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Abstract 
In this paper we study some properties of 3D objects such as compactness, the work done in object 
transformations and the number of voxels to be moved in order to normalize a similarity measure of an 
appropriate set of 3D objects. Voxel representation and scale normalization allow us to find the total distance of 
a set of voxels from one object to another. For these purposes, the comparison of objects is achieved by 
superimposing their centers of mass, using principal axes for their orientation, and Hungarian algorithm for 
optimal matching in bipartite graphs. All these aspects are determinant in obtaining the minimum work that 
needs to be done in the corresponding transformations. We present experimental results by including irregular 
objects taken from the human body. 

               Keywords: Similarity measure; compactness; transforming; positive voxels. 
 

Resumen 
En este artículo estudiamos algunas propiedades de objetos 3D tales como la compacidad, el trabajo realizado 
en la transformación de los objetos y el número de voxels a mover para normalizar una medida de similitud de 
un conjunto apropiado de objetos 3D.  La representación con voxels y la normalización de la escala nos permite 
encontrar la distancia total de un conjunto de voxels de un objeto a otro. Para estos propósitos, la comparación 
de los objetos se logra al superponer sus centros de masa, usando ejes principales para su orientación, y el 
algoritmo Húngaro para apareo óptimo en gráficas bipartitas. Todos estos aspectos son determinantes para 
obtener el trabajo mínimo realizado en las transformaciones correspondientes. Presentamos resultados 
experimentales al incluir modelos de objetos tomados del cuerpo humano. 
Palabras clave: Medida de similitud; compacidad; transformación; voxels positivos 

 
1 Introduction 
 
The list of publication about comparison, registration and recognition of 3D objects is long, but there is a synthesis 
book  [1] where it is, also,  mentioned  that  geometric properties  such as  volume and surface shapes are considered  
to  establish  their  similarity measures. Recently, Lee and Park [2] have found a method based on matching an object 
graph of a scene with the model graph of a model in a neural network to recognize geometrical 3D objects. Some 
authors employ distance functions to compare objects. For instance, Malandain and Rocchisani [3] based their 
method in searching for the smallest distance between surfaces, which is related to a minimal potential. Similarly, a 
3D object recognition from 2D images is performed in [4], [5] and [6]. It is assumed, in all these research works, that 
objects to be recognized independently of affine transformations, namely rotation, translation and scaling. 

In 1996, Bribiesca [7] compared 3D objects through a similarity measure. This similarity measure consists of 
the amount of work done in the movement of voxels from the so-called  positive set X to the negative set Y of voxels, 
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and such a movement can be seen as an  object transformation as well. Bribiesca [7] implemented a heuristic 
algorithm to move the voxels: the first positive voxel in set X is moved to the closest negative voxel in set Y by 
finding the minimum Euclidean distance. The next positive voxel to move is obtained again by considering the 
minimun Euclidean distance among the remaining voxels in both sets. This voxel movement is iterated until the 
movement of the last voxel is achieved. We call this procedure the “two closest voxels ( TCV)” algorithm, but it does 
not give the optimum distance. However, we compute Hungarian algorithm, as was done in [8] to find the total 
smallest work to match one set to the other. 

A normalized similarity measure consists on giving a percentage of similarity degree between two objects. One 
of the recommendations for further work in Bribiesca's paper [7] is to normalize the above-mentioned similarity 
measure. So, as a contribution of this paper, we propose a method to normalize this similarity measure, based on the 
study of compactness and the work done in transforming objects. 

We assume that a   3D object is a binary spatial representation of a three-dimensional scene, in which every 
voxel (volume element) takes the value “0” or the value “1”, see [9]. We also classify as an irregular object one that 
has no symmetry axes. 

In this paper we show, through some experiments, that orientation given by principal axes and position of 
centers of mass are crucial in performing the transformation of objects. 

In Section 2 we state some important concepts used in this paper, such as positive voxels, discrete compactness 
for three-dimensional objects, and so on. In Section 3 we show the relation between discrete compactness, work done 
in transforming objects and number of positive voxels in each transformation, inferring that the most compact and 
the least compact objects are those most dissimilar of a set of objects to be compared according to their volumetric 
shapes. In Section 4 we provide a manner to normalize the similarity measure, and this method gives us a good 
similarity degree between two objects. In Section 5 we present some experimental results to support the idea that 
superimposing the centers of mass and aligning objects through their principal axes improves the work done in 
transforming them. Finally, the conclusions of this paper are summarized in Section 6. 
 
2 Important Concepts 
 
Some important concepts used in this paper are: 
Discrete compactness for 3D objects. The compactness measure for 3D objects composed of voxels is defined as the 
ratio of contact area (total surface of the faces that voxels get in touch with) to surface area of the object. Then, given 
a 3D object composed of  n voxels, and contact area Ac, the discrete compactness, normalized in the interval [0,1], is 
given by 

 

minmax

min

cc

cc
D AA

AAC
−
−

=  
 

(1) 

 
where Acmin = n-1 and Acmax = 3(n-n2/3); considering the voxel as a regular hexahedron of six polygonal faces and the 
area of a face as the unity [10]. 
Common voxels. If we consider objects O1 and O2, which have the same centroid and are aligned by menas of 
principal axes, and they preserve their volume relationship after the method of volume normalization, then the 
overlapping of the above-mentioned objects defines the common voxels. More precisely, let the 3D binary image of 
O1 be and the 3D binary image of O

1OI 2 be . Thus, I2OI C is defined by    
 

 

 

 
(2) 

 Clearly, IC corresponds to the common voxels of objects O1 and O2. 
 

Computación y Sistemas Vol. 10 No. 4, 2007, pp 372-387 
ISSN 1405-5546 



  Hermilo Sánchez Cruz and Ramón M. Rodríguez Dagnino 374
 

In Figure 1(a) we show the Heart object, while the Sphere object is presented in Figure 1(b). Figure 1(a) shows 
, Figure 1(b) . Figure 1(c) gives the union of objects, where the number of common voxels in this case, is 7 

569. 
1OI 2OI

Positive voxels. These are the voxels of object O1 that are not common to object O2. The positive voxels are 
represented by the 3D binary image , i.e., 
 

 
(3) 

                          
 Figure 1(d) illustrates all positive voxels, that is to say 2 255 for this example. 
 
Negative voxels. The negative voxels correspond to the 3D binary image  that is defined by 
 

 
(4) 

 
i.e., the 3D binary image  represents the negative voxels where the positive voxels can be placed.  Figure 1(e) 
displays the negative voxels. The number of negative voxels is the same as positive voxels because they are volume 
normalized. 

The set of positive voxels  is the set of voxels of the  Heart which are not common to the  Sphere, while 
noncommon voxels belonging to the  Sphere constitute the negative set of voxels . 
Finding optimum matching of positive and negative voxels. Let us think on moving all positive voxels to the places 
of all negative voxels. So, there is a total distance to be covered. Such a distance has to be the smallest of all 
possibilities. There are many manners of matching one set to another. If k is the number of voxels to be moved, then 
k! is the number of different manners of matching them from   to . The 3D binary images and the distances 
between their voxels may be considered as a  weighted complete bipartite graph [11] with bipartition ( , ), 
meaning 
 

 

(5) 

(6) 

 
where edge pinj has weight wij, i.e., each weight wij corresponds to the Euclidean distance between the voxels pi and 
nj. Thus, the optimal assignment problem can be defined as how to find the minimum-weight perfect matching in the 
weighted graph and this is named optimal matching. A method to find an optimal matching in a weighted complete 
bipartite graph is the  Kuhn-Munkres algorithm [11]. So, the covered distances of all voxels to be moved (positive 
voxels) can be minimized by using the Kuhn-Munkres. This minimization produces an optimum transformation of 
objects. 
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Fig. 1. Objects to be compared by “moving voxels”; a) Heart, b)  Sphere, c) Superimposed objects,  

d) Positive voxels, e) Negative voxels 
 

To translate every voxel from set  to set  it is necessary to spend a specific amount of work, which 
represents the work done in transforming the source object O1 to the designated object O2. The concept of work for 
transformation of objects can be found in [7], and it is equal to the required force for moving one voxel to another 
and multiplied by the Euclidean distance between each pair of voxels, i.e., d( , ). To establish the metric for 
similarity, in that paper ([7]) the author makes the force a constant and equal to one, then the work has a numerical 
value of a distance and it is given by the following expression, 
 

 

 
(7) 

 
in work units, where m is the number of positive voxels. In Eq.(7) each element from the pair (ai, bj) represents the 
location of a voxel from the positive to the negative set respectively, and it corresponds to a weight wij of a bipartite 
graph in an assignment problem. It also represents the distance d that each positive voxel would cover to reach its 
corresponding negative voxel. Furthermore we can see Eq.(7) as a similarity measure to establish the similarity 
degree between two volumetric shapes or objects. It can be seen that as the work increases the objects become more 
different in volume shape. 
 
3 Relationship between Discrete Compactness, Work done in Transforming Objects and 
   Number of Positive Voxels 
 
We consider thirteen different objects shown in Figure 2, and we name this set H. These objects have been processed 
in such a manner their centroids coincide (by applying translation transforms), volume normalized (they have the 
same number of  voxels) and they are aligned through their principal axes. As it can be seen, some of them are 
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geometric objects (sphere, torus, etc) while the others represent organs of the human body (kidney, lung, brain, etc). 
All of these objects are composed of 9 824 voxels. We need to select the object having the highest discrete 
compactness of the set H, in this case, the Sphere that is obtained according to Eq.(1), and equals 0.9834. 
Accordingly, we compare the Sphere with the twelve remaining objects. 

In Table 1 and Figure 3 we show the work done in transforming all the objects into the  Sphere, as well as the 
number of positive voxels and the discrete compactness of each object. As we can see, since the smallest work in the 
transformation is done, the most similar object to the  Sphere is the sphere with random noise ( Sph-noise), followed 
by the sphere with a hair ( Sph-hair), then followed by the  Brain, etc. The most different object to the  Sphere is the  
Hand, following  Intestine, and so on. Note that the Hand has the smallest compactness, 0.7669, and although it does 
not have the maximum number of voxels to move, the work is relatively large (211 077.30). However, for the  
Torus3, whose compactness (0.9276) is larger than that of the  Hand (0.7781), the work done in transforming it into 
the  Sphere is smaller than the work needed with the  Hand.  

Now, by analyzing the case of the Brain and the  Heart, we find that the  Brain needs to move more positive 
voxels (2 385) than the  Heart (2 255), however the work done to transform the  Brain into the  Sphere is smaller (24 
102.13 vs. 26 104.68). 

Note that once the optimum matching is known, it can be proceeded to compute the distance every positive 
voxel keeps to the corresponding one in the negative set.  

 
Fig. 2. The set H of thirteen 3D different objects, each composed of 9 824 voxels: a)  Kidney, b)  Lung, c)Torus2, 

d)  Sph-hair, e)  Brain, f)  Heart, g)  Sphere, h)  Torus3, i)  Liver, j)  Intestine, k)  Torus1, l)  Hand (Skeleton), 
m)  Sph-noise (sphere with random noise) 
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Table 1.  Ac: contact area, As: surface area, CD: discrete compactness, V(+): positive voxels, W: work in transforming the object 
into the Sphere according to Hungarian algorithm, WTCV: work according to TCV algorithm 

 
 

 
Fig. 3. Work done, in terms of positive voxels, needed to transform all objects into the Sphere 

 
Another interesting situation can be observed in Figure 4, where the sphere with noise and sphere with hair have 

the same 419 positive voxels, even though the work done in transforming them into the  Sphere is different. This 
means that transforming the sphere with a random noise is “cheaper” than transforming it into that given with a hair. 
The previous experiment shows that transforming the objects according to our procedure provides a robust method to 
estimate the similarity measure in the presence of few noise, without distort so much the shape of object. In other 
words, our method is more convenient than most common methods, such as simple correlation, which is very 
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sensitive to noise. An additional advantage of our transformation is that it gives information relative to the shape of 
objects. 
 

 
Fig. 4.  a) noise distributed as random; b) noise distributed intentionally as a hair 

 
We can observe in Table 1 that the discrete compactness CD of the sphere with noise is distant from that of the  

Sphere (0.9410 and 0.9834 respectively). This fact is not true for the common compactness definition 
 

 

 
(8) 

 
where As is the surface area, and V the volume of the object (see [1] and [9]). Eq.(8) is equal to 1 for a  Sphere. The 
compactness of the voxelized  Sphere we are presenting, computed with Eq.(8) is 1.8642, whereas it is 3.2911 for the 
sphere with noise. Measure 1/C gives 1.5364 and 0.3038 for the two previous objects, which can be compared with 
the normalized measure CD.  
                

 
                                        
                                                
                                       

Fig. 5.  a) The  Torus is out of the  Sphere, there are only four voxels superimposed, 
b) there are 896 voxels superimposed between  Hand and  Sphere 
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Then, the common compactness measure shows that compactness of a sphere with noise departs significantly 
from that of a normal sphere. Therefore, the discrete compactness measure, given by Eq.(1), results more robust with 
regard to the noise. 

We should observe in Figure 5 that the voxel distribution of the  Hand is very different in comparison with the 
distribution of the  Torus3. Even though  Torus3 is out of the  Sphere, and as a consequence needs to move all its 
voxels, makes it more similar to the  Sphere than the  Hand. As it can be noted, not only the number of positive 
voxels determine the shape of objects but also the way they are distributed, what is shown in the work done in 
transformations, and in the similarity between shapes. 

Also, it can be noted that compactness is not determinant to establish similarity measure between objects. In fact 
there is not a linear relationship between work done and compactness of objects. Observe that we have calculated 
compactness from a number of objects distributed in a rank: from 0.7781 to 0.9834. From these discussions we 
suggest normalize similarity measure with regard to an object to which compactness be as far as possible from the 
most compact, on the contrary possible false similarities in shapes can appear. For example if we consider a small 
rank of compactness given by Sphere, Brain and Kidney, compactness difference is larger between  Sphere and 
Brain, but work done to transform Kidney into Sphere is higher. 

In summary, we should observe that, from the set of objects H, the least compact ones are less similar to the  
Sphere than those more compact, even though the latter sometimes have less voxels to move. It is also shown that 
when some voxels are moved, e.g. ( Sph-noise), its similitude with respect to the  Sphere is the largest of all elements 
in set H, showing that the measure is accurate enough with respect to the noise. 

The  Hand needs the largest work to transform it into the  Sphere, and it corresponds to the least compact object. 
Since the  Sphere and the  Hand, both belonging to H, are the two objects having the highest and smallest 
compactness, respectively, and the  Hand takes the largest work to transform it into the  Sphere we can infer that they 
are the two most dissimilar among all objects of H. 
 
4 Normalization of the Similarity Measure 
 
In this section we discuss two methods to normalize the similarity measure and in both of them we use the 
compactness information to find the two most dissimilar objects from the whole set. The first method considers a 
complete set of objects which are obtained by all the combinations of n voxels. Then the work done between all the 
pairs can be found, hence the two most dissimilar objects could be selected to normalize the measure. However, it is 
not computationally feasible to find all the objects to obtain their transforming work. An alternative to this is 
computing the work between the objects of highest and lowest compactness. As established in [10], for cubic-shaped 
voxels the most compact object is the cube formed by those voxels, and the least compact are those with the smallest 
contact area, such as a stick. The second method has some other advantages, since we only need to compare the least 
and most compact objects of a given set of N objects, e.g. the set H with N = 13 and n = 9 824, where the number of 
objects obtained with n voxels is much larger than N. Then, we need to find the most and least compact object to 
compute the two most dissimilar objects of the set H to normalize the measure. 
 
4.1 Complete set of objects 
The objects that have small work done to transform into the  Sphere tend to be more similar to the  Sphere than those 
with higher work done. This observation evokes the hypothesis of Haralick and Shapiro: “pattern measurements of a 
given class are nearer to other pattern measurements in the class than to the pattern measurements of other classes” 
[12].  
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Fig. 6. A cube transformed into a stick at different resolutions 

 
Of course, compactness is not a determinant feature of objects related to similarity. Remember that the number 

of positive voxels plays an important role as well. By considering a set of N objects composed of all possible 
combinations of n voxels, it is not necessary to find all the shapes in order to find those most dissimilar (by the work 
done in transforming every pair of objects). Clearly, the complete set of objects results huge, in comparison with the 
13 objects of the set H. 
 

Table 2. Number of positive voxels and work done to transform a stick into a cube at different resolutions 
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Fig. 7. Work done to transform a box into a stick at different resolutions 

 
From the results of the previous section, we can establish that a procedure to find the two most dissimilar 

objects from the whole universe of N objects composed of n voxels, is to transform the most compact object into the 
least compact object, a cube of n1/3 of side, i.e. 1, and a stick of length n, i.e. 0. Figure 6 shows different values of n 
(from up to bottom: 27,125,343,729 and 1331, respectively) to transform a cube into a stick. To know what the work 
in transforming the cube into the stick composed of n voxels is for any n, we could obtain the work for small n's, and 
then adjust to a polynomial curve. In Table 2 we show the work done between the cube and the stick for five 
different values of n.  

 
Table 3. Number of common voxels and positive voxels to move in each transformation 
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Table 4. Positive voxels 

 
 

Table 5. Table of work done in transforming between organs (including the  Sphere) according to  TCV algorithm 

 
 

Table 6. Table of work done in transforming between organs (including the  Sphere) according to Hungarian algorithm 

 
 

We can fit the following equation to this curve: W = 0.166V2 + 29.235V, where V = V(+) is the number of 
positive voxels. With this second order polynomial we can extrapolate for n = 9 824 voxels, and the work done is 
approximately 16 237 623, see Figure 7. 

Therefore if we normalize with this amount of work (16 237 623) then the  Sphere and the  Intestine would be 
similar in 99.51% and the  Sphere and the  Hand in 98.70% . 

Of course, these percentages do not correspond to visual perception. Thus, it is more convenient to consider 
another method that we propose in the next section. 
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4.2 A noncomplete set of objects 
Given a set of N objects, suppose each one is composed of n voxels. A method to normalize the similarity measure is 
to look for the most dissimilar pair between the N objects. With this amount of work between the most dissimilar 
objects we have the maximum work done in the transformation of these  N objects. Considering the objects of the set 
H, it is observed that the two most dissimilar are the  Hand and the  Sphere. They also correspond to the objects with 
the largest and the smallest compactness. Now, by considering the work done in transforming the  Hand into the  
Sphere as a similarity measure of 0%, and the work done in transforming the  Sphere into itself as a 100%, we can 
derive a normalized expression for the similarity degree between two objects, 
                     

 

 
(9) 

  
where W1,2 is the work done in transforming one object into another, and Wmax is the maximum work done of the N 
objects transformed. Then, we obtain a table with the work normalized in transforming all the objects into the  
Sphere (Table 3). Of course, this is only a sample of all the existing possibilities from a complete set composed of 9 
824 voxels. 
 

Table 7. Normalized similarity measure between objects according to  TCV algorithm 

               
 

In Table 4 we show the positive voxels when comparing all the pair of organs, including the  Sphere. These are 
the voxels that result necessary to move for the transformation of objects. 

In Table 5 we show the work done for transforming organs according to  TCV algorithm, while in Table 6 the 
work done according to Hungarian algorithm is shown. Observe that the amount of work in Table 6 is always smaller 
or equal than the work needed in Table 5. Finally, in Tables 7 and 8 we show the normalized similarity measure 
calculated with Eq.(9), according to  TCV and Hungarian algorithms, respectively. 
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Table 8. Normalized similarity measure between objects according to Hungarian algorithm 

             
 
5 Importance of Object Center of Mass and Orientation in Performing the Transformations 
 
Many methods for aligning 3D objects exist in literature. Elsen et al. [13] discuss a classification scheme for image 
matching methods. Besl and Mckay [14] describe a method based on iterative closest point algorithm to registration 
of 3-D shapes. Brown discusses different registration methods, such as correlation and sequential methods, Fourier 
methods and point mapping [15]. Bribiesca [7] for example, aligned 3D objects by maximum correlation, computing 
the work done in transformation. Lohmann [1] discusses some methods to align volumetric images, namely the 
iterative closest point, principal axes and correlation algorithms so that they overlap as close as possible. To probe 
our results, we have used principal axes to orientate the set of objects presented in this work. 
 

 
Fig. 8. Transforming  Sphere into  Torus3, a) centers of mass of both  Sphere and  Torus3 coincide and there are only four 

common voxels; b) their centers of mass are apart by 19 voxel units and they have 2181 common voxels 
 

In this Section we show that, as part of the transformation of objects, superimposing them in such a manner that 
their centers of mass coincide, and their principal axes are also in the same direction, the work done is minimized. It 
is also experimentally shown that for some arbitrary orientations, including those where greater number of voxels 
coincide in superimposition, the work done in transformation increases too. This confirms, in part, some results 
found in Figure 3, where it can be seen that despite some objects compared with  Sphere have a larger number of 
voxels in common, the work for transformation is bigger. In addition, by moving centers of mass and principal axes 
the work for transformation increases, and in such cases the measure is not optimum. 
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Experimentally, we have found that transforming  Sphere into one of the torus, e.g.  Torus3, requires  more 
work when displacing their centers of mass 19 voxel units (see Figure 8). Hence, the work done to transform objects 
with different center of mass is larger than that given when centers of mass coincide. When displacing mass center 
19 voxel units, then 2 181 voxels match between  Sphere and  Torus3 giving 44% more work in transformation than 
when mass centers coincide. On the other hand, displacing centers of mass between  Hand and  Brain increases the 
work, resulting larger when creating a 90o angle between their largest axes with 2 703 common voxels, with work 
employed in the transformation of W = 241 711.88. Although, if the objects are aligned as their principal axes and 
common center of mass, the work done is W = 199 356.66 reduced 20%. See Figure 9 and Table 9 that summarizes 
these observations. 
 

 
Fig. 9. Transforming  Hand into  Brain: a) centers of mass of both objects coincide and there are 904 common voxels; b) their 

centers of mass are apart by 20 voxel units and they have 3 691 common voxels; and c) their centers of mass are apart of 22 voxel 
units and they have 2 703 common voxels and major principal axes make 90o between them 

 
  Table 9. Relationship between principal axes and mass centers; common voxels and work done when transforming objects 

       
 

Computación y Sistemas Vol. 10 No. 4, 2007, pp 372-387 
ISSN 1405-5546 



  Hermilo Sánchez Cruz and Ramón M. Rodríguez Dagnino 386
 
6 Discussions and Results 
 
The reason being that there are many objects that have capricious shapes not shown here, but that can be formed with 
the 9 824 voxels as well. Because of this, it results more appropriate to compute the normalization in this manner 
when we have a larger representative sample of objects with different shapes. Thus, in order to normalize the 
similarity measure for a sample like the set H given in Section 3,  

An important hypothesis has arisen from experiments made in this work and may be proved mathematically as a 
future work. 
 Hypothesis: Let S1 and S2 be two objects composed of n voxels. The minimal work employed to transform the two 
objects 
 occurs when their center of mass coincide and are aligned by means  of principal axes, if and only if, Hungarian 
algorithm is applied  to match positive voxels to the negative set. 

We show in Table 6 the work done to compare all pair of objects, and we have found that the two objects with 
the largest work for their transformation are the  Sphere and the  Hand. This fact is consistent with the result shown 
in Figure 3, where the objects with the largest and smallest compactness of the set H are the same objects that require 
the largest work in their transformation. Of course, appropriate compactness interval is needed. Wider compactness 
interval, less false similarities should be obtained. 

This means that it is enough to observe the results of Figure 3 to find the objects with the largest work, and from 
this result then normalize the similarity measure. 

We should mention that our normalization of the similarity measure is local. However, it is not convenient to 
normalize globally under this method of transformation of objects. For instance, if we try to normalize globally we 
are faced to the problem: “given N objects, each composed of n voxels, find the two most dissimilar between them 
and normalize the measure”, which can be restated as: “given N objects, each composed of n voxels, find the pair 
that requires the maximum work to transform them and normalize the measure”. 

In Subsection 4.1 we discuss what happens when we apply this idea to all the objects, each composed of n 
voxels. However, we conclude in Subsection 4.2 that it is not necessary to include all the possible objects composed 
of n voxels, but only the set of objects that we are interested on to make the comparison, e.g., the set H. This is so, 
since information about the shape of the rest of objects, which are not in the set H, is not known, and it affects the 
measure. This is the main reason why this normalization results to be local. 

If we have N objects, there could be N(N-1)/2 comparisons to normalize the similarity measure. If this is carried 
out for a set of N objects, it is required to spend a lot of processing time. Instead, to avoid making all these 
comparisons, we find the discrete compactness of each of N objects, we look for the objects with the smallest and 
highest compactness, then we compute their transforming work and we normalize the measure.  
 
7 Conclusions 
 
In this work we present two main results: (1) we have proposed a method to normalize a similarity measure given in 
[7]. We have normalized this measure by using discrete compactness and the amount of work needed for object 
transformations. This normalization allows us to provide a degree of similarity between 0 and 100%. We have 
applied such a technique to irregular 3D objects and it gives good results which might be useful in recognizing them. 
The measure can be defined as a percentage in the similarity degree, where 0% represents the similarity of the two 
most different among the N objects and 100% of the two most similar. And (2) we also have shown that keeping the 
same center of mass and orientation of objects by means of principal axes, result crucial for the minimization of the 
work done in transformations. 
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