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Abstract 
This study is the first attempt for integration voting algorithms with fault diagnosis devices.  Voting 
algorithms are used to arbitrate between the results of redundant modules in fault-tolerant systems. Smart 
sensors are used for FDI (Fault Detection and Isolation) purposes by means of their built in intelligence. 
Integration of fault masking and FDI strategies is necessary in the construction of ultra-available/safe systems 
with on-line fault detection capability. This article introduces a range of novel software voting algorithms 
which adjudicate among the results of redundant smart sensors in a Triple Modular Redundant (TMR) 
system. Techniques to integrate replicated smart sensors and fault masking approach are discussed, and a 
classification of hybrid voters is provided based on result and confidence values, which affect the metrics of 
availability and safety.Thus, voters are classified into four groups: Independent-diagnostic safety-optimised 
voters, Integrated-diagnostic safety-optimised voters, Independent-diagnostic availability-optimised voters 
and Integrated-diagnostic availability-optimised voters. The properties of each category are explained and 
sample versions of each class as well as their possible application areas are discussed. 
Keywords: Ultra-Available System, Smart Sensor, Fault Masking, Triple Modular Redundancy. 

 
Resumen 
Este estudio es una primer aproximación para la integración de algoritmos de voteo con dispositivos de 
diagnóstico de fallas. Los algoritmos de voteo son usados para arbitrar entre los resultados de elementos 
redundantes en sistemas tolerantes a fallas. Los sensores inteligentes son usados para propositos de detección 
y separación de fallas (FDI) dada la capacidad su capacidad de inteligencia construida. La integración de 
enmascaramiento de fallas y las estrategias de FDI is necesaria en la construcción de sistemas altamente 
disponibles y seguros con la capacidad de detección de fallas en línea. Este artículo introduce un rango de 
algoritmos de voteo los cuales adjudican un resultado entre los resultados generados por los sensores 
inteligentes en un módulo de redundancia triple. Las técnicas para integrar los sensores inteligentes 
replicados y la aproximación de enmascaramiento de fallas son revisadas en este artículo. Una clasificación 
de algoritmos de voteo híbrido es provista con base en el resultado y los valores de confianza los cuales 
afectan las métricas de disponibilidad y seguridad de estos algoritmos. De hecho los algoritmos de voteo son 
clasificados en cuatro grupos: Diagnóstico-Independiente con seguridad-optimizada, Diagnóstico-Integrado 
con seguridad-optimizada, Diagnóstico-Independiente con disponibilidad-opitimizada y Diagnóstico-
Integrado con disponibilidad-optimizada. Las propiedades de cada categoria son revisadas asi como muestras 
de sus implementaciones son discutidas. 
Palabras clave: Sistemas con Alta Disponibilidad, Sensores Inteligentes, Enmascaramiento de 
Fallas, Redundancia Modular riple. 

 
1 Introduction 

Safety-critical distributed embedded systems must achieve stringent reliability and safety goals. A relevant 
aspect of these systems is the validation of information obtained from interfaces with the external environment, 
such as FDI. The application of Fault Detection and Isolation techniques has led to the development of self-
diagnosing elements such as smart sensors. Some of these sensors use analytical redundancy techniques and 
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software models to identify inaccuracies (such as drifts) as they develop over time. Replicated smart sensors 
overcome some of these problems and tolerate local sensor faults. On the other hand, voting algorithms are 
commonly used to mask the errors arising from such faults. 

There has been considerable work on FDI, for example Gertler (1998) and Blanke et al. (2003). Others 
have developed a significant amount of literature on fault masking issues, like for instance, Johnson (1989), Lee 
et al. (1990), Bass (1995), and Latif-Shabgahi (2004a). An interesting approach for fault tolerance and data 
fusion has been explored by Desovski et al. (2006). However, comparatively very few approches have addressed 
the specific issue of integrating fault masking and FDI approaches. 

This paper introduces a class of voting algorithms which adjudicates the results of fault tolerance to one of 
the redundant smart sensors, using confidence levels. This class is called ‘hybrid voters’ in this work. Hybrid 
voters in the sense that the voting algorithm is combined with smart sensors in order to increment performance. 
How this integration takes place is illustrated in this paper. A taxonomy of voters presented by Latif-Shabgahi et 
al. (2004b) mention that these voters improve some aspects of the system dependability performance (e.g. 
availability and safety) over the use of either fault-masking or smart sensor alone. The approach is similar to N-
Self checking programming (Laprie, 1995) in software fault tolerance area. 
Key contributions made in the present paper to the state of the art in the field of fault tolerance include: 
• Techniques to integrate FDI and fault masking approaches; and 
• Introducing a class of novel voting algorithms to capture the smartness information of its inputs. 

The experimental evaluation of hybrid voters is presented afterwards. The behaviour of voters is 
investigated in producing correct, incorrect, and benign results under different fault conditions within a specially 
implemented experimental framework. Empirical results (not shown here) has shown that those hybrid voters (in 
which the smartness information of redundant sensors is used in all voting cycles) give higher safety and 
availability performance than those voters which use this information in some voting cycles. Moreover, 
integration of result and confidence values of redundant sensors provides higher availability than processing 
either smartness information or the sensor result values alone. 

The novelty of this work is the integration of a confidence value into the definition of the voter in order to 
enhance reliability and availability during fault scenarios. This is stated in section 3 and highlighted in section 5. 

The organisation of this article is as follows: related works on voting algorithms as well as on smart sensor 
model used in this paper are presented in section 2; approaches to arbitration of TMR configuration of smart 
sensors are discussed in section 3; section 4 presents the implementation of smart sensors; section 5 shows the 
experimental methodology; section 6 presents a review of smart sensor behaviour under fault scenarios; section 
7 presents some experimental results; and, finally, some conclusions are presented in section 8. 

 
2 Related Work 

 
2.1. Voting Algorithms 
Several well known voting algorithms have been widely used in commercial applications: 
• The majority voter produces a correct result if the majority of its inputs match (agree with each other). In 

cases of no majority, the voter generates an exception code which can be detected by the system supervisor 
to move the system towards a safe state.  

• The median voter is a mid-value selection algorithm. This algorithm successively eliminates pairs of 
outlying values until a single result remains (the algorithm assumes an odd number of redundant inputs).  

• The weighted average voter calculates the weighted mean of its redundant input values. Weight values can 
be determined in various methods; see for instance, (Broen, 1975), and (Latif, 1999). Calculated weights, 
wi, are then used to compute the voter output, z w x wi i i= ∑ ∑.  /  , where xi values are the voter inputs and z 
is the voter output. An example of this type of voters is the distance metric based weighted average voter, in 
which the weight values are dynamically calculated based on the distances between the voter inputs in each 
voting cycle. A voter input, which is far away from the other inputs, is assigned to a smaller weight 
compared with a voter input that is close to any of the other inputs. Thus, the algorithm does not select a 
value from the voter inputs, but instead, produces a new result. 
The majority, median and weighted average algorithms have been generalised to a N-Modular Redundant 

(NMR) system by Lorczak et al., (1989). NMR is the term to describe redundancy as a way to obtain fault 
masking between Nequal measures. 
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• Step-wise negotiated voting has been developed for a long-life space application (Kanekawa, et al., 1989). 
Diagnosis information is obtained from periodic self-test operations. However, the self-test information is 
used to supplement voting in cases of disagreement voting cycles. In this type of voters the diagnostic 
information is given priority, i.e. in cases of disagreement the self-test results are used to select a result. It 
has been shown that step-wise negotiated voting offers improvements over independent majority voting or 
stand-by redundancy technique. The problem of exact (or bit-by-bit) voting on vectors of information has 
been investigated by Gersting, et al. (1991). A key issue is the resolution of conflicting agreements between 
the different fields within a set of vectors. The solutions proposed include the calculation of a composite 
vector rather than selection of any of the input vectors and the use of application specific weightings, to 
minimise the importance of information in less important vector fields. 
The voters described in this paper integrate diagnostic (rather than self-test) and result information of 

redundant sensors for adjudication. The algorithms use inexact rather than exact voting because small variations 
between redundant sensor result values are expected. A good survey on voting algorithms can be found in (Latif, 
et al., 2003).  

 
2.2. Smart Sensors 
Smart sensors are those devices in which the sensors and circuits co-exist, and their relationship with each other 
and with higher-level processing layers goes beyond the meaning of transduction. However, the concept of 
smart sensing (i.e. sensor information processing without redundant and unnecessary data acquisition, and with 
at-sensor-level processing) is relatively new. Smart sensors are information sensors, not transducers and signal 
processing elements; they are used to enhance product quality, plant efficiency and availability, and 
measurement quality in feedback control (Henry, et al., 1993). 

The need for non-expensive, high-performance, and high-reliable smart sensors has been sufficiently 
disscussed in the literature (see for example (Henry, et al., 1991), (Nguyen, et al., 1996), (Meulen, 2004) and 
(Benítez-Pérez, et al., 1997)) for industrial production machines, consumer applications and in space systems 
such as launchers and sattelites. 
A typical self-diagnosis scheme for a smart sensor is shown in Fig. 1. 
 

 
Fig. 1 Smart Sensor Implementation 

 
This model-based implementation uses an observer and an extended Kalman filter within the Estimation 

Procedure (FDI) block, in order to estimate the output and the states of the sensor. An error is produced from the 
difference between the current values (output and states) and their respective estimated values. Having produced 
the error value, an evaluation procedure is performed in order to produce a symptom value. 

The block diagram of the smart sensor used in this work is shown in Fig. 2A. The smart sensor produces 
two outputs: the result value x, which represents the current output of the sensor and a confidence value J, which 
provides a measure from interval [0…1] regarding the confidence of the result value x. Hence, J indicates a 
correctness level of the sensor result x output. This means that a result value x1, supported by a confidence value 
J = 0.99, is considered more acceptable (reliable) than a result x2 supported by the confidence value J = 0.8. 
Notice that, by definition, the J confidence value cannot be a negative number. 

In spite of their rapid progress, smart sensors could not be provided with sufficient computation power to 
perform important functions such as calibration, compensation, digital filtering, programmed self-testing, and 
strong interface to bus systems (Huijsing, 1992). These issues make questionable the use of smart sensors in 
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ultra-high available systems. A possible solution for their application to ultra-high available systems is the use of 
redundant smart sensors in a TMR configuration. This has the benefits of both masking and FDI (intelligent) 
techniques. Such an approach is shown in Fig. 2B. Notice that increasing the entire system availability is the 
primary philosophy of integrating masking algorithms and smart sensors.  
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Fig. 2 Integration of smart sensor and adjudicating modules 

 
By considering a smart sensor as a 2-output component, there are four possible cases regarding the metrics 

of availability and safety of its result value x and confidence value J: 
• Type A: ‘result value x’ is correct and ‘confidence value J’ is produced correctly. This case is a Fault Free 

scenario. 
• Type B: ‘result value x’ is incorrect and ‘confidence value J’ is produced correctly. In this case the value of 

J detects the incorrect result value and thus, the system safety is preserved but its availability is decreased. 
• Type C: ‘result value x’ is correct but ‘confidence value J’ is produced incorrectly due to the failure of 

diagnosing module of smart sensor. In this case, the correct result value x may be interpreted as a wrong 
result by system supervisor and is discarded. Thus, the system availability is threatened in this case. 

• Type D: ‘result value x’ is incorrect and ‘confidence value J’ is also computed incorrectly. In this case the 
wrong result x may be interpreted as a correct answer and is propagated within the system. This situation 
threatens the system safety. 
In this study, like other research works (suh as Buskens, et al., 1993), it is assumed that the diagnostic 

module of the smart sensor operates correctly, and J is always produced correctly. Therefore, integration 
methods for cases where the possibility of failure of sensor diagnosing module is taken into account (cases C 
and D) are not considered in this article. 

 
 3 Classification of Hybrid Voting Algorithms 

 
The novelty presented in this paper is the proposal of the hybrid voter. A hybrid voter receives result values x, as 
well as confidence values J from redundant sensors to produce final outputs. Several approaches are taken to 
arbitrate between smart sensors. We classify hybrid voters into four categories based on the following criteria: 
• How the result and confidence values are handled by the voter (independently or by integration)? 
• What is the output domain of the voter? Whether it produces always an output (correct or incorrect) or it has 

potential to generate an exception flag in some (e.g., complete disagreement) voting cycles (thus gives 
correct, incorrect and benign outputs). The former is called a two-phase voter and the latter is named a 
three-phase voter.  
The second criterion requires a further justification. Generally, voting algorithms can be divided into two 

groups (based on their capability to produce a benign error): majority-type voting algorithms (three-phase voter) 
and average-type voting algorithms (two-phase voter). Majority-type voters produce a result if there is an 
agreement between a small group of redundant inputs (the number of inputs to be in agreement differs in various 
voting strategies). In cases of disagreement, these voters can produce a benign output (an exception flag which 
moves the system toward a safe state). Examples of this type are majority, plurality, predictor, and maximum 
likelihood voters.  

On the other hand, average-type voters always produce an output regardless of being agreement or 
disagreement between redundant inputs. They have no capability to generate benign outputs. These voters either 
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integrate the redundant inputs or select some of them to give the voter output. Examples of this category are 
average, mean selector, and weighted average voting algorithms. 

The authors have applied the same classification method to hybrid voters. Majority-type hybrid voters have 
been called ‘three-phase’ and average-type voters are named ‘two-phase’ voters. Table 1 summarises this 
classification in which four types of hybrid voters are distinguished. They are explained in following 
subsections. 

 
Table 1. Classification of Hybrid voters 

Processing
of Output

inputs
space

Independent Integrated

Three
phase

Independent-
diagnostic

safety-optimised
(Type A)

Integrated-diagnostic
safety-optimised

(Type D)

Two phase Independent-
diagnostic

availability-optimised
(Type B)

Integrated-diagnostic
availability-optimised

(Type C)

 
 

Independent and integrated diagnostics is referred to as how the voter takes confidence value. A general 
representation of the algorithm for classification is shown in Fig. 3. 
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Fig. 3. Flow chart of Voter Selection 

 
The variables JT, major_f, ave_f, N, J*, and x* need to be defined, in order to choose one of the algorithms:  

• JT is the threshold value for comparison between as selected confidence value J and its own.  
• major_f and ave_f are flags defined by the user in order to choose which algorithm is selected.  
• N is the number of smart elements involved in this scenario. J* is the confidence values and x* is the output 

related to smart sensors. 
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Most of the cases can be regarded as special cases of two types of voters. However, as discussed in the 
following sections, these variations produce different results, highlighting the need to independently study them.  
 
3.1. Independent diagnostic, safety-optimised voters (Type A voters) 
This group of voters produces a result by examining the validity of result values and/or confidence values of 
smart sensors (Three-phase voter type). For instance, if there is a majority between the result value of sensors, or 
if the confidence value of a subset of sensors meet an application specific threshold value, the voter produces an 
answer, otherwise it generates an exception flag which moves the system toward a safe state such as fail-safe or 
a fail-stop mode (the voter output, in this case, is called benign error). The voter output may be incorrect in 
some cases due to improper selection of threshold values. As a result, the output set of this group of voters 
includes correct, incorrect and benign results. Two voters in this category are described below. 

 
A.1. Majority supplemented with conditional maximum J selector voter 
This voter uses the result value of smart sensors to produce the voter output in agreement cases. In cases of 
disagreement between sensor result values, the voter selects the result value of the sensor with the highest 
confidence value, Jmax, as the more likely acceptable answer of the present voting cycle. If Jmax > JT where JT is 
an application specific threshold, the selected result value is regarded as a correct value and is sent to the voter 
output, otherwise an exception flag is generated. Note that if the value of JT is selected improperly the voter 
output may be incorrect in some cases. According to Fig. 3, in this case JT is a value between 0 and 1, major_f=1 
and ave_f=0. 

 
A.2. Conditional maximum J selector voter  
In this voter, the result value with the highest confidence value, Jmax = max{J1, …, JN }, is selected as voter 
output if confidence value is greater than a given threshold JT. When Jmax < JT the candidate result value is 
regarded as incorrect value and the voter generates an exception flag. Here, the voting function is performed 
upon the diagnostic values and a sensor result is selected based on the “best sensor” as determined by the self-
diagnosis subsystem. According to Fig. 3, JT is bounded to 1J0 T ≤≤ , major_f=0 and ave_f=0. 

 
3.2. Independent diagnostic, availability-optimised voters (Type B voters) 
This group covers those two-phase voters that are, in fact, selection procedures rather voting algorithms. Hence, 
the output set of this group of voters includes correct and incorrect results. Three voters of this group are 
explained below. 

 
B.1. Maximum J selector voter 
This voter selects the result value of a sensor with the highest confidence value and masks the other two sensor 
result values. In fact, the voter is a selector routine. The major drawback of this voter is its potential to produce 
low reliable results in cases of all faulty sensors. In such cases, even the result value of a sensor with the highest 
confidence value is an unreliable value. This configuration has the ability to mask coincident result value faults.  
In addition, the diagnostic output of the best sensor is passed to the diagnosis management system. Now the rest 
of the system is aware of the correctness level of voter output by means of Jmax, but it fails to perform an action 
in cases that Jmax has an unacceptable value since the output has already been propagated into the rest of the 
system (it may cause a catastrophic failure). It is also possible to use the sensor confidence values within the 
diagnosis management system for detection or reconfiguration of faulty sensors.  
Following Fig. 3.1 description, this voter is shown as JT=0, major_f=0 and ave_f=0. 

 
B.2. Majority and Maximum J selector voter 
This voter behaves as the standard majority voter in cases of agreement between result values. It selects the 
result value with the highest associated confidence value as the voter output in cases of disagreement from the 
majority voter. 
 
Following Fig. 3 this voter is chosen by JT=0, major_f=1 and ave_f=0. 
B.3. Conditional maximum J selector and weighted averaging voter 
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The result value with the highest confidence value, Jmax = max {J1,…, JN }, is selected as the voter output if Jmax  
is greater than threshold JT. Where Jmax < JT , the weighted average of result values is calculated as the voter 
output.  

Following Fig. 3, this voter is selected by JT bounded as 1J0 T ≤≤ , major_f=0 and ave_f=1. In this case 

weighted average voter is selected. 
 

3.3. Integrated diagnostic, availability-optimised voters (Type C voters) 
Integrated-diagnostic availability-optimised voters integrate the result and confidence values of redundant smart 
sensors to produce a single voter output. A modified version of distance metric-based weighted average voter 
(Lorczak et al., 1989) is explained.  

 
Modified weighted average voter 
This voter uses both the confidence and result values of sensors. It seeks to arbitrate where a conflicting choice 
of element emerges. Here, a hybrid arbitrator is presented that integrates the sensor confidence and result values 
to compute the voter result. 

A weighting procedure, which is applied to each sensor result, is proportional to its associated confidence 
value. Thus, results with high confidence value receive a large weighting factor while those with lower 
confidence value receive a small weighting value. The output xo for weighted average voter is given by: 

 

i
i

N

i
o x

s
w

x ).(
1
∑
=

=
 

Where 
wi = Ji

2

 
Similar to the least squared criterion, this squared metric increases the sensitivity of weighting values for 

diagnostic value of sensors, that is, a sensor result value with a higher confidence value receives a high 
weighting factor and a sensor result with a lower confidence value is assigned to a very small weighting value. 
Based upon Fig3, this voter is selected by JT bounded as 1J0 T ≤≤ , major_f=0 and ave_f=1. In this case 

modified weighted average voter is selected. 
 

3.4. Integrated diagnostic, safety-optimised voters (Type D voters) 
Type D voters produce an output by integrating redundant result values and confidence values. A voter in this 
category is described below for which the flow chart is shown in Fig. 4. 
 

  Confidence 
values 

(Ji & Jk)> JT 
i # k 

No 

Compute the 
weighted average

Yes

Benign 

 Result 
 values 

Result 
 

Fig. 4. An example of “Integrated diagnostic, safety-optimised” voters 
 
The voter examines the validity of the confidence values by means of a predefined application-specific 

threshold to ensure that at least two-out-of-three sensors function correctly and produce acceptable result values. 
Where 2 confidence values satisfy the threshold JT, the weighted average of result values is computed and sent 
to the voter output; otherwise, a benign error is generated. 
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Although the voter algorithm is not modified it produces a result only when J reach an agreement. 
 

4 Implementation of smart Sensor 
 

Following smart sensor definition, this element proposes the evaluation of the current condition of the sensor 
based on either the states or the parameters available from the model. In order to obtain this information, it is 
necessary to evaluate the unit from various sources. Different approaches may be followed to the 
implementation of smart sensors, such as Self-Validation (SEVA) scheme (Yang, 1993) or Analytical 
Redundancy. For the present work the second approach is used as shown in Fig. 5.  This type of transducer 
measures pressure in a static form. The dynamics of the case study is basically linear. 

 
Sensor

Kalman Filter Difference Fuzzy System

u y

Confidence
Value

y

$y

$x

x

Residual
Vector

Spare Sensor

y

u1

 
Fig. 5 smart Sensor Implementation 

 
Where u is current input, x is the current output, s is the current state vector, ŝ  is the estimated state vector, 

u1 is the current input after been monitored by spare sensor. 
A Kalman filter generates estimation for measurements related to the current element. The evaluation of the 

residual vector is performed by using a fuzzy system. The fuzzy system produces a confidence value explained 
in (Benítez-Pérez et al, 1998). An extended review of dynamical model is given in the same paper.  

Confidence value represents the evaluation result of the entire element. For this work, Confidence Value (J) 
is used as the performance measure of smart sensor. The range of this signal is between 0 and 1. The value J=0 
represents a faulty sensor and the value J=1 denotes a correctly operating smart sensor. Fig. 6 and Fig. 7 show a 
fault-free and fault scenario respectively. Fig. 6.a shows the residuals with respect to the states and the output for 
a fault-free scenario. Fig. 6.b shows the response of confidence value generated from the fault-free scenario 
shown previously. 
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Fig. 6. a Fault-Free Scenario 
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Fig. 6.b Fault-Free Scenario Modified SEVA Response 
 
Fig. 7.a shows the response of the smart sensor for a fault scenario of noise. Fig. 7.b shows the related 

response of the symptom vector. 
For Fig.  7.a noise signal as fault is injected at 20 seconds until 100 seconds. The amplitude value is around 

10 % grater than the current input when this faulty signal is injected, and there is a reaction shown by the 
residuals of the sensor. Fig. 7.a presents how the three residuals respond during time period of the fault. The 
response of the smart sensor is presented in Fig. 7.b. In here, J suffers a degradation proportional to the effects 
of the fault into the sensor. J shows a degradation of 99 % at 40 seconds until 100 seconds. The meaning of this 
result is that the confidence of the element is 1%. For the purpose of this research confidence value is used as 
health measure of the smart sensor. This is due to it represents the behaviour of the whole element (dynamics 
and current output). 

These Figs. illustrate how confidence value suffers degradation in the presence of a fault (compare Fig. 6.b 
and Fig. 7.b). The measure J is used later in this paper to integrate the smart sensor with different types of 
voters. This value has been selected as the measurement of the “health” of the sensor.  
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Fig. 7.a Fault Scenario (Noise, Amplitude 5) 
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Fig. 7.b Fault Scenario (Noise, Amplitude 5) 

 
5 Experimental Methodology 

 
To evaluate the hybrid voters a special test harness with fault injection capability has been developed. Fig. 8 
indicates the general schematic diagram of this implementation. It is used to examine the smart sensor, and the 
fault masking mechanisms.  
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Fig. 8. Test Harness 

A stream of input data with sinusoidal trajectory and adjustable arrival rate feeds both the system under 
evaluation (Triple Modular Redundancy (TMR) configuration of non-smart sensors, or TMR configuration of 
smart sensors or a smart sensor) and the notional fault-free sensor for which it is assumed that the output x is 
always correct. Random faults are injected into the system under test by special software fault injection tool. The 
output of the system, xo, as well as the output of fault-free sensor is presented to a result categorisation module. 
Based on the numerical distance between x and xo values, the result categorisation module interprets the output 
of the system under evaluation in each voting cycle as correct, incorrect, or benign output. It uses an application-
specific threshold value, T, in this comparison. It is more reasonable to define the threshold value T as a 
percentage of the full-range of input trajectory, i.e., T = 5% * (full range input). This has been chosen in order to 
have a very sensitive decision making strategy. If this value is chosen higher it becomes difficult to separate 
between scenarios. For injected faults the time of injection, persistence period of faults and probability 
distribution of faults are important. In this work, the following assumptions are made: 
• faults have a Gaussian distribution; 
• faults are injected in each voting cycle; 
• the amplitude of faults is adjustable from interval [-a   +a] where |a| <75% of input peak value; and 
• faults from interval [0  5] (less than 25% of the maximum input value) are regarded as small faults, from 

interval [5  10] (25% - 50% of the maximum input value) are assumed as medium faults, and from interval 
[10  15] (greater than 75% of the maximum input value) input value are called large faults. 
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5.1 Empirical method of smart Sensor 
In this case, the system under evaluation is a single smart sensor. The intelligence information of a smart sensor 
(which diagnosis its behaviour) taken from the symptom vector is not used by the result categorisation module 
(Fig. 8). Therefore, the evaluation is specifically related to the model sensor rather than the response of the 
symptom vector. In each voting cycle the sensor output xo is compared with the notional correct output x. Where 
the difference of these values is less than a predefined application-specific threshold T (In this work T = 2.5% is 
selected), the smart sensor output regarded as a correct value, otherwise, it is taken as an incorrect answer. Table 
2 summarises these arguments. Fig. 9 indicates the fault injection method used to perturb a smart sensor. 
 

Table 2. Output Classification 

Condition Interpreted output 
|x – xo| < T Correct 

|x – xo| >= T Incorrect 
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Fig. 9 Fault Injection Point  

 
5.2 Empirical Method of Integrated Voters 
Fig. 10 indicates the implemented test harness for evaluation of integrated voters, functioning in a TMR system. 
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Fig. 10. Implemented Test Harness 

 
For type A voters the output of the TMR system, xo, is interpreted by the result categorisation module based 

on Table 3. This table has been constructed by detailed analysis of type A voters which either produce an output 
(correct or incorrect) or cease to generate an output (benign result). Note that the intelligence information of 
smart sensors has been considered within the voting algorithm.  
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Since J is considered fault free JT is chosen as a value from 0.5<JT<1. In order to increase the number of 
valid values JT is chosen close to 0.75. This value is experimental based and the only recommendation is the 
level of trustiness from J results. 

 
Table 3. Output Classification of Type A Voter 

Condition Interpreted output 
   |x – xo| < T AND [agreement on result values OR max 
                              {j1, j2, j3} > = j3] 

Correct 

|x – xo| > = T AND [agreement on result values OR max 
                              {j1, j2, j3} > = j3] 

Incorrect 

Disagreement on Result values OR max {j1, j2, j3} <  j3] 
 

Bening 

 
For type B and C voters which always produce an output, the output value is interpreted by the result 

categorisation module based on Table 4. 
 

Table 4. Output Classifications of Types B and C 

Condition Interpreted output 
|x – xo| <  T Correct 
|x– xo| >= T Incorrect 

 
For each voter, the results of n system run (n is selected 104) are classified based on tables 3 and 4. In this 

way, nc correct results, nic incorrect outputs, and nb benign results are collected. It is obvious that nc + nic + nb = 
n and for type B and C voters nb = 0. These data are, then, used for evaluation and comparison of selected 
integrated voters. Three performance measures are defined for this propose: voter availability, voter safety, and 
voter error/fault detection capability. The number of correct results is taken as a measure of voter availability, A. 
The number of incorrect results are taken as a measure of voter safety, S, and  the number of benign results are 
taken as a measure of voter error/fault detection capability, Fault Detection (FD), Thus, A = f(nc),  S = f(1/nic) 
and FD =  f(nb). For example, among two voters, the one with a smaller number of incorrect results is taken as a 
more safe voter. 
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6 Smart Sensor Behaviour Under Fault Scenarios 
 

To examine the behaviour of a smart sensor in different fault conditions and to ensure that the confidence 
measure J reflects correctly the sensor functionality, three smart sensors are examined in various fault conditions 
for a sinusoidal input trajectory. The first sensor is perturbed by random faults with small amplitudes in each 
run, the second sensor is perturbed with medium faults, and the third sensor is perturbed with large errors. Fig. 
11 shows their response for 45 runs where sensors are fed with input data within the time period [20  30] with 
sample-rate = 0.1. 
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Fig. 11. Response of the Smart Sensor under Fault Conditions 
 
In Fig. 11, the smoothest response belongs to the fault-free sensor. The dotted line represents the response 

of the first smart sensor, which is perturbed by small faults, the continuous line indicates the response of the 
second smart sensor perturbed by medium faults, and the dashed line represents the third smart sensor response 
perturbed by large faults. The plots indicate the correct behaviour of sensors in the presence of faults; a sensor 
affected by a larger fault, gives an output more far from the expected correct answer.  

Fig. 12 shows the health (Confidence Value) response of the smart sensors under the same fault conditions 
presented in Fig. 11. Again, the dotted line shows the response of the first smart sensor, the continuous line 
represents the second smart sensor, and the dashed line represents the third smart sensor. 
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Fig. 12. Response of J from the same fault condition of Fig. 11 
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The response of confidence value from the smart sensors demonstrates how accurate the output value is 
with respect to each raw response. For instance, at time 20.33 seconds the confidence measure of the third smart 
sensor (Fig. 12, dashed line) has a value of 0.36, whereas, the second smart sensor has a value of 0.91 and the 
first smart sensor gives value 0.89. Alternatively, at the same time, Fig. 11 shows that the third smart sensor has 
the worst response (dashed line). Meanwhile, the second smart sensor has the best response (continuous line) 
and the first smart sensor presents a medium response (dotted line). 

This empirical explanation gives the basis of how the system chooses the best response by using of 
intelligence information of sensors. 

Having defined the experimental test-harness and sensor behaviour in a faulty environment, the results of 
the smart sensor and integrated voters are presented. In subsection 6.1 the experimental results of a smart sensor 
is presented. In subsection 6.2 the behaviour of integrated voters are studied in order to highlight the benefits of 
integration of FDI and fault masking features. 

 
6.1 Experimental Results for Smart Sensors 
Figure 13 indicates the number of correct outputs of a smart sensor for different fault scenarios, each comprising 
104 runs. As expected, by increasing fault amplitude the number of correct results decreases. However, there is a 
fast decrease in gradient of the number of correct results followed by increasing fault amplitude from interval [0 
5]. The gradient of decreasing the number of correct outputs for large faults becomes slower than that with small 
and medium faults. These results demonstrate that integration of fault masking and smart sensors must increase 
the system availability for small and medium faults. In section 5.2 it is shown that the use of sensor smartness 
value in the integrated system (fault masking and FDI systems) improves the availability of the response for 
small faults and more drastically for medium faults. Note that the number of correct results of a system has been 
chosen as a measure of its availability.  
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Fig. 13. Correct Results from a Smart Sensor 

 
Fig. 14 shows the plot of incorrect results of a smart sensor versus fault amplitude. There is a peculiar 

response for faults of interval [0,…, 5], which is an increment about 12% of incorrect results for every scenario. 
The main goal of the use of smart sensors with a fault masking approach is to reduce this increment in a 
reasonable manner. This is addressed in the following section. 
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Fig. 14. Incorrect Results from a Smart Sensor 

 
6.2 Experimental Results of Hybrid Voters 

 
6.2.1. Experimental Results for Type A Voters 
Figs. 15, 16, and 17 indicate the number of correct, incorrect, and benign results of Type A voters versus error 
amplitude. In each figure, the plot of type A voters is compared with that of the standard majority voter as the 
basis algorithm for voters of this category. The conditional maximum J selector voter gives the largest number 
of correct outputs among type A voters. Therefore, it is the most available voter in this group. On the other hand, 
the majority voter produces the smallest number of correct outputs; hence it is the least available voter of type A 
voters. The majority supplemented with conditional maximum J selector voter has a compromise availability 
between the standard majority and conditional maximum J selector voters. 

From the safety viewpoint (see Fig. 16), the conditional maximum J selector voter is also superior to the 
other two voters. The majority supplemented with conditional maximum J selector voter is the least safe voter of 
type A voters, since it gives a huge number of incorrect outputs. Finally, according to Fig. 17 the fault detection 
capability of majority voter is higher than that of the other two voters. Similar to its safety, the majority 
supplemented with conditional maximum J selector has the lowest fault detection property. There is one 
peculiarity related to Fig. 16, where at fault amplitude of 12 Conditional Maximum, J Selector suffers an abrupt 
increment in the number of incorrect results. This behaviour is related to the unreliable result of this voter 
beyond fault amplitude of 8. 
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Fig. 17. Benign Results for Type A voters 

 
We now study, in detail, the effects of using confidence value of redundant smart sensors in voting process. 

For this purpose, we consider the results of the above mentioned type A voters at error point 10 (where error 
amplitude = 10). Table 5 shows these results, which are extracted from figures 15 to 17. For simplicity, we have 
used the following abbreviations in this table and afterward: ‘Maj’ for majority voter, ‘MCMJ’ for majority 
supplemented with conditional maximum J selector voter and ‘CMJ’ for conditional maximum J selector voter. 

 
Table 5. Results of Type A voters at Error-amplitude=10 

Voter
nb nc nic

Maj. 4458 2621 2921
MCMJ 1269 3657 5074
CMJ 2600 4846 2554  
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Recall that Maj voter does not use smartness information of redundant sensors, MCMJ voter uses this 
information in disagreement voting cycles and CMJ voter use this data in all voting cases. We first concentrate 
on the results of Maj and MCMJ voters. 

The table shows that MCMJ gives 3189 less benign errors than the Maj voter. This means that it has ability 
to generate 3189 more voter outputs than the Maj voter. Of these outputs, only 1036 output (30%) are correct 
and the remaining 2153 outputs (70%) are incorrect. In other words by using the smartness information of 
sensors in disagreement cases of the standard majority voter, the voter availability (A ~ nc) slightly improves in 
the price of considerable decreasing of voter safety as well as its fault detection capability. Therefore, this 
strategy is not suitable to be taken in those voting used in highly safe systems.    

Similarly, by comparing the results of Maj and CMJ voters it can be concluded that where smartness 
information of sensors is used in all voting cycles (as used in CMJ), both the voter availability and safety 
increase.  

It may be argued that the performance of MCMJ and CMJ voters depend on the value of JT (used within 
these voters); a lower JT, more correct outputs are produced. This is not true, since in reality we need voter 
outputs supported with higher level of confidence values; otherwise, the system safety will be threatened.  

 
6.2.2. Experimental results of Type B voters 
Figs. 18 and 19 show the plot of the number of correct and incorrect results of Type B voters versus error 
amplitude, respectively. From this group, ‘Maximum J selector’ voter gives the best response (the largest 
number of correct and the smallest number of incorrect outputs) for all fault scenarios. Majority and maximum J 
selector voter has the worst performance and the Conditional maximum J selector and weighted average voter 
gives a moderate behavior between those two. For small faults the response of the maximum J selector voter is 
quite similar to the conditional maximum J selector and weighted average voter. However, for large faults 
Maximum J selector voter gives better results. Comparing Figs. 18 and 19 shows that the availability level of 
type B voters is higher than that of the standard majority voter. Thus type B voters are availability-optimized 
voters. 
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Fig. 18. Correct Results for Type B Voters 

 
Comparing type B voters arises another important issue. Maximum J selector voter, as the simplest voter 

from the viewpoint of functionality and structure, gives the best results among type B voters. This means that 
supplementing additional features and mechanisms into this voter (as being done in the conditional maximum J 
selector and weighted average voter) or using the voter in disagreement cycles of standard majority voter (as 
being done in the majority and maximum J selector voter) not only does not improve the voter performance but 
also increases its complexity, which turns threatens the system safety and availability performance. Similar to 
Type A voters, a Type B voter which uses the confidence information of smart sensors in all sampling periods 
gives higher performance than the ones which process this information in some of the sampling periods (e.g., 
only in disagreement voting cycles).  
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Fig. 19. Incorrect Results for Type B voters 

 
6.2.3. Experimental results of Type C voters 
Type C voters integrate the result and confidence values of redundant smart sensors to generate the voter output. 
In this section the behaviour of modified version of standard weighted average voter (in which the intelligence 
information of smart sensors is used to calculate weight values as explained in (Benítez-Pérez et al., 1999)) and 
the distance metric-based weighted average voter (Lorczack et al., 1989) is studied. Figs. 20 and 21 indicate the 
number of correct and incorrect results of these two voters versus fault amplitude. Fig. 20 shows that the 
‘modified weighted average’ voter gives more correct results than the standard weighted average voter; 
therefore, it has higher availability.  

These results present a clear advantage of the use of confidence value integrated to the modified weighted 
average voter over the naive algorithm. The reason is that the weight values follow the behavior of the 
respective sensors rather than the distance between sensors result values. 
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Fig. 20. Correct Results for Type C Voters  
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Fig. 21. Incorrect Results for Type C Voters  

 
Comparing of Figs. 20 and 21 shows that the availability level of ‘modified weighted average’ voter is 

higher than that of the type A voters. Therefore, it can be regarded as a availability-optimized voter. 
The confidence value of the smart sensor is considered as the sensor performance measure. This measure 
determines the entire behaviour of the smart sensor and gives the certainty level of its result value. Four types of 
hybrid voters to arbitration of smart sensors are proposed and sample voters of each type are introduced. In type 
A and type B voters both of the result and confidence values of redundant sensors are handled independently. 
They differ from each other in output domain. Type A voters have potential to produce a benign error in 
complete disagreement voting cycles whereas type B voters produce always an output. In type C and type D 
voters the result and confidence values are integrated to produce a single voter output. Since producing the voter 
output, the certainty level of each sensor result is taking into account, it is expected that (in a NMR system) the 
use of confidence value of sensors to arbitrate between their result value will improve the entire system 
availability or safety. It has been shown that those hybrid voters such as ‘modified weighted average’ and 
‘maximum J selector’ voters in which the smartness information of replicated smart sensors is used in all voting 
cycles give higher safety and availability performance than those voters which use this information in some 
voting cycles. Moreover, integration of result and confidence values of redundant sensors gives higher 
availability than processing either smartness information or the sensor result values alone. The selection of one 
algorithm is an ad-hoc matter based upon empirical study. 

Cumulative number of correct results of Type A voters shows that the conditional maximum J selector 
voter gives higher safety performance than the standard majority voter and the Majority supplemented with 
conditional maximum J selector voter produces lower safety than that voter (see Fig. 16). In fact, when the 
standard majority voter uses the maximum J selection mechanism as its output selection method in all voting 
cycles, its safety performance increases. In contrast, when the majority voter uses that mechanism in some of the 
voting cycles (e.g., in disagreement cases), its safety considerably decreases. These considerations imply that 
integrating smart sensors and the standard TMR system improves the basis system safety if and only if the 
smartness information of redundant sensors is used in all voting cycles, otherwise, the system safety may be 
decreased. type A voters which function in this way, are called ‘safety-optimized’ voters in this work. Moreover, 
the use of smartness information of redundant smart sensors in a TMR system (in all or some of the voting 
cycles) improves the entire system availability (see Fig. 15) and decreases the system fault-detection capability 
(see Fig. 17). 

Among type B voters, the maximum J selector voter gives the highest safety and availability performance 
than the other two voters (Fig. 18 and Fig. 19). This voter and the conditional maximum J selector and weighted 
average voter which use the confidence values of redundant smart sensors in all voting cycles to produce the 
voter output, give better performance than the majority and maximum J selector voter that uses those 
information only in disagreement cases. Moreover, the availability of all type B voters is higher than that of the 
majority voter (basis voter); they are availability-optimized voters. This is not true for their safety performance. 

 
Computación y Sistemas Vol. 11 No. 1, 2007, pp 39-60 

ISSN 1405-5546 
 



58   H. Benítez Pérez,  J.L. Ortega Arjona and G. Reza Latif Shabgahi 

For type C voters, a comparison between modified-weighted average and standard weighted average voters 
has concluded that modified weighted average voter has higher performance than the standard weighted average 
voter due to the use of the smartness information of sensors in all sampling cycles. In this case, the J values are 
integrated to the modified voter as weights. This integration evaluates the smart sensors in terms of their own 
confidence values rather than differences between their outputs. The availability of modified weighted average 
voter is higher than that of the majority voter; therefore it is a availability-optimized voter. 

Having obtained the results from both type B and type C voters, it is possible to make a comparison 
between the best two voters. From type C the modified weighted average voter has shown the best availability 
performance and for type B group, the maximum J selector voter is the best. The modified weighted average 
gives higher availability than the ‘maximum J selector’ voter for any fault amplitude. For instance, in fault 
amplitude 5, modified weighted average has 9291 correct results whereas the maximum J selector voter gives 
8490 correct results. Similarly, for fault amplitude 10, the modified weighted average produces 6430 and the 
maximum J selector voter generates 5661 correct outputs. The authors concluded that integration of result and 
confidence values of voter inputs gives higher availability than processing either J alone or the sensor result 
values alone.  

 
7 Conclusions 

 
Recently smart sensors have been receiving greater attention due to their potential to enhance system safety, 
availability, and efficiency. However, smart sensors still cannot provide sufficient computation power to 
perform important functions such as calibration, compensation, digital filtering and programmed self-testing. 
These issues make questionable the use of smart sensors in ultra-high dependable systems. The use of NMR 
configuration of smart sensors has been suggested in this article to resolve some of the mentioned problems.  

It is concluded that the integration of smart sensors and TMR system in which the information of symptom 
vector of sensors are used to adjudicate between the sensors result values in all voting cycles improves system 
safety and availability. Integrating result and confidence values of redundant sensors gives higher availability 
than processing either J or the sensor result values alone. Where fault/error detection capability of voters is of 
main interest, a simple voter (from the structural viewpoint) which uses the information of symptom vector of 
sensors in all voting cycles gives better results. In this research work, among the implemented voters, Type A 
voters which use the smartness information of sensors in all voting cycles have a higher level of safety whereas 
type B and C voters give a higher level of availability than the traditional TMR system with a majority voter. 
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