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Abstract

This paper presents a new method for the design of linear phase IIR filters with flat magnitude response. The
method is based on the design of flat digital allpole filters with complex coefficients. Depending on the parity of
the allpole filter order the resulting IIR filter have either real or complex coefficients. The parameters of the
design are the same as in traditional IIR filter design, i.e., passband and stopband frequencies, ®, and w,, passband
droop A,, and stopband attenuation A,. Several design examples are provided to illustrate the method. In addition,
a design of linear phase modified two-band IIR filter banks and a design of stable IIR filter with an improved
group delay are presented as two applications of the proposed method.

Keywords: TIR filters, linear phase, allpole filters, allpass filters, filter banks, improved group delay.

Resumen

Este articulo presenta un nuevo método para el disefio de filtros IIR de fase lineal con respuesta en magnitud
plana. El método esta basado en el disefio de filtros todopolo con respuesta plana y coeficientes complejos.
Dependiendo de la paridad del orden del filtro todopolo, los filtros resultantes IIR tienen coeficientes reales o
complejos. Los parametros de disefio son los mimos que en el disefio tradicional de filtros IIR, esto es, frecuencias
de paso y rechazo, o, y , y atenuaciones en la banda de paso y rechazo, A, y A,. Varios ejemplos de disefio son
dados para ilustrar el método. Finalmente, el disefio de bancos de filtros modificado de dos bandas de fase lineal y
el disefo de filtros IIR con retardo de grupo mejorado se presentan como dos aplicaciones del método propuesto.
Palabras clave: Filtros IIR, fase lineal, filtros todopolo, filtros pasatodo, banco de filtros, retardo de grupo
mejorado.

1 Introduction

A filter Hy(z) has linear phase if (Vaidyanathan, 1993),

Ho(2) =cz *H,(2), (1)

where 2% is the delay, c is the complex constant with unit magnitude and |-|0( Z) is the paraconjugate of H(z), that is,

it is obtained by conjugating the filter coefficients and by replacing z with z™".

It is well known that causal Finite Impulse Response (FIR) filters can be designed to have linear phase.
However, Infinite Impulse Response (IIR) filters can have linear phase only in the noncausal case (Mitra, 2006;
Vaidyanathan, 1993; Vaidyanathan and Chen, 1998), (the phase response can be 0 or mt). It has been recently shown
that filters with a linear phase property are useful in the filter bank design and Nyquist filter design (Argenti et al.,
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1996; Djokic et al.,1998; Powell and Chau, 1991; Selesnick, 1998; Willson and Orchard, 1994; Zhang et al., 2001,
2000).

As a difference to methods presented in (Djokic et al., 1998;Powell and Chau, 1991;Willson and Orchard,
1994), our goal is to propose here a new technique to design linear phase IIR filter with flat magnitude response
based on complex allpole filters. Additionally, the design specification must be the same as in traditional IIR filter
design based on analog filters, i.e., the passband and stopband frequencies, ®, and s, the passband droop A, and
the stopband attenuation A, as shown in Fig. 1.

|Ho (e1)|

Ap A svivivsannives \

oy T o
Fig. 1. Design parameters

The challenge with the proposed approach is in how to include the parameters of the design into the desired
linear phase IIR filter design. Using results from (Fernandez-Vazquez and Jovanovic-Dolecek, 2004), it follows that
an auxiliary complex allpole filter with certain characteristics can be used to solve this problem.

The rest of the paper is organized as follows. In Section 2 we therefore use the known relation between linear
phase IIR filter and the corresponding allpass filter. First, we establish design conditions which the allpass filter
needs to satisfy, and later we determine design conditions for the auxiliary complex allpole filter. In Section 3, we
present closed form equations of the singularities of the corresponding linear phase filter (1) which are used in the
design procedures described in Sections 4-6. Detailed description of the algorithms for the lowpass and highpass
filters are given in Sections 4 and 5, and are illustrated with different examples. Section 6 presents the applications of
the proposed algorithm, including a design of linear phase modified two-band IIR filter banks and a design of a flat
IR filter with an improved group delay.

2 Design of allpole filter with complex coefficients

In this section we design allpole filters with complex coefficients. First, we derive the design conditions that an
allpass filter needs to satisfy such that the design of lowpass filter is obtained. Second, to design the corresponding
allpole filters, we relate the allpole filter and the allpass filter.

It is well known that a linear phase lowpass IIR filter Hy(z) can be expressed in terms of complex allpass filters
as (Zhang et al., 2001),

H0(2)=%[A(Z)+ Aw)). @

where A(z) is an allpass filter with complex-coefficients. Note that the filter Hy(z) defined in (2) satisfies the relation
(1)ifk=0andc=1.
From (2), the magnitude response of Hy(z) can be expressed as,

‘Ho(ejm)

=cos(Pa(®), 0<o<m, 3)
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where ga(®) is the phase response of A(z).

Furthermore, we can observe that |Hy(¢/®)| has flat magnitude response at ® = 0, and = 7, and the resulting
values |Ho(e")| and |Ho(e"™)| equal 1 and 0, respectively.

Since [Ho(e'®)| has a flat magnitude response at @ = 0, and o = 7, the corresponding allpass filter A(z) has a flat
phase response at the same frequency points. As a consequence, the resulting group delays t4(0) and ta(r) of the
allpass filter are equal to 0. Moreover, the values of ¢a(®) at these two frequency points can be 0 and +m/2,
respectively.

Considering the value A, in dB and using (3), it can be shown that the phase value ¢a(®) evaluated at o, is
given by

Bon = da(0p) =cos 107/, @)

In summary, the conditions that the auxiliary complex allpass filter in (2) needs to satisfy, are the following:
A.1. The phase values of da(®) at ® =0 and ® =7 are 0 and £7/2, respectively (see Fig. 2).

A.2. The phase response of A(z) is flat at ® = 0 and ® = n. Therefore, to(0) = ta(n) = 0.

A.3. The phase value ¢4 is controlled by A, (see (4) and Fig. 2).

o ()|
| 4
Ap 1
T ©
0 (@)
=5
Ppa 1 /
y i w

Fig. 2. Relation between the passband droop and the phase value ¢,a

From the design conditions A.1-A.3, we can note that the complex allpass filter A(z) has causal component A.(2)
and anticausal component A,(z), such that A(z) = A.(2)A.(2). Figure 3 illustrates an implementation of the complex
allpass filter. The block TR denotes the time reversal operator, i.e., r(n) = s(—n), and A,(z") is now a causal allpass
filter (Vaidyanathan and Chen, 1998). The anticausal filter works perfectly in a block by block manner if one
correctly chooses initial conditions in the time reverse difference equations (Vaidyanathan and Chen, 1998).

sin) rin)
= 20 R P{ac) B ® |

Fig. 3. Structure for the complex allpass filter A(z)
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In the following we relate a complex allpass filter satisfying conditions A.1-A.3 to the corresponding complex

allpole filter.
A complex allpass filter A(z) is related to an allpole filter as follows (Vaidyanathan, 1993),

Az)=2" D@ _ oo k@)

D(2) o«F(z)’ )
where D(z) is an allpole filter of order N given by,
a
D(2) = Qo) Q)
the complex constant o has unit magnitude, and F(z) is a polynomial of degree N, that is,
N
F()=1+) f,z". (7

n=l1

The filter coefficients f, , for n = 1,...,N, are complex and are expressed as f, = f, + jfj,, where fr, and fy, are the
real and imaginary part of f,, respectively.

Note that the desired phase of the allpole filter ¢p(w) depends on the phase dpa(w) of A(z) (see (5)). Therefore, it
can be shown that, Selesnick (1999),

oN + (o
o) = 228D, ®)
Similarly, the group delay of the allpole filter can be expressed as, Selesnick (1999),
Tp(@)—N
(o) = AR, ©)

where ta(®) is the group delay of complex allpass filter.

Using (8) and the phase values ¢pa(®) at ® = 0 and © = = (see Condition A.1), we arrive at ¢pp(0) = 0 and
dp(m) = (2N 1) m/4.

From the relation (9) and Condition A.2, we further get t(0) = t(r) = —N/2.

Finally, the following relation is obtained using Condition A.3 and (8),

cos™! (1 0~ Ar/20 )+ o,N
2

Pp(0,)=¢, = (10)

As a consequence, the corresponding conditions that the allpole filter D(z) has to satisfy are:
B.1. The phase values of D(z) at ® = 0 and @ = 7 are 0, and 7 (2N * 1)/4, respectively.

B.2. The group delays t(®) of D(z) at ® = 0 and ® = & are —N/2.

B.3. The phase value of D(z) at w,, ¢, = dpp(®,), is given by (10).
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Substituting conditions B.1 and B.2 into the set of linear equations proposed in (Fernandez-Vazquez and
Jovanovic-Dolecek, 2004), we arrive at

N k N k k

Z( LA +tan(¢a)2(n ﬁ] f, = (—ﬁ], k odd, (11a)

n=1 2 n=1 2 2

N k k k

;( % o —cOt(d,) l(n %J f, = [—%] K even, (11b)
Z(—l)”(n—ﬁ]kf +1+tan(¢“)2( 1)”[n Ejkf :—(—ﬁjk k odd (11c)
~ 2) " 1-tan(g,) 4 2) " 2)° ’
i(_l)”(n_ﬂ]kf n tan(¢a)2( ) (n ﬂ)k —[—ﬂjk k even (11d)
~ 2) " l+tan(g,) £ 2 2)° ’

where ¢, is the phase of .
Unlike the method of Selesnick (1999), which proposes the design of flat allpole filters with real-value
coefficients and different degree of flatness at ® = 0 and ® = =, in this method the degree of flatness at ® = 0 and ® =

mis N=2." It makes that the passband frequency ®, becomes a continuous variable. Consequently, the values of k are
0,..., N-1.
Solving the set of equations (11) with the symbolic tool MAPLE (Heck, 2003), the filter coefficients are

expressed as,
N
, n even;
n

fo = (12)

[I:J(ﬁej(z%mm —J) n odd.

Finally, from the general phase equation proposed in (Fernandez-Vazquez and Jovanovic-Dolecek, 2004), the
following relation gives the desired phase ¢, of the allpole filter (Condition B.3),

N N
D sin(@ N+, — ) frn — D cos(@ N+, —4,) f =0. (13)
n=0 n=0

From (15), the corresponding value of ¢, for N even, is equal to

4 :4{—j—1—(—1)N/2A;tanN(%J}, (14)

where Z{-} stands for the angle of {-} and

The degree of flatness is defined as the number of null derivatives of the group delay (Fernandez-Vazquez and Jovanovic-Dolecek, 2004).
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A /10‘\”20 1,
1020 4 :

Similarly, for odd values of N, we have

3 Closed form equations for the singularities of Hy(z)
In this section, we focus on the computation of the singularities of Hy(z).

3.1 Poles
Substituting (12) into (7) and using the two-polyphase components of (1 +z ™)V, we arrive at

F(z) =e!% [(cos¢a —sing,)1+2z )N = (j-Dsing,(1-z"HN ]
From (17), it can be shown that the corresponding poles of H(z) are

A+l
A =17

Py

where k=0,...,N-1, and

1—-cotg,

/N gk+l
V2 =i n
Tk = (—J e N

3.2 Zeros
It follows from (17) and (2) that the transfer function Ho(2) is,

1+zHNE(2)

H,(2)= = s
o2) =" F(2)F(2)
Where
E(z) = (1-sin(2¢,))1+ 27" )N + c(cos(24, ) + sin(24,) - )1 -z HN ,
and
oo 1, N even;
“|-j, Nodd.
Observe that the transfer function Hy(z) has N zeros at z = —1 and the other zeros at (cf. (21)),
By +1
Zk = 5
Pk -1
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where k= 0,...,N—1, and the parameter By is given by,

. SN
(2 —cos( %)] J2k /N N even.

1_ Sin(2¢a)
. ’ 24)
1/2N
2 1= c0sh) | akeneian ogq
1 - Sln(2¢(1)

Note that there are N zeros away from the origin, which contribute to the passband (see (23) and (24)).

It is easily shown that the absolute values of z; in (23) for even values of N are always different from 1.
However, for N odd, there is one absolute value of z, equal to 1, i.c., there is a zero on the unit circle. The resulting
angle of z is denoted by ®,. Furthermore, there exists a frequency ®; at which Hy(¢/®) equals —1. Consequently, for
odd values of N, the filter Hy(z) has complex-valued coefficients.

Accordingly, the corresponding frequencies @, and o, are expressed as,

{ 5 1/2N 11 5 1/2N
®, =n+2tan”! 2M , O =n+2tan"! —M . (25)
1-sin(2¢,) 2 1-sin(24,)

4 Algorithm for lowpass filter design

In the following we describe the algorithm for the design of linear phase lowpass IIR filters. At first, we compute the
allpole filter order N using either (14) or (16).

To satisfy the design condition at o, we replace the passband frequency w, with the stopband frequency o, and
the passband droop A, with the stopband attenuation A in (14). Consequently, the relationship (14) becomes

4, =4{—1—1—(—I>N”A;tan“[%}, (26)

A, /20
PN Ll S @7)
1OAS/20—1

Solving (14) and (26) with respect to N, we arrive at

of34)

N=|—L—£ (28)

o)

Where
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where | -] denotes the ceiling function and

o = tan| =2 . = tan| > 29
. 5 | S 5 ) (29)

As we pointed out before, if the allpole filter order were odd, the resulting filter Hy(z) would have complex-
valued coefficients, otherwise it has real-valued coefficients.

1.
2.

3,
4,

5.

The proposed algorithm consists of the following steps.

Estimate the order N of the allpole filter using (28).

From the values N, o, and A,, compute the phase value of the allpole filter ¢, using (14) for N even, and
using (16) for N odd.

Compute the allpole filter coefficients f,, using (12).

The poles and zeros of the desired filter Hy(z) are computed using (18) and (23), respectively. Additionally,
if N is odd, compute the frequencies m, and ®,, using (25).

Calculate the filter coefficients of Hy(z) using (2).

We illustrate the procedure with the following two examples. The first one uses an even allpole filter order N,
whereas the second one use N odd.
Example 1. We design an IIR linear phase lowpass filter with the passband and stopband frequencies ®, = 0.257 and
o, = 0.457, respectively. The passband droop is A, = 1 dB, while the stopband attenuation is A;= 40 dB.

1.
2.
3.

4.

Using (28), we estimate N = 8. Accordingly, the resulting filter Hy(z) has real-valued coefficients.
We calculate the phase value ¢,= —2.355044. Therefore, the value of a is —0.706293 — j0.707920.
The filter coefficients f,, are computed from (12) and are shown in Table 1.

Table 1. Allpole Filter coefficients in Example 1

n fy
0|8 1
1|7 —7.978022 +j0.021917
2|6 28
315 —55.846158 +j0.153420
4 70

Using (23) and (18), we compute the poles and zeros of Hy(z), which are given in Table 2.

Table 2. Poles and zeros of the transfer function Hy(z) in Example 1

Poles and zeros
P1, Ps*, 1/po*, 1/p13 1.966489 —j1.075212 ..., 23 1
P2, Ps*, 1/P10*, 1/P14 0.836993 —j0.929015 | 2o, 2;1*, 1/213*, /25 2.115040 — j0.879601
Ps, P7*, 1/p1i*, 1/pss 0.481181 —j0.492215 | Zy0, Z12*, 1/214%, 1236 0.942554 - j0.946345
P4, Ps*, 1/p1o*, 1/Pss 0.378588 —j0.127470

The magnitude response of the designed filter is given in Fig. 4(a) in solid line. For comparison purpose,
we design two filters using the methods (Djokic et al., 1998;Powell and Chau, 1991;Willson and Orchard,
1994). These designs are based on traditional Butterworth filter design. Figure 4(a) shows the resulting
filters using 8 and 16 zeros at z = —1. The passband and stopband details of the proposed filter are shown in
Fig. 4(b).
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Magnitude responses Passband
1 T T T 0 T r r -
Proposed method o -05F
= = = = Eight zeros at z=-1 °
0.8 £ -1
————— = Sixteen zeros at z=-1 o
—15}
OG F -2 I I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Stopband
0.4 -30 T
-35
0.2r -40
-45
ot . i) T n -50 i i i
0 0.2 0.4 0.6 0.8 1 0.35 0.4 0.45 0.5 0.55
[0%4 ot
(a) (b)

Fig. 4. Magnitude response of Hy(z) in Example 1

Observe that for the same number of zeros at z = —1 (8 zeros) the proposed method exhibits better magnitude
characteristic.
Example 2. In this example, we illustrate the algorithm for the IIR filter design based on a complex allpole filter
with odd order. The IIR filter specification includes the passband and stopband frequencies being 0.5 and 0.77, and
the passband droop and the stopband attenuation being 1 dB and 40 dB, respectively.

1. From (28), it follows that N = 9. Therefore, the resulting IIR filter Hy(z) has complex filter coefficients.

2. The phase value ¢, is obtained from (18), i.e., ¢, =—2.906242 and o =—-0.972433 —j0.233184.

3. The filter coefficients of F(z), which are obtained using (12), are shown in Table 3.

Table 3. Filter coefficients of F(z) in Example 2

n f, n f,

0 1|5 55.155296 +j43.439940
1 3.939664 +j3.102853 | 6 84
2 36 | 7 15.758656 +j12.411411
3 36.770198 +j28.959960 | 8 9
4 126 | 9 0.437740 +j0.344761

4. From (23) and (18), we compute the poles and zeros of Hy(z), which are shown in Table 4. Additionally, the
frequencies @y and ®; are 1.483715n and 1.459303w, respectively (see (25)), where , and ®, are the
frequencies at which Hy(e'”) is 0 and —1, respectively.

Table 4. Poles and zeros of Hy(z) in Example 2

Poles and zeros
Py, 1/pyo* —0.045592 —j0.131383 |  7y,..., 2 1
P,, 1/pii* —0.047014 +j0.221228 | 1z, 1/z;s* | —0.025782 — j0.087431
Ps, 1/ppo* —0.062954 +j0.635273 | 11, 1/zi6* | —0.031146 — j0.465936
P, 1/p1s* —0.120521 +j1.296186 | z1, l/zi7* | —0.378513 +j3.695906
Ps, 1/p4* —0.485810 +j3.102542 | z13, l/zig* | —0.077670 +j1.425310
Ps, 1/p15* | —11.469800 —j11.130423 214 —0.051140 — j0.998691
P, 1/pi6* —0.302484 — j2.381486
Ps, 1/p7* -0.097956 —j1.086518
Py, 1/psg* —0.056930 — j0.519239
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5. Figure 5(a) shows the magnitude response of the designed filter. Figure 5(b) zooms the frequencies ®, and
,, while Fig. 5(c) gives the passband and stopband details.

Magnitude response of HO(Z) Detail magnitude response of Ho(z)

w/n
(a) (b)
Passband
0 r
m -0.5
=}
£ -1
I}
o
-15¢
) i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6
Stopband
-30
-35
-40
-45
_50 i i i
0.6 0.65 0.7 0.75 0.8
w/n
()

Fig. 5. Magnitude response of the designed lowpass filter in Example 2
5 Algorithm for linear phase IIR highpass filter design
Now, we consider the design of highpass filter using complex-valued allpole filters.

The relationship between a highpass filter and a corresponding allpass filter is expressed by (Vaidyanathan et
al., 1987),

1 ~
Hi@ = 5cao - A (30)
Using (30) and A, in dB, the phase value ¢pa is expressed as,

Pon = sin_l(lo_A"/zo). 31)
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The frequencies defined in (29) become
' (Dp ' [ON
®, = cot > ] ¢ = cot ey} (32)

Similarly, the phase value ¢, is now given by,

N/2
4{— (j+ Do, —%} N even,

By = (33)
_\(N-D)/2
2(1)—} N odd.

[

= (j+Do, +

Following example illustrates the design.
Example 3. The parameters of the design of the highpass filter are as follows. The passband frequency ©, = 0.7t and
stopband frequency m; = 0.47. The stopband attenuation and passband droop are 45 dB and 2 dB, respectively.

The resulting filter order is equal to 6. The magnitude response, the passband and stopband details of the
designed filter are shown in Fig. 6.

Magnitude response of Hl(z) Passband
OF 0
8 -1t
-20 £
o -2f
_aolk -3 i i i
g 40 0.6 07 08 0.9 1
5 Stopband
o -60} -35 T
-40
-80} —45
-50
_loo L L L L _55 H H
0 0.2 04 0.6 0.8 1 0.35 0.4 0.45 0.5
o/t o/t
(a) (b)

Fig. 6. Magnitude response of H;(z) in Example 3
6 Applications

This section consider two applications of the proposed design of linear phase IIR filter, i.e., design of modified two-
band filter banks and the design of IIR filter with improved group delay.

6.1. Design of Modified Two-Band Filter Banks

The modified two-band filter bank (Galnad and Nussbaumer, 1984), is shown in Fig. 7. The analysis filter Hy(z) and
the synthesis filter Gy(z) are lowpass filters, while the analysis filter H;(z) and the synthesis filter G;(z) are highpass
filters. The difference from the traditional structure is manifested in two extra delays, one before the filter H,(z) and
another after the filter Gy(z) (see Fig. 7).
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Output

Analysis Synthesis

Fig. 7. Modified two-band filter bank

To avoid alias distortion, the synthesis filters are related to the analysis filter Hy(z) in the following form
(Vaidyanathan et al., 1987),

Gy(2) = 2Hy(2), Gy(2)=2H,(-2). (34

where I-|0(Z) is the paraconjugate of Hy(z), and H,(z) = ﬁo(—z) .
According to (Vaidyanathan, 1993), the amplitude and phase distortions are eliminated if the analysis filter
Ho(2) is chosen to satisfy (Vaidyanathan et al., 1987),

Ho(2)Ho(2) + Ho(-2)Ho(-2) =1. (35)

From (35), the relation between the passband droop A, and the stopband attenuation A, is given by
(Vaidyanathan et al., 1987),

107451 4 107AM0 21 (36)
Additionally, using (34) and (35), we have (Vaidyanathan et al., 1987),

O, +0, =T. (37)

Methods for designing real linear phase modified two-band IIR filter banks based on complex allpass filter are
proposed in (Argenti et al., 1996; Zhang et al., 2001; Zhang and Yoshikawa, 1999).
The analysis filters are given by (Argenti et al., 1996),

Ho(2) =%[A(Z)+ A@)). (38)

mm=%hm—&ﬂ, (39)

where A(z) is a complex allpass filter.

In (Argenti et al., 1996; Zhang and Yoshikawa, 1999), the corresponding analysis IIR filters are real and have a
flat magnitude response in both passband and stopband. More general design of (Zhang and Yoshikawa, 1999) is
given in (Zhang et al., 2001) and includes flat as well as equiripple design. In both cases the designed filters are real.

The perfect reconstruction condition for the modified two-band IIR filter banks is established in (Argenti et al.,
1996; Vaidyanathan et al., 1987; Zhang et al., 2001; Zhang and Yoshikawa, 1999), which implies that the poles of
Hy(z) and H;(z) must appear on the imaginary axis and in pairs jp and 1/jp, where p is a pole. From this condition, it
follows that the filter coefficients given in (12) must be imaginary for even values of n.
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Consequently, the values of ¢ in (14) for an even N, must be
7
——n for N/2 even,
b = § . (40)
—gn for N/2 odd.
The corresponding zeros of H(z) are computed from (23) and (40)
1 jn2k+1
22Ne” N 4]
T jnzkH N /2 even,
2N N _
22Ne N 41
I N /2 odd,
2NN
where k= 0,...,N—1, while the poles are computed using (see (18)),
+)
_— N/2 even,
(8k+5 )
tan —Nn
8
_— N/2 odd.
(8k+1 )
tan| —m
8N
Similarly, the values of ¢, when N odd are,
4 - —%n for N/2 even, "
“ |2k for N/2 odd. (43)
The zeros of Hy(z) are now given by,
1 jﬁ4k+3
22Ne" 2N 4]
W (N +1)/2 cven,
2N 2N _
7 =92 ¢ e : (44)
22N e 2N 4
W (N + 1)/2 Odd,
22N eJn 2N _q
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where k =0,...,N—1, and the poles are expressed as,

j (N+1)/2 even,

Py (45)

+5nj
N (N+1)/2 odd,

where k=0,...,N-1.

Using (25), we arrive at
0y =T+ 2tan_1(21/2N ), o =71+ 2tan_1(2_1/2N ) (46)

6.1.1 Description of the algorithm
In the following we describe how the proposed algorithm can be used for a design of linear phase modified two-band
IIR filter banks. The algorithm has the following steps:
1. Calculate the order N of the allpole filter using (28), (36) and (37).
2. Depending on the parity of N, compute the filter coefficients f, using (12) and either (40) or (43). The
corresponding poles and zeros are obtained using (42) and (41) for N even. For N odd use (45) and (44).
3. Additionally, if N is odd, compute the frequencies ®, and m, using (46).

We illustrate the method with the next two examples.
Example 4. Passband frequency w, of the analysis filter Hy(z) equals 0.67, whereas the stopband attenuation A, is 45
dB
1. From (36) and (37), it follows that A, = 1.373381 x 10 and o, = 0.47. Using (28), the order of the
complex allpole filter is 18.
2. We compute the filter coefficients using (12) and (40), which are shown in Table 5. Poles and zero of H(z)
are presented in Table 6.

Table 5. Filter coefficients of F(z) in Example 4

n f, n f,
0|18 15| 13 —20684.981802j
1 17 —43.455844j | 6| 12 18564
2 |16 153 | 7| 11 —76829.932409j
3|15 —1969.998267j | 8| 10 43758
4 | 14 3060 9 —117379.063403j
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Table 6. Poles and zeros in Example 4
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Poles and zeros
1 Upio*, pro*, 1/pas | j45.829351 21,0 21 3
P, 1/pi™, Pao®, Upao 15027339 | 230, 1/204*, 225, U3 0.009926 +j0.176310
ps, 1/p12*, par*, 1/p3o j2.571496 | 759, 1/255*, 239, 1/233 0.010902 +j0.363932
P4, 1/p13*, Par™, 1/p3 j1.647949 | 751, 1/256*, 230, 1/234 0.012835 +j0.577279
ps, 1/pis*, ps®, 1/ps2 j1.140281 2, 1/257%, 231, 1/235 0.016404 +j0.838967
P> 1/P1s™*, Pas™, 1/P33 j0.802585 0, 1/236 0.009626
Pz, 1/Pi6*, Pos™, 1/Ps4 0.548619
Ps, 1/P17*, Pae™, 1/Pss J0.339454
Po, 1/p1s*, Par™, 1/Pss J0.153915

Figure 8 shows the corresponding magnitude responses of Hy(z) and H,(z).

Frequency responses
; ;

O ———————————
H,(2)
-10f 0
- - Hl(z)
_20 L
o
o
£ -30}
o
-40
I
| 1
-50 )
1
-60 L 1. L L
0 0.2 0.4 0.6 0.8 1

[0

Fig. 8. Magnitude responses of the analysis filters in Example 4

As a difference to the methods (Argenti et al., 1996; Zhang and Yoshikawa, 1999), we give here a closed form
equations to compute the IIR filter order and the singularities of Hy(z). Furthermore, the proposed method includes
the complex case.

The following example illustrates the complex case (N is odd).
Example 5. We design an IIR filter banks with the following specifications for the analysis filters Hy(2):
stopband frequency m; = 0.87 and stopband attenuation A; = 60 dB.
1. The estimated value of Nis 7.
2. The allpole filter coefficients, and poles and zeros are shown in Tables 7 and 8, respectively. The magnitude
response of Hy(z) is shown in Fig. 9.

Table 7. Allpole filter coefficients in Example 5
f N f

n
0.38268 +j 0.92388

n
13.39392 +j32.33578

15.61300 —j6.46716

46.83929 —j19.40147

8.03635 +j19.40147

2.67878 + ] 6.46716

W[ —|D|>S

8.06549 —j32.33578

NNk

2.23044 —j 0.92388
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Table 8. Poles and zeros of Hy(2)

Poles and zeros
Py, 1/pg* 717.80665 21y 27 -1
P, 1/pg* j1.80936 | zg, 1/z2)* 0.22576 — j2.84187
P, 1/ps* j0.70954 | 7o, 1/2)5* 0.02506 +j0.11260
P4, 1/ps* j0.16991 | 740, 1/25* 0.03451 +70.62780
ps, 1/pg* —j0.28810 214 0.04947 —0.99877
Ps, 1/pg* —j0.89365
p-, 1/pg* —j2.41421

3. From (46), we have oy = 1.51575% and w, = 1.48425x (see Fig. 9).

Frequency responses

Gain, dB

1
1
1
1
1
1

1

1
1

Ho(2)

- -Hl(z)

1
1
\
1
1
1

0.5

1
/T,

Fig. 9. Magnitude responses in Example 5

6.2. Stable and causal flat IIR filters with an improved group delay

In this section, we relate the linear phase filter with the corresponding causal IIR filters.
Using (1) and (2), we rewrite the relation for a linear phase IR filter Hy(2) as,

Ho(2) = Ho(2).

Considering that the Fourier transform of Hy(z) is real and positive for all ®, we have

Ho(2) =

where H,(2) is a causal and stable IIR filter.
Note that the condition (48) is satisfied using (2) for even values of N. Therefore, we design the filter H.(z) from

the linear phase filter Ho(2).

H.(2)H(2),

(47)

(43)

From (20), it is easily shown that the polynomials E(z) and F(z) are symmetric for even values of N.

Consequently, they can be expressed as,
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where E((z) and F(z) are subfilters of E(z) and F(z), respectively.
Substituting (49) and (50) into (20), the transfer function Hy(z) can be rewritten as

221+ 27YVE (D) (-2)
2 VR ()R (2)Fy (-2)Fy(-2)

Hy(2) = (51

Using (48) and (51), it follows that

(+2H"?E(2)

T

(52)

Therefore, the transfer function H.(z) has N/2 zeros at z = —1.
In order that H.(2) be stable, all zeros of Fy(z) must be inside the unit circle. There exist different polynomials
Eo(2) satisfying (52). The number of polynomials N, of Eo(2) is expressed as,

N_. —olN/4a] (53)

poly

In the next example, we illustrate how we can get a causal stable IIR filter H.(z) starting from a linear phase IIR
filter Hy(z), using (47) and (52).
Example 6. First, we design an IR filter Hy(z) with the passband frequency, ®, = 0.257, and passband droop, Ap = 1
dB. The order of the filter is 24.

Consequently, Hy(z) has 12 zeros at z = —1, while the remaining poles and zeros are calculated using (23) and
(20), respectively. Table 9 shows the poles and zeros.

Table 9. Poles and zeros of Hy(z) when N = 12, 0, = 0.251 and A, = 1

Poles and zeros
pi, 1/p7 0.394884 +j0.139937 | z7;,1/24 0.578620 +j0.590536
P2, 1/ps 0.451398 +j0.374154 | 2,,1/z5 0.454151 +j0.339308
Ps, 1/pg 0.587022 +j0.634737 | z3,1/z4 0.403978 +j0.110475
ps, Upo 0.542650 + j0.566504
ps, 1/p1 0.431535 +j0.313685
Ps, 1/p12 0.389148 +j0.083698

According to (53), there are eight different polynomials for Ey(z), shown in Table 10. The group delays of H.(2)
for all E(l)(z), 1=1,...,8, are shown in Fig. 10.

Table 10. Different polynomials for Ey(z)

21, 21* | 25, L% | 23, 23% | 24,24 | 75,25 | Z6, Z6*

Ey X X x

E, x x x
Ey X X

Eo4 X X
Ey X X X

E,S X x
E, X X

[ X X
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Group delays

25

Samples

0 0.2 04 0.6 0.8 1
o/n

Fig. 10. Different group delays for the IIR filter H.(z) in Example 6

Figure 10 shows that there is one group delay for each polynomial E(')(Z) ,1=1,...,8. We observe that the group

delay for Eg(z) is less nonlinear in the passband than the others. Therefore, for this example the best polynomial is

EX(2).
The next issue we address is how to select the best polynomial for E¢(z) in general.
We have designed many IIR filters and observed that only when the following two conditions are satisfied, the

IIR filter with an improved group delay can be obtained.

e  The number of zeros of H.(z) inside and outside the unit circle, N; and N,, respectively, are related as

No < Ni > (54)
Where
3 |_N /2-| if |_N /2-| has the same parity of N, s
o ’VN/Z—‘—I if(N/Z—I—Ihasthesameparityof N,’ (55)
and[ - ] indicates the floor function.
e For each zero z,, inside, and each zero z, outside of the unit circle, we have,
(56)

/2 1<z, |

6.2.1 Description of the algorithm
The design parameters of the causal stable IIR filters are passband and stopband frequencies, ®, and s, passband

droop A,, and stopband attenuation A,. The algorithm has the following steps:
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1. We estimate the order of the allpole filter D(z) using results from Section 4,

)

Ap/lO A, /10
10A/ Hy A= /10 il (58)
10519 1 10A710 1

If the estimation filter order N is odd, increase it by one.
2. Using the estimated value of N, we calculate the value of ¢, as,

(57)

Where

é, =4{—j—1—(—1)N/2A;tanN[%J}. (59)

Compute poles and zeros of H.(2) in the following form:
e Poles and zeros of Hy(z) are obtained using (23) and (18), respectively.
e The first N poles of Hy(z) which are inside the unit circle become poles of H.(2).
e There are N/2 zeros of the filter H.(z) at z = -1 (see (52)). The other N/2 zeros are zeros of H(2)
satisfying conditions (54) and (56).
3. Using the poles and zeros, find the transfer function H.(z).
Example 7. We design an IIR filter with the following specifications: the passband and stopband frequencies are
0.2 and 0.47, respectively, the passband droop A,= 1 dB and the stopband attenuation A, = 25 dB.
1. From (59), it follows that N = 8.
2. Using the estimated value N and (59), we have ¢, =—-2.356315.
3. The resulting poles and zeros of H.(z) are shown in Table 11, whilst the pole/zero pattern is shown in Fig.
11(a).

Table 11. Poles and zeros of H(2)

Poles and zeros

P | 0.675540£0.493940 | 7,2, 1
Pra | 0.617787£j0.416300 |  zs 1.767678 = j0.489703
Pss | 0517503 +0.186396 | 7,5 0.661569 + j0.442466
Prs | 0.502595 +j0.111476
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The group delay of the designed filter is shown in Fig. 11(b), while Figs. 11(c) and 11(d) provide the
magnitude response.

z-plane Group delays
T T 15 T T
[ R R Proposed
E ’, = = = = Selesnick, 1999
osf - : 3 o
E 5 E "
2 4 % <
c or0 £
3 % 4
E :
-0.5 Q o
-1t R Dt
-1 -0.5 0 0.5 1 15 0 0.2 0.4 0.6 0.8 1
Real Part o/t
(a) (b)
Magnitude responses Passband
1 T T 0 u
Proposed @ -05
. kel
08l = = = = Selesnick, 1999 % 1
(U]
-1.5}
0.6 ) i ; i i i
0 0.05 0.1 0.15 0.2 0.25 0.3
Stopband
0.4r -15 :
-20
0.2 -25
-30
ot . - _35 ; ; ;
0 0.2 0.4 0.6 0.8 1 0.35 0.4 0.45 0.5
o/t o/t
() (d)

Fig. 11. Example 7

We compare our result with the direct method proposed in (Selesnick, 1999), where the parameters of the
design are cutoff frequency ., degree of delay d, and the number of constraints assigned to ® = 0 and ® = T, are K
and L, respectively. Additionally, the parameter d allows a trade-off between phase-linearity, delay and magnitude
response. Using o, = 0.248925%, K =1, L =7 and d = 6, the resulting filter has the degree of the denominator equal
to 8. Figures 11(b) and 11(c) show the group delays and magnitude responses of the designed filter using the method
(Selesnick, 1999) and the one proposed here.

We observe that the method (Selesnick, 1999) results in an improved overall group delay whereas the proposed
filter H.(2) has a better group delay in the passband.

7 Conclusions

A new method, based on complex-valued allpole filters, for designing real and complex IIR filters with linear phase
and flat magnitude response is presented. Since the complex-valued allpole filter can be expressed by the
corresponding allpass filter, it follows that, the proposed IIR filter can be efficiently implemented using allpass
filters, i.e., the structure based on allpass filters is less sensitivity to filter quantization, Mitra, (2006).
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As a difference with others methods, this method is a direct design, i.e., it does not require the design of analog
filters and bilinear transformation. Moreover, the parameters of the design are the same as in traditional IIR filter
design, that is, passband and stopband frequencies, w, and s, passband droop A,, and stopband attenuation A,. In
contrast to the traditional design of IIR filters, the proposed method can design not only lowpass filters but also
highpass filters.

Going to this goal, we establish the conditions that the auxiliary complex allpole filter needs to satisfy in order
to design a linear phase IIR filter with the given design parameters. The resulting filter has flat magnitude response
in both passband and stopband. Furthermore, closed form equations for the allpole filter coefficients and singularities
of the resulting linear phase IIR filter are given. In the proposed filter, N zeros at z = —1 control the stopband
attenuation while N zeros inside and outside the unit circle contribute to the passband.

Finally, we consider applications of the proposed method. We demonstrate that the new technique can be useful
to design linear phase modified two-band filter banks. Other interesting application of the new method, presented in
this paper, is the design of stable IIR filters with an improved group delay in the passband.
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