nsss
nnL +→RR:

1)    [ ],)(...,),(),...,( 111 nnn sLsLssL =

2) if    such that    then  ∗∃ is i∀ 0)( =∗
ii sL ,),...,( 1 0=∗∗

nssL   

3) if    for    then  0)( >ii sL ∗≠∀ ii ss ,),...,( 1 0>nssL   
4) if    when    then  ∞→)( ii sL ∞→is ,),...,( 1 ∞→nssL   

5) if   for all  0)()( <−=Δ iiiii tLsLL ),...,(),...,( 11 nUn sstt ≤   and    then  ),...,(),...,(),,...,( 111
∗∗≠ nnn ssttss

0<−=Δ ),...,(),...,( 11 nn ttLssLL  . 
Then, formally we define the trajectory function U as follows: 

 
Definition 5.3  For the discrete time  the trajectory function U for a player *N∈n N∈ι  with respect a Game 
Markov Decision Process },,,,,{ UQASNGMDP ϒ=  is represented by 
 

⎪⎩

⎪
⎨
⎧

>
=

=
0                                  )(
0                                      0

nifL
nifUU j α

ι
ι  (12) 

where 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= ∑∑∑

∈∈∈

ιι

η

ιι

η

ιι

η

ιιι πππα hkhjhk
h

hkhjhk
h

hkhjhk
h

UqUqUq
ff

fjkjkjk

|||||| ,...,,
11

1

00

0

 (13) 

the function  is a function that optimizes the trajectory function value through all possible 

transitions (i.e. trough all the possible trajectories defined by the different  

nnDL ++ →⊆ RR:

ak  s), D is the decision set formed by the 
k’s;   of all those possible transitions , fkl ≤≤0 ),,( jkh sas jkη  is the index sequence of the list of previous places 

to  through action  js ,ka hs )(
ljkh η∈  is a specific previous place of  through action . js ka

 
6 Game Petri Nets Model 
 
The aim of this section is to associate to any game a Game Petri net -- GPN -- ([8], [9]). The GPN structure will 
represent all the possible strategies existing within the game. 
 
Definition 6.1  A Game Petri Net is a 8-tuple ( )UMWFQPNGPN ,,,,,,, 0 π=  where: 
•   denotes a finite set of players { nN ,...,2,1= }
•   nPPPP ×××= ...21  is the set of places that represents the Cartesian product of states (each tuple is 

represented by a place). 
•   nQQQQ ×××= ...21  is the set of transitions that represents the Cartesian product of the conditions (each tuple 

is represented by a transition). 
•   OIF ∪⊆  is a set of arcs where  )( QPI ×⊆   and  )( PQO ×⊆   such that  ∅=∩QP   and  ∅≠∪QP , 

•   nFW N→: is a weight function, 
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•   nPM N→:0 is the initial marking, 

•  nI +→R:π  is a routing policy representing the probability of choosing a particular transition (routing arc), 
such that for each  Ppi ∈ ,  1)),((

),:(
=∑

∈
ιιπ

ιιι
ji

Iqpq
qp

jij

 ,  N∈∀ι  , 

•   nPU +→R: is a trajectory function. 
 
Interpretation: the previous behavior of the GPN is described as follows. When a token reaches a place, it is 
reserved for the firing of a given transition according to the routing policy determined by U. A transition q must fire 
as soon as all the places  contain enough tokens reserved for transition q. Once the transition fires, it 
consumes the corresponding tokens and immediately produces an amount of tokens in each subsequent 
place When 

Pp ∈1

.2 Pp ∈ 0)( =δπ   for I∈δ  means that there are no arcs in the place-transitions Petri net. 
It is important to note that, by definition, the trajectory function U is employed only for establishing a trajectory 

tracking, working in a different execution level of that of the place-transitions Petri net. The trajectory function U  
changes in no way the place-transitions Petri net evolution or performance. 
   denotes the trajectory value at place (.)kU Ppi ∈  at time k  and let [ ] T

kkk UUU (.)](.),...,[=  denote the 
trajectory value state of GPN at time k.  is the number of arcs from place p  to transition q  (the 
number of arcs from transition  q  to place p ). The rest of the GPN functionality is as described in the PN 
preliminaries. 

+→ RFFN :

Let us recall some basic notions in game theory. We denote { }isS =ι  the set of pure strategies for player  ι 
(strategies are represented by the probability that a transition can be fired in the GPN). For notational convenience 
we write ι  (the pure strategies profile), and ι SS ∏∈= N jj SS ∏ ∈− = }{| ιι N  (the pure strategies profile of all the players 

but for player ι). For an action tuple Ssss n ∈= ),...,( 1  we denote  ),...,,,...,( 111 nsssss +−− = ιιι  and, with an abuse of 
notation,  ).,( ιι −= sss

Similarly, we denote { }iσι =Γ  the set of mixed strategies for player ι, identified with the routing policy 
representing the probability of choosing a particular transition. Analogously, we use notations  ιι Γ=Γ ∏ ∈N  to 
denote the mixed strategies profile that combine strategies one for each player and  jj Γ=Γ ∏ ∈− }{| ιι N  to denote the 

mixed strategies profile of all the players except for player ι. For a strategy tuple Γ∈= ),...,( 1 nσσσ  we denote 
),...,,,...,( 111 nσσσσσ ιιι +−− =  and, with an abuse of notation,  ).,( ιι σσσ −=  For a strategy profile ,ισ −  we write 

,}{| jj σσ ιι ∏ ∈− = N  the probability identified with the routing policy π that the opponents of player ι play strategy 

profile  We restrict our attention to independent strategy profiles. For our construction of the GPN a 
strategy profile determines an outcome representing the corresponding trajectory value of each player. 

.ii Ss −− ∈

Then, formally we introduce the following definitions. 
 
Definition 6.2 A final decision point  with respect to a Game Petri net  Pp f ∈ ( )UMWFQPNGPN ,,,,,,, 0 π=   is 

a place  where the infimum is asymptotically approached (or the minimum is attained), i.e. Pp∈ 0=)( pU  or 
C=)( pU . 

 
Definition 6.3  An optimum point  with respect a Game Petri net  Pp ∈Δ ( )UMWFQPNGPN ,,,,,,, 0 π=   is a final 
decision point  where the best choice is selected ‘according to some criteria’. Pp f ∈

 
Definition 6.4 A strategy with respect to a Game Petri net ( )UMWFQPNGPN ,,,,,,, 0 π=  is identified by σ and 
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consists of the routing policy transition sequence represented in the GPN graph model such that some point Pp∈  
is reached. 
 
Definition 6.5 An optimum strategy with respect a Game Petri net ( )UMWFQPNGPN ,,,,,,, 0 π=  is identified by 

 and consists of the routing policy transition sequence represented in the GPN graph model such that an 
optimum point  is reached. 

Δσ
Pp ∈Δ

 
Remark 6.1  It is important to note that a strategy can be conceptualized in a different manner depending on the 
implementation point of view. It can be implemented as the probability that a transition can be fired, as usual, or a 
more general definition is as a chain of such probabilities. Both perspectives are correct, however in the latter case, 
we only have to give an interpretation to the strategy optimality in terms of the chain of transitions. 
 

Consider an arbitrary  and for each fixed transition Ppi ∈ Qq j ∈  that forms an output arc ,),( Opq ij ∈  we 

look at all the previous places  of the place  denoted by the list (set)  hp ip }:{ ijh hpp
ij

ηη ∈=  where 

{ },),( & ),(: OpqIqph ijjhij ∈∈=η  that materialize all the input arcs Iqp jh ∈),(  and form the sum 
 

ι

σ

η

σ ⎟
⎠
⎞⎜

⎝
⎛ ∗∑

∈

)()( hkihj
h

pUp hj

ij

 (14) 

where )),(,...,),(,),(()( ),(
),(

),(
),(

),(
),(

2211 jh

ij

nnjh

ij

jh

ij

qpFN
pqFN

jhqpFN
pqFN

jhqpFN
pqFN

jhihj qpqpqpp ∗∗∗= πππσ  where ( )
ι∗   represent the 

product of the vector element by element, i.e.  ( ) ),,...,,(),...,,(),...,,( 22112121 nnnn babababbbaaa =∗ ι   is the 
ιhp

N∈ι  element of the tuple routing policy π, and the index sequence  is the set ιj ιι ∀:{ j  ),(),(
ιιιιι ijjhj pqqpq ∩∈   

&    running over the set  . The quotient
ιhp }

ij
pη  ),(

),(

jh

ij
qpFN
pqFN  is used for normalizing the routing policies π, note that in 

the formula of )( ihj pσ  it is not necessary to specify ),(,
ιι

ι ij pqFN∀  and  for calculating ),(
ιι jh qpFN

),(
),(

ιι

ιι

jh

ij

qpFN
pqFN

 because the number of arcs ( ),( ⋅⋅FN ) is the same for all players. 

Proceeding with all the  for a given player sq j ' N∈ι  we form the vector indexed by the sequence j 

identified by  as follows: ),...,,( 10 fjjj
 

⎥
⎥
⎥
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⎦

⎤
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⎢
⎢
⎢

⎣

⎡

⎟
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⎝
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⎠
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⎝
⎛ ∗∑

=

∈

∈∈

ι

σ

η

ι

σ

ηι

σ

η

σ

σσ
α

)()(

,...,)()(,)()( 1
1

1

0
0

0

hkihj
h

hkihj
h

hkihj
h

pUp

pUppUp

fhj

f
fij

hj

ij

hj

ij  (15) 

Intuitively, the vector (17) represents all the possible trajectories through the transitions  where  to 

a place  for a fixed i and a given player 

sq j ' ),...,,( 21 fjjj

ip N∈ι . 
Then, formally we define the trajectory function U as follows: 

 
Definition 6.6 The trajectory function U for a given player N∈ι  with respect a Game Petri net 

( )UMWFQPNGPN ,,,,,,, 0 π=  is represented 
 

⎩
⎨
⎧

>≥=>
==

=
0,0 & 0,0                 )(
0,0                                     )(

)( 0
, kikiifL

kiifpU
pU k

ik
hj

α
σ
ι  (16) 
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where the vector function  is a vector Lyapunov-like function which optimizes the trajectory 
value through all possible strategies (i.e. trough all the possible trajectories defined by the different  ), D is the 

decision set formed by the j’s ( ) of all those possible transitions 

nnDL ++ →⊆ RR:
sq j '

fj ≤≤0 ,),( Opq ij ∈  and  α is given in (17). 
 
Theorem 6.1  Let ( UMWFQPNGPN ,,,,,,, 0 )π=  be a non-blocking Game Petri net (unless  Pp∈   is an 
equilibrium point) then we have that:  

ΔΔΔ ∀≤ σσ ,   ,)()( pUpU kk  
 
Remark 6.2  The inequality  means that the trajectory-tracking value is optimum when the 
optimum strategy is applied. 

)()( pUpU kk ≤ΔΔ

 
Corollary 6.1  Let ( UMWFQPNGPN ,,,,,,, 0 )π=  be a non blocking Game Petri net (unless Pp∈  is an 

equilibrium point) and let  an optimum strategy. Set Δσ ⎥
⎦

⎤
⎢
⎣

⎡
=

==
}{min...,},{min

,...,1,...,1 iiii
L αα

αα
 then,   is equal 

to: 

)( pUk
Δ
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(17) 

Where p is a vector whose elements are those places which belong to the optimum trajectory ω given by  
...... )()2()1(0 kkkk UnUUU pppp ≤≤≤≤≤ ςςς   which converges to  .Δp

 
Consider the game ( .,,,,,,, 0 UMWFQPNGPN )π=  Denote for each player N∈ι  and each profile  ιισ −− Γ∈  

of strategies of his opponent the set of best replies, i.e. the strategies that player ι can not improve upon, and it is 
defined as follows: 

{ })()(:|:)( ),(),( pUpUB ιιιι σσ
ι

σσ
ιιιιιιι σσσ −

′
−

Δ

≥Γ∈∀Γ∈= Δ′Δ
−  

 
Definition 6.7  A strategy profile  is a Nash equilibrium point if, for all players ι     

  

Δ
ισ )()( ),(),( pUpU

Δ
−

′Δ
−

Δ

≥Δ ιιιι σσ
ι

σσ
ι

.ιισ Γ∈∀ ′

 
Remark 6.3  It is important to note that in case the strategy is implemented as a chain of transitions ≥  does not 
represent a vectorial inequality, the interpretation is obtained from calculating the best reply  .ιB
 
Definition 6.8   A strategy σ has the fixed point property if it leads to the optimum point   )).(( ),( ΔΔ

−
Δ

pU ιι σσ
ι

  
Remark 6.4  From the two previous definitions the following characterization is obtained:  A strategy which has the 
fixed-point property is equivalent to being a Nash equilibrium point. 
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Theorem 6.2 A non-blocking (unless Pp∈  is an equilibrium point) Game Petri net  
( UMWFQPNGPN ,,,,,,, 0 )π=   has a strategy σ  which has the fixed point property. 

 
Corollary 6.2  If in addition to the hypothesis of the theorem the game GPN is finite, the strategy σ leads to an 
equilibrium point . 
 
Theorem 6.3  The optimum point2 coincides with the Nash equilibrium. 
 
Remark 6.5  The potential of the previous theorem resides in the simplicity of its formal proof for the existence of an 
equilibrium point. 
 
7 Conclusion 
 
In this work, a formal framework for decision-process and game-shortest-path-problem representation has been 
presented. There are still a number of questions relating classical decision-process theory with game theory, which 
may in future be addressed satisfactorily within this framework. The traditional notions of stability in the sense of 
Lyapunov, used to characterize the stability properties of the decision process and game theory, have been explored. 
We introduce the notion of uniform practical stability and provide sufficient and necessary conditions of stability for 
the decision process. In addition, we show that the system/mark-dynamic and trajectory-dynamic properties of 
equilibrium, stability, decision point and equilibrium point converge under some mild restrictions. The Lyapunov 
method introduces a new equilibrium and stability concept in decision process and game theory. Moreover, we 
introduce a new type of equilibrium point in the sense of Lyapunov to game theory, lending necessary and sufficient 
conditions of stability to the game, under certain restrictions. We prove that the equilibrium concept in a Lyapunov 
sense coincides with the equilibrium concept of Nash, representing an alternative way to calculate the equilibrium 
and stability of the game. We introduce a novel application area, to the best of our knowledge, in Markov decision 
process, game theory and Petri nets. An algorithm for finding the equilibrium point has been described. The 
expressive power and the mathematical formality of the DPPN/GPN contribute to bridging the gap between Petri 
nets, Markov decision processes and game theory. 
 
References 
 
1. D. P. Bertsekas and S. E. Shreve. Stochastic Optimal Control: The Discrete Time Case, Academic Press, N.Y., 

1978. 
2. D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models, Prentice--Hall, Englewood 

Cliffs, N.Y., 1987. 
3. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Prentice--Hall, 

Englewood Cliffs, N.Y., 1989. 
4. P. Bertsekas and J. N. Tsitsiklis. An analysis of stochastic shortest path problems. --- Mathematics of 

Operations Research, 16, 3, 580--595, 1991. 
5. Blackwell. Positive Dynamic Programming. Proc. Fifth Berkeley Sympos. Math. Statist. and Probability 

(Berkeley, Calif., 1965/66), 1: Statistics, 415--418 Univ. California Press, Berkeley, Calif., 1967. 
6. J. Clempner, J. Medel and A. Cârsteanu. Extending Games with Local and Robust Lyapunov Equilibrium and 

Stability Condition. International Journal of Pure and Applied Mathematics, 19, 4, 441-454, 2005. 
                                                 
2The definition of optimum point is equivalent to the definition of steady-state equilibrium point in the Lyapunov 
sense given by Kalman in [20]. 
 
 

Computación y Sistemas Vol. 10 No. 3, 2007, pp 301-322 
ISSN 1405-5546 

 



  Julio Clempner 320 

7. J. Clempner. Colored Decision Process Petri Nets: Modeling, Analysis and Stability. International Journal of 
Applied Mathematics and Computer Science, 15, 3, 405-420, 2005. 

8. J. Clempner. Modeling Shortest-Path Games with Petri Nets: A Lyapunov Based Theory. International Journal 
of Applied Mathematics and Computer Science, 16, 3, 387-397, 2006. 

9. J. Clempner. Towards Modeling The Shortest Path Problem and Games with Petri Nets. Proc. of The Doctoral 
Consortium at the 27th International Conference on Application and Theory of Petri Nets and Other Models of 
Concurrency, 1-12, 2006. 

10. C. Derman. Finite State Markovian Decision Processes, Academic Press, N.Y., 1970. 
11. E. B. Dynkin. The Optimum Choice of the Instant for Stopping a Markov Process, Soviet Math. Doklady, 150, 

238--240, 1963. 
12. J. H. Eaton and L. A. Zadeh. Optimal Pursuit Strategies in Discrete State Probabilistic Systems. Trans. ASME 

Ser. D, J. Basic Eng., 84, 23--29, 1962. 
13. R. I. Grigelionis and A. N. Shiryaev. On Stefan's Problem and Optimal Stopping Rules for Markov Processes. 

Theory of Probability and its Applications, 11, 541--558, 1966. 
14. Hernández-Lerma and J.B. Lasserre. Discrete-Time Markov Control Process: Basic Optimality Criteria. --- 

Berlin, Germany : Springer, 1996. 
15. Hernández-Lerma, G. Carrasco and R. Pére-Hernández. Markov Control Processes with the Expected Total 

Cost Criterion: Optimality, Stability and Transient Model. Acta Applicadae Matematicae, 59, 3 229-269, 1999. 
16. Hernández-Lerma and J.B. Lasserre. Futher Topics on Discrete-Time Markov Control Process. Berlin, 

Germany: Springer-Verlag, 1999. 
17. K. Hinderer and K. H. Waldmann. The Critical Discount Factor for Finite Markovian Decision Process With 

an Absorbing Set. Mathematical Methods of Operation Research, 57, 1-19, 2003. 
18. K. Hinderer and K. H. Waldmann. Algorithms for Countable State Markov Decision Model with an 

Absorbing Set. SIAM Journal of Control and Optimization, 43, 2109-2131, 2005. 
19. A. Howard. Dynamic Programming and Markov Processes. MIT Press, Cambridge, 1960. 
20. R. E. Kalman and J. E. Bertram. Control System Analysis and Design Via the "Second Method" of Lyapunov. 

Journal of Basic Engineering, 82(D), 371-393, 1960. 
21. H. J. Kushner and S. G. Chamberlain. Finite State Stochastic Games: Existence Theorems and Computational 

Procedures, IEEE Transactions on Automatic Control, 14, 3, 1969. 
22. P. R. Kumar and T. H. Shiau. Zero Sum Dynamic Games, in Control and Dynamic Games, (C. T. Leondes, 

ed.)- --- Academic Press, 1345-1378, 1981. 
23. H. Kushner. Introduction to Stochastic Control, Holt, Rinehart, and Winston, N.Y., 1971. 
24. Lakshmikantham, S. Leela and A.A. Martynyuk, Practical Stability of Nonlinear Systems, World Scientific, 

Singapore, 1990. 
25. V. Lakshmikantham, V.M. Matrosov and S. Sivasundaram, Vector Lyapunov Functions and Stability 

Analysis of Nonlinear Systems, Kluwer Academic Publ., Dordrecht, 1991. 
26. P. Mandl and E. Seneta. The theory of non-negative matrices in a dynamic programming problem. The 

Australian Journal of Statistics, 11, 85-96, 1969. 
27. Murata T. (1989). Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE, 77, 4, 541-580. 
28. J. Nash: Non-cooperative games, Ann. Math. 54 (1951), 287-295. 
29. J. Nash: Essays on Game Theory, Elgar, Cheltenham 1996. 
30. J. Nash: The essential John Nash, Eds: H.W. Kuhn and S. Nasar, Princeton UP 2002. 
31. K. M. Passino, K. L. Burguess and A. N. Michel. Lagrange Stability and Boundedness of Discrete Event 

Systems, Journal of Discrete Event Systems: Theory and Applications, 5, 383-403, 1995. 
32. S. D. Patek. Stochastic Shortest Path Games: Theory and Algorithms. PhD thesis, Department of Electrical 

Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, September 1997. 
33. S. D. Patek and D. P. Bertsekas. Stochastic Shortest Path Games. SIAM Journal on Control and Optimization, 

37, 3, 804-824, 1999. 
34. S. D. Patek. On Terminating Markov Decision Processes with a Risk Averse Objective Function. Automatica, 

37, 9, 1379-1386, 2001. 

Computación y Sistemas Vol. 10 No. 3, 2007, pp 301-322  
ISSN 1405-5546 



Setting Decision Process Optimization into Stochastic vs. Petri Nets Contexts 321

35. R. Pallu de la Barriere. Optimal Control Theory, Saunders, Phila., 1967. 
36. S. R. Pliska. On the transient case for Markov decision chains with general state space. ---In: Dynamic 

Programming and Its Applications, (M.L. Puterman, Ed.). New York: Springer, 335--349, 1978. 
37. S. Poznyak, K. Najim and E. Gomez-Ramirez. Self-learning control of finite Markov chains. Marcel Dekker, 

Inc., New York, 2000. 
38. U. Rieder. Bayesian Dynamic Programming. Advances in Applied Probability, 7, 330-348, 1975. 
39. L. S. Shapley. Stochastic Games, Proceedings of the National Academy of Sciences, Mathematics, 39, 1095-

1100, 1953. 
40. N. Shiryaev. Optimal Stopping Problems. Springer-Verlag, N.Y., 1978. 
41. R. Strauch. Negative Dynamic Programming. Ann. Math. Statistics, 37, 871--890, 1966. 
42. J. van der Wal, Stochastic Dynamic Programming, Mathematical Centre Tracts 139, Mathematisch Centrum, 

Amsterdam 1981. 
43. F., Jr. Veinott. Discrete Dynamic Programming with Sensitive Discount Optimality Criteria. Ann. Math. 

Statistics, 40, 5, 1635--1660, 1969. 
44. P. Whittle. Optimization over Time. Wiley, N.Y., 2, 1983. 
 
 
 
 
 
 
 
 
 
 
Julio Clempner holds a Ph.D. from the Center for Computing Research at the National Polytechnic Institute. His 
research interests are focused on justifying and introducing the Lyapunov equilibrium point in shortest-path decision 
processes and shortest-path game theory.  This interest has lead to several streams of research. One stream is on the 
use of Markov decision processes for formalizing the previous ideas, changing the Bellman’s equation by a 
Lyapunov-like function which is a trajectory-tracking function, and also it is an optimal cost-to-target function for 
tracking the net. A second stream is on the use of Petri nets as a language for modeling decision process and game 
theory introducing colors, hierarchy, etc. Petri nets are used for process representation taking advantage of the 
formal semantic and the graphical display. The final stream examines the possibility to meet modal logic, decision 
processes and game theory.  
 
 
 
 
 
 
 
 
 
 
 
 
Jesus Medel holds a PhD from the Center for Research and Advanced Studies (Cinvestav), National Polytechnic 
Institute. He is a member of the Mexican National System of Researchers (SNI) and a member of the Mexican 
Academy of Sciences. Since 1999 he is a Professor at the National Polytechnic Institute. At present, he has 
graduated seven master’s and two doctoral students. He has published more than sixty papers and one book, and a 
second book is in press. In 2004, he was awarded the degree of Magister and PhD in postgraduate education 
management. His research areas of interest include Filter Theory, Real-time Filter Theory, Non-stationary Sample 
Time, Real-time Fuzzy Logic Filters, and others. 
 

Computación y Sistemas Vol. 10 No. 3, 2007, pp 301-322 
ISSN 1405-5546 

 



  Julio Clempner 322 

 
 
Alin Cârsteanu is a PhD in Engineering and in Mathematics from the University of Minnesota, USA (1997). His 
postdoctoral studies bore on Stochastic Hydrology at the National Institute for Scientific Research (INRS-Eau) in 
Quebec, Canada. He is a member of the Mexican National System of Researchers (SNI), and of several North 
American and European professional organizations. Since 2000 he has been an Associate, and currently a Professor 
and Senior Researcher at the Center for Research and Advanced Studies (Cinvestav), National Polytechnic Institute, 
in Mexico City. Refereed publications and research interests deal with the areas of Time Series Analysis, Wavelet 
Theory, Stochastic Hydro-meteorology, Atmospheric Precipitation Modeling, and others. 
 
 

Computación y Sistemas Vol. 10 No. 3, 2007, pp 301-322  
ISSN 1405-5546 


