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    Abstract 

In this paper a new Kernel, from statistical learning theory is proposed to work with symbols chains (words) 
obtained from a discretization procedure of a continuous features. Although the exact definition of the 
discretization is not strictly necessary, there must always exist either, a measure of distance or a similarity 
between symbols in a certain alphabet (a set of symbols). This kernel is applied on a set of television shares 
obtained from the seven main television stations in Andalusia (Spain). A comparative study for classification 
purposes is done, and the associated parameter selection is studied. Finally, it must be mentioned that this 
kernel has certain implications in the type of considered similarity that will be studied in further researches. 
The small influence of the λ parameter in identification tasks must also be discussed. 

    Keywords: Kernels, Discretization, Intervals Distance. 
 

    Resumen 
En este artículo, un nuevo kernel (núcleo), procedente de la Teoría del aprendizaje Estadístico, es propuesto 
para trabajar con cadenas de símbolos obtenidos a través de un proceso de discretización de una variable 
continua. Aunque para la exacta definición de discretización no es estrictamente necesaria, siempre debe 
existir una medida de distancia o una medida de similitud entre símbolos en un determinado alfabeto 
(conjunto de símbolos). Este kernel es aplicado sobre un conjunto de repartos de audiencias en la televisión 
obtenido de las siete principales cadenas de televisión en Andalucía (España). Una comparativa con objeto de 
llevar a cabo una clasificación es realizada y la selección de parámetros es estudiada. Finalmente, mencionar 
que este kernel tiene ciertas implicaciones en el tipo de similaridad considerada las cuales serán estudiadas en 
futuras investigaciones. La poca influencia del parámetro λ en las tareas de identificación también debe ser 
analizada. 

    Keywords: Kernels, Discretización, Distancia Intervalar. 
 

1 Motivation 
 

Automated processing and knowledge extraction from data is an important task performed by machine learning 
algorithms. Hence, the generation of classification rules from class-labelled examples is possible. Instances can 
be described by a set of numerical, nominal, or continuous features. Several of these algorithms are expressly 
designed to handle numerical or nominal data, other algorithms perform better with discrete–values features, 
despite the fact that they can also handle continuous features (Kurgan and Cios, 2004). Meanwhile a certain 
number of algorithms developed in the machine learning community focus on learning from nominal feature 
spaces. Real–world classification includes patterns with continuous features where such algorithms can not be 
applied, unless the continuous features are firstly discretized. Discretization is the process of transforming a 
continuous attribute into a finite number of intervals associated with a discrete, numerical value–a number, 
symbol or letter. This is the usual approach for learning tasks that use mixed–mode–continuous and discrete–
data. The discretization process is developed in two stages: given the range of values for the continuous attribute, 
first the number of discrete intervals is found, then, the width or boundaries for the intervals. 

In (Macskassy et al, 2003) it was shown than even on purely numerical-valued data, results for text 
classification on the derived text-like representation outperforms the more naive numbers-as-tokens 
representation and, more importantly, is competitive with mature numerical classification methods such as C4.5, 
Ripper and SVM. The most straightforward way is to treat each number that a feature may take on as a distinct 
“word”, and proceed with the use of a text classification method using the combination of true words and tokens-
for-numbers words. However, his makes the numbers 1 and 2 as dissimilar as the numbers 1 and 100–all three 
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values are unrelated tokens in the classification methods. An approach to applying text-classification methods 
problems with numerical-valued features would be desirable so that the distance between such numerical values 
can to be discerned by the classification method. Most of the methods translating a continuous feature into 
symbols –letters– in order to deal with texts –letters chains– lose part of their efficiency since they are not 
designed for this end. The kernel proposed in this paper is specifically designed to work with letters chains 
coming from a discretization process of a continuous feature and it highlights the properties of these features. To 
cope with the effectiveness of this kernel, it will be used on words from a dictionary where a distance exists 
between letters of the alphabet. The kernel was firstly proposed to compare time series that had been converted 
into symbol chains –words– (Cuberos et al, 2003, Cuberos et al, 2004). Thus, the similarity measure between 
words quantified a distance between original time series. Figure 1 shows an example of a partial typified curve 
with their derivative values and the assigned label to each transition between adjacent values. 
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Fig. 1. Sample of translation from a time serie to letters chain 

 
The rest of this paper is structured as follows: first, both a kernel and a distance between finite intervals are 

defined. Distance is used to define a real function measuring the similarity between two words and if words have 
the same length, this function is a Kernel because it fulfils the Mercer condition. Next, one example about 
classification rules is developed. Finally, the conclusions and ideas for future works are enumerated.  

 
2 Interval distance from a Kernel 

 
In essence the goal in the construction of kernel functions is to guarantee the existence of an application φ , 
defined from the working set, Ξ to a vectorial space endowed with a dot product, Φ. From this function φ  the 
kernel function is defined, denoted , over pairs of elements of the working set as the dot product of their 

transformations into the feature space, 

( , )k ⋅ ⋅

( , ) ( ), ( )k φ φ⋅ ⋅ = ⋅ ⋅ Φ, where ,⋅ ⋅ Φ is denoted a dot product. The kernel 
function  let us establish similarities between the original elements from their transformed ones, so a 
distance between the points in the input space can be defined. It must be considered, when elaborating a 
similarity and distance measure, that the 

( , )k ⋅ ⋅

φ  application must be able to highlight the essential characteristics of 
the initial set of elements. 
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Following the ideas presented in (González et al, 2004), let { }( , ) : ,I c r c r c r= − + ⊂ ∈ ∈� � �  be the 

family of all the open intervals contained in the real line1 of finite dimension. A function  is defined 

as:  and the kernel  and a distance  between intervals are: 

2
1 : Iφ → �

1( )
c

I P
r

φ =
⎛ ⎞
⎜ ⎟
⎝ ⎠

( , )k ⋅ ⋅ 2
1d

2 2
1 2 1 1 1 1 2

2

( , ) (   )      ,    d ( , ) (   )    
c c

k I I c r S I I c r S
r r

Δ
= = Δ Δ

Δ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
                               (1) 

where , and  must be a non singular 

matrix ( ). Thus, the discretization of a continuous feature in symbols, usually letters, representing 
different intervals, allows us to use as a distance between symbols, the distance defined between intervals as it 
will be showed. 

1 1 1 1 1 2 2 2 2 2 2 1 2( , ),  ( , ),  c= ,  r=I c r c r I c r c r c c r= − + = − + Δ − Δ − 1r P
tS P P=

 
3 Kernel 

 
From this point, we always consider that the symbols are letters (A, B,…) because the ordinal scale is reflected 
in the alphabetical order. Let { }1 2, , , nA A AΑ = L be an alphabet of l  letters and let  be a set of the words 

that can be built from this alphabet. Let  and  be words from  

where  and . A map 

P

1 21 1 1 1nP P P P= L 1 22 2 2 2mP P P P= L P

1 , 2i jP P ∈Α n m≥ Kλ is defined as: 

 2 ( 1 , 2 )

1

( 1, 2) max , 0, ,i k i

m
d P P

i

K P P k n mλ λ +

=

= = −⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ L  

where 0 1λ< <  and is a distance between letters. ( , )d ⋅ ⋅
 
Property 1: For all 1, 2P P P∈  and  1  20 1λ λ< < < , then: . 

 1  2
( 1, 2) ( 1, 2)K P P K P Pλ λ≤

 
Property 2: For all 1, 2P P P∈  and 0 1λ< < , then: ( 1, 2)K P P mλ ≤ . This upper bound is attained: If 

, then 1 22 1 1 1mP P P P= L ( 1, 2)K P P mλ =  
 
Property 3: Let , with max ( , )ij i jr d A= A ,i jA A ∈Α . For all 1, 2P P P∈  and 0 1λ< < , then: 

. This lower bound is attained: Let 
2 

( 1, 2)
r

m K P Pλ
λ≤ iA A= and jB A=  be such that . If 

and with size of , n, and size of , m, then . Thereby, 

for all 

2( , )d A B r=

1P AA= LA B2P BB= L 1P 2P
2 

( 1, 2)
r

m K P Pλ
λ=

0 1λ< < :      
2 

( 1, 2) ,   1, 2
r

m K P P m P Pλ
λ P≤ = ∀ ∈ . 

 
Property 4: Let  be an alphabet obtained from a discretization process of a continuous feature and 

 the set of all the words having length n, then  is a 

kernel. 

Α

{ 1 2 , , , ,  }n iP P P P P= L ∈Α

                                                

 2 ( 1 , 2 )

1

( 1, 2) i i

n
d P P

i

K P Pλ λ
=

= ∑

 
 

1 In default, we are working with open intervals, but it is possible to translate the study to closed intervals 
naturally. 
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Proof: Let  be an alphabet obtained from a discretization process of a continuous feature into intervals. 
We consider the distance between intervals previously defined and a map φ from 

Α
Α  to  is defined in the 

following way: Each interval (c−r , c+r) from the discretization process is denoted by a letter from alphabet 

2�
Α . 

Thus we consider the map 1φ defined from I  to 2�  and consider the composition between this and the intervals 

distance. A new map is defined as 2:φ Α → �  such that: 

( ) ,    A
c

A P
r

φ = ∀ ∈Α
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

where P is a 2×2 matrix. It is defined a map 1 :k Α×Α→ �  such that: 1 ( , ) ( ), ( )K A B A Bφ φ= . It is a 
kernel function by construction, because it is a dot product. Therefore: 

2 ( , ) ( ) ( ), ( ) ( )d A B A B A Bφ φ φ φ= − −  is a pseudo-distance between words.  
Applying Corollary 3.13 (page 43) in (Cristianini and Shawe-Taylor, 2000), instead of the exponential 

function xe−  to the function 
1 x

λ

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

, with 0 1λ< < , it is true that the map  defined in the 

following way: 

2 :k Α×Α→ �

2  2( ) ( ) ( , )
2 ( , ) A B d A BK A B φ φλ λ−= =  is a Kernel function. Now, if we consider the map 

 such that: :K P Pλ × → �

 2 ( 1 , 2 )

1

( 1, 2) i i

n
d P P

i

K P Pλ λ
=

= ∑  

and using the proposition 3.12 in (Cristianini and Shawe-Taylor, 2000),  it is true that is a kernel 
function.                                                                                                                                                         + 

( , )Kλ ⋅ ⋅

The λ parameter measures the importance that ( , )Kλ ⋅ ⋅  give to matching symbols versus the comparison of 
different symbols. For coincident symbols the value is always 1. This is depicted in Figure 2. 

 

 
Fig. 2. Graph representation of function f (x) = xλ  for several values of λ 

 
In this language each word has a meaning since it represents a whole interval of values. For this reason, we 

should ask ourselves which are the characteristics we want to take into account in each word of the language to 
be able to extract meaning from them. The function ( , )Kλ ⋅ ⋅  considers the following ones: i) The order of the 
letters into each word, ii) Comparison letter by letter, and iii) The size of the words. 
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3.1 Generalized similarity 
Let and be two words of the same length n from the set Π. In the definition of similarity between words, 

, all the letters have the same interest. It is possible to generalize this similarity by 

weighting each letter in such a form that the sum of the weights is equal to n.  

1P 2P
 2 ( 1 , 2 )

1

( 1, 2) i i

n
d P P

i

K P Pλ λ
=

= ∑

Let be scalar numbers accomplishing  and . The generalized 

similarity can be defined in two different ways: 

1 2, , , nw w w ∈L �

i

0iw ≥
1

n

i
i

w n
=

=∑

 2  2
  ( 1 , 2 )  ( 1 , 2 )1 2

 
1 1

( 1, 2) ,  ( 1, 2)    i i i i i

n n
w d P P d P P

i
i i

K P P K P P wλ λλ λ
= =

= =∑ ∑  

It is not difficult to prove that both are kernels2, however the second one has a more intuitive meaning for 
the weights. Also, using the properties of the exponential function we have: 

 2  2
  ( 1 , 2 )  ( 1 , 2 )1 '

1 1

( 1, 2)   i i i i i

n n
w d P P d P P

i
i i

K P P wλ λ λ
= =

= =∑ ∑  

where . Although it is no necessarily true that 
 2 ( 1) ( 1 , 2 )' i iw d P P

iw λ −= '

1

n

i
i

w n
=

≠∑ . For this we propose as a 

generalization of similarity the function 2 ( , )Kλ ⋅ ⋅ . In Figure 3, several examples of weighting can be observed. 
 

 
Fig. 3. Different weighting shapes to build generalized similarities 

 

                                                 
2 The sum and the product of kernels is a kernel (Cristianini and Shawe-Taylor, 2000). 
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3.2 Evaluation and Identification 
We are going to evaluate the quality of a discretization method, that is, its ability to identify the class to which a 
new series from the work set belong. The test tries to identify every series by using the nearest neighbour 
algorithm. The label of the most similar learning series to the new series is checked in front of the label in this 
series, checking thereby if the system chooses the right label. For this test every discretization method is applied 
to all the series. The application of the methods consists on transforming the series into symbol strings and 
calculating the similarity between every pair by means of the distance defined in (1) Once all the results are 
obtained for each method in every attempt, by changing the learning and test subsets the best method for the 
current data set is selected. After the discretization method has been selected, it can be applied to all the series in 
the learning set, allowing to obtain the final set of interval landmarks. Finally, the system notifies the user that 
the end of the learning process has been reached. Now the user can present a set of new unlabelled series, the 
work set, and obtains an answer from the system. 

 
4 Implementation 

 
An example of the classification rule is developed. Data to be considered is a set of television shares from the 
seven main television stations in Andalusia, Spain. It has been provided by Canal Sur Televisión and it has been 
collected from (TNS Audiencia de Medios, 2003). Time series represent the average share for 15 minutes 
blocks, so the daily series are 96 elements length. 

We are going to use several discretization methods and will see that the results are good in all them. A 
variety of discretization methods can be found in the literature. From the unsupervised algorithms: equal interval 
width, equal frequency interval, K-means clustering or unsupervised MCC; to supervised algorithms like 
ChiMerge, C ADD, 1RD, D − 2 or maximum entropy. An extensive list can be found in (Kurgan and Cios, 
2004). 

The methods to be evaluated in this work are: 1) Equal Width Intervals or EWI , 2) Equal Frequency 
Intervals or EF I , 3) C AI M (Class-Attribute Interdependence Maximization) (Kurgan and Cios, 2004), 4) 
Ameva (González et al, 2006), 5) C U M (González and Gavilán, 2001), and 6) DT W (Sakoe and chiba, 1978). 
In the following step several related tasks are accomplished: i) The discretization methods are applied over the 
learning subset producing a set of landmarks, ii) The landmarks are used as the limits of intervals and a symbol 
is assigned to each one, and iii) the series are translated into symbol chains. 

The series are labelled with the name of the corresponding television station. We have selected the first 32 
Wednesdays of year 2003 (32x7=224 series) as the input set of series. Other 20 Wednesdays are used as work 
set (140 series) to be predicted. 

In the Equal Width, Equal Frequency and C U M methods, the user must specify the number of intervals to 
be computed. As no rule for an optimal value exists, all those methods will be calculated from 2 to 9 intervals. 
All the methods are applied to the learning subset and a list of interval boundaries are obtained. Individual letters 
are assigned in alphabetical order to each interval. 

The learning system evaluates3 the number of successful identifications on the test subset using the k-
neighbours algorithm for each discretization method. The application of the presented methodology achieves a 
95% correct identification rate for the work set series, 133 over 140. The best discretization method for this data 
set was Equal Frequency Interval with 3 labels. Table 1 shows the average percentage and variance for all the 
methods in 200 draws for 1, 3 and 5 neighbours. In Table 1 can be observed that, although the discretization 
methods build the intervals following different approaches, except for some anomalous case, the results are 
similar, that is, the kernel is very robust in front of the discretization methods. 

Another question is about the influence of the number of neighbours, in the k-neighbours algorithm, in the 
results. Table 1 represents the average identification for all the discretization methods with the odd values of k 
from 1 to 19. It shows that results are not improved with higher values of k when Kλ  is used. 

 

                                                 
3 A complete study can be found in (Cuberos et al., 2004). 
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Table 1. Identification Average (%) and Standard Deviation in Test Subset (200 Draws) vs. Number of neighbours 

 Neighbours 
  1 3 5 

Methods Labels Average StDev Average StDev Average StDev 
CAIM 7 90.5 4.26 89.4 4.56 89.1 4.74 

AMEVA 3 91.6 2.74 89.4 2.77 89.7 2.81 
 
 
 
 

CUM 

2 
3 
4 
5 
6 
7 
8 
9 

90.7 
85.9 
75.9 
73.2 
82.4 
83.2 
85.2 
86.4 

2.86 
4.04 
6.01 
5.41 
4.21 
3.56 
3.33 
3.15 

88.4 
85.1 
71.3 
71.0 
80.8 
80.8 
82.8 
84.9 

2.91 
4.20 
5.29 
5.42 
4.03 
3.69 
2.95 
2.60 

89.0 
86.1 
70.9 
72.3 
80.8 
80.0 
82.1 
84.6 

2.98 
3.88 
5.59 
5.52 
4.95 
4.28 
3.36 
3.13 

 
 
 
 

EFI 

2 
3 
4 
5 
6 
7 
8 
9 

91.1 
95.5 
88.8 
85.2 
80.2 
74.6 
75.7 
74.7 

2.88 
2.13 
3.07 
3.87 
4.11 
4.78 
4.32 
5.26 

90.9 
95.4 
87.6 
85.1 
77.6 
71.7 
71.2 
70.4 

2.65 
1.98 
3.15 
4.14 
4.71 
5.31 
4.91 
5.27 

90.7 
95.1 
87.4 
85.4 
76.4 
71.0 
70.6 
69.1 

2.87 
2.02 
3.40 
3.85 
4.90 
5.37 
5.01 
6.20 

 
 
 
 

EWI 

2 
3 
4 
5 
6 
7 
8 
9 

71.0 
46.0 
71.9 
74.9 
72.3 
85.8 
75.3 
88.1 

11.5 
8.08 
11.9 
10.7 
10.9 
7.76 
9.32 
4.90 

65.2 
36.3 
67.3 
71.0 
68.3 
84.7 
73.3 
87.4 

13.2 
8.26 
14.2 
13.0 
13.7 
8.22 
10.3 
5.76 

66.5 
35.0 
68.8 
71.9 
70.3 
85.9 
74.2 
88.0 

12.9 
8.90 
14.3 
11.9 
13.6 
8.28 
11.0 
5.27 

DTW -- 80.2 3.74 78.0 4.44 76.4 4.27 
 

With respect to the parameter λ used in the kernel, it does not significantly affect the average of correct 
identification. Table 2 shows that only the C AI M method is affected by the variance of λ. 

 
Table 2. Percentage of correct identification in the Work Set for each method vs. value of λ 

 λ 
 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
CAIM 0.88 0.88 0.88 0.86 0.86 0.84 0.84 0.82 0.80 
AMEVA 0.88 0.88 0.88 0.88 0.86 0.88 0.88 0.88 0.87 
CUM02 0.88 0.88 0.88 0.88 0.88 0.88 0.86 0.86 0.88 
EFI03 0.91 0.91 0.91 0.92 0.92 0.92 0.92 0.92 0.90 
EWI09 0.85 0.85 0.85 0.85 0.84 0.84 0.85 0.87 0.85 

 
5 Conclusions and further work 

 
A new similarity function for symbol chains has been defined, generating in some cases a kernel. This function 
measures similarities between words in a dictionary when a distance measure between symbols is defined. 

In the near future, we will focus on the extension of this methodology to time series with multiple attributes 
and other kinds of data. At the same time, we will use new data sets to extend its validation. Finally, it must be 
mentioned that this kernel has certain implications in the type of considered similarity that will be studied in 
future researches. The small influence of the λ parameter in identification tasks must be argued too. 
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