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Abstract 
Due to the complexity of the data distribution problem in Distributed Database Systems, most of the proposed 
solutions divide the design process into two parts: the fragmentation and the allocation of fragments to the 
locations in the network. Here we consider the allocation problem with the possibility to replicate fragments, 
minimizing the total cost, which is in general NP-complete, and propose a method based on Q-learning to solve 
the allocation of fragments in the design of a distributed database. As a result we obtain for several cases, logical 
allocation of fragments in a practical time.  
Keywords: Distributed database design, allocation, replication, reinforcement learning, Q-Learning. 

 
Resumen 
Debido a la complejidad del problema de la distribución de los datos, la mayoría de las propuestas de solución 
presentadas hasta la fecha han coincidido en dividir el proceso de diseño de la distribución en dos fases seriadas: 
la fragmentación y la ubicación de los fragmentos en los sitios de la red. Este trabajo aborda el problema de 
ubicación de fragmentos partiendo de un modelo matemático que en su forma general es NP-Completo y propone 
un método metaheurístico basado en Q-Learning de Aprendizaje Reforzado que minimiza el costo total en un 
tiempo aceptable. Esta propuesta integra la replicación de fragmentos.   
Palabras claves: Diseño de bases de datos distribuidas, ubicación, replicación, aprendizaje reforzado, Q-
Learning. 

 
1 Introduction 

 
In the last years there has been an enormous outgrown of distributed information systems. These systems have better 
adaptability to the necessity of the decentralized organizations due to their capacity to simulate the physical structure 
of such organizations. Though more advantageous than centralized systems, the distributed ones have some more 
complexity and their design and implementation represent a challenge (Özsu and Valduriez, 1999). 

The design should be so that for the user the distribution is transparent (Ceri and Pelagatti, 1984). The designer 
must define the distribution of the information in the network maximizing the locality distributing the workload. This 
problem is known as distribution design and involves two main tasks: fragmenting and allocating (Özsu and 
Valduriez, 1999).  

Various approaches have already been described for the fragment allocation in distributed database systems 
(Hababeh et al., 2004; Ma et al., 2006). The allocation of the data influences the performance of the distributed 
systems given by the processing time and overall costs required for applications running in the network. Some 
allocation methods are limited in their theoretical and implementation parts. Other strategies are ignoring the 
optimization of the transaction response time. The other approaches present exponential time of complexity and test 
their performance on specific types of network connectivity. Most of these methods are quite complex, not well 
understood and difficult to use in a real life. Many assumptions have been done in order to simplify the problem, so 
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the solutions are applicable in specific conditions. For example, most of the proposed solutions consider that each 
fragment must be allocated in only one location simplifying the solution space but missing the advantages of 
replication.  

In this paper, we propose a method for allocating database fragments to locations using as a reference the general 
model by (Özsu and Valduriez, 1999). Finding an optimal fragment allocation in this model is a NP-complete 
problem since given n fragments and m locations, there will be ( )nm 12 −  different combinations. In our case, it is 
would very difficult to reach and optimal using an exact method because the problem is computationally very 
complex. Therefore, this approach proposes a metaheuristic algorithm to aid allocation decision based on Q-Learning 
from Reinforcement Learning techniques (Watkins, 1999).  

 
2 The allocation problem 

 
According to (Özsu and Valduriez, 1999), the allocation problem considers a set of fragments , a 
set of locations  in a network, and a set of applications 

}f...,,f,f{F n21=
}l,...,l,l{L m21= }a...,,a,a{A q21=  placed at L. These 

applications need to access the fragments which should be allocated in the locations of a network. The allocation 
problem consists on finding an optimal distribution of F over L.  

We consider the allocation problem that minimizes the overall cost subject to some constraints as in (Özsu and 
Valduriez, 1999). Furthermore, here we consider the replication option which makes this problem more complex and 
it is known to be NP-complete, thus there is not a polynomial time algorithm to solve it.  

Let us define the problem in some more details. The decision variable 1x jk = if is stored at location ; else it 
is 0. 

jf kl

Before we derive the cost formulas, some information must be analyzed in advance. That is, the quantitative data 
about the database, the applications behavior, the locations and network information. 

Database information: 
-  is the number of tuples in  that need to be accessed by application . )f(sel ji jf ia

-  corresponds to the size of fragment . )flength()fcard()fsize( jjj ∗= jf
Application information: 
-  is the number of read accesses of application to fragment . ijRR ia jf

-  is the number of update accesses of application to fragment . ijUR ia jf
Two access matrices, UM and , that describe the retrieval and update behaviors of all the applications are 

also needed. The elements  and  are specified as follows:  
RM

iju ijr

- if updates ; else it is 0. 1u ij = ia jf

-  if reads ; else it is 0. 1rij = ia jf

- is the location where application originates. )io( ia
Location information: 
- is the unitary cost of storing data at location . kUSC kl
- is the unitary cost of processing at location . kSPC kl
Network information: 
-  is the communication cost per frame between locations and .  ijg il jl
- is the frame size measured in bytes. fsize
The total cost function has two components: the applications processing cost and the storage cost. It is expressed 

as follows: 
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∑ ∑∑
∈∀ ∈∀∈∀

+=
Ll Ff

jk
Aa

i
k ji

STCQPCTOC ,  

where  is the processing cost of application , and  is the storage cost of fragment  at location . 
The storage cost is given by: 

iQPC ia jkSTC jf kl

( ) jkjkjk xfsizeUSCSTC ⋅⋅=  

For each application , the processing cost is calculated as the cost of processing (PC) plus the transmission cost 
(TC). Processing costs contains three factors: access costs, integrity enforcement (IE) costs, and concurrency control 
(CC) costs:  

ia

iiii CCIEACPC ++=  
The specification of each cost depends on the used algorithm to make these tasks. The detailed specification of 

AC would be: 
( )∑ ∑

∈∀ ∈∀
⋅⋅⋅+⋅=

Ll Ff
kjkijijijiji

k j

SPCxRRrURuAC
 

The operational costs of data transmission for update and read-only applications are different. For update 
applications it is necessary to update all existing replicas and read-only applications just need to access to one of the 
copies. In addition, at the end of an update operation there is only an update confirmation message, and read-only 
applications may cause a large amount of data transmission.  

The update component of the transmission function is: 
∑ ∑ ∑ ∑
∈∀ ∈∀ ∈∀ ∈∀

⋅⋅+⋅⋅=
Ll FF Ll FF

o(i)k,jkijko(i),jkiji
k j k j

gxugxuTCU
 

The cost of the read-only applications is: 

∑
∈∀ ∈

⋅⋅⋅⋅+⋅⋅=
Ff

o(i)k,j
ji

jkijko(i),jkijLli
j k

)g)f length(
fsize

)f(sel
xrgx(rminTCR

 
The constraints are: 
- Response time constraint: The execution time of an application must be less or equal than the maximum 

allowable response time for that application. 
- Storage capacity constraint: For each location, the total storage cost of fragments assigned to this location must 

be less or equal than the capacity of the location. 
- Processing capacity constraints: For each location, the total processing cost for all the applications executed at 

this location must be less or equal than the processing capacity of the location. 
 

3 Solution approaches 
 

There are diverse ways to attack combinatorial optimization problems (Huang and Chen, 2001; Lin and Orlowska, 
1995; Ma et al., 2006; March and Rho, 1995; Pérez et al., 2005; Pérez et al., 2004; Pérez et al., 2003; Pérez et al., 
2003; Pérez et al., 2002; Wolfson and Jajodia, 1995). These methods include exact and heuristics approaches which 
have been very useful in solving real life problems. In this section we mention some of them and analyze their 
applicability.  

 
3.1 Exact methods  
The total enumeration is the method that chooses the best solution out of all the possible solutions. A more 
sophisticated way is partial enumeration, leaving out certain areas of the solution space that for certain do not include 
any optimal solution, here we can mention Branch and Bound, Cutting planes and Dynamic programming methods.  

The main problem with these methods is their applicability to large problems, specifically for the type of NP-
complete problems for which there is no guarantee to find an optimal solution in a polynomial time (Lin et al., 1993).  
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 3.2 Heuristics methods  
A good alternative for NP-complete combinatorial optimization problems of large size is to find a reasonable 
solution in a reasonable time (Papadimitriou, 1997). This is the idea of the heuristic methods which are in general 
quite simple and based on intuitive and common sense ideas. The general problem with many heuristics is that they 
may get stuck in local optimal solutions. More recently a number of metaheuristics have evolved that define ways to 
escape local optima. Metaheuristics are higher level heuristics designed to guide other processes towards achieving 
reasonable solutions. The most widely used metaheuristics are Simulated Annealing, Genetic Algorithms, Tabu 
Search and GRASP. These methods do not guarantee in general that one will finish with an optimal solution, though 
some of them present convergence theories. However, they have been successfully applied to many problems. 

Here we explore a much more recently approach, Reinforcement Learning. This approach may be interpreted as a 
conjunction between machine learning and decision making problems. 

 
4 Reinforcement Learning 

 
Reinforcement Learning (RL) is an approach to solve sequential decision making problems that can be modeled by 
Markov Decisions Processes. The main idea of RL is the continuous interaction between an agent and its 
environment. Through this interaction the agent tries control actions for the current state of the environment, 
influencing the next state; depending on the chosen action and the new state, the agent receives a reward/penalization 
signal. This way, the agent should learn to behave in order to achieve its goal. This approach have been successfully 
applied to several decision and optimization problems (Abe et al., 2003; Choi et al., 2004; Iida et al., 2004; Morales 
and Sammut, 2004). 

 
4.1 Basic elements of Reinforcement Learning 
An RL-system has mainly two components: the Environment where the process to be studied takes place, and an 
agent (RL-agent) who should be able to learn to control the process. The Environment in general, is assumed to be a 
Markov decision process (MDP) which is characterized by states, rewards and transitions (Puterman, 1994). An RL-
agent is characterized by the goal, a knowledge structure, a learning method to update its knowledge and a specific 
behavior (policy).  

Figure 1 summarizes the communication between the agent and its environment. At each decision moment, the 
agent observes the current state (1) of the environment and performs an action (2) selected according to its decision 
policy. As a result of the received action in the environment (3), a transition to a new state takes place and a 
reinforcement or reward signal is generated (4). The reward signal and the new state are received by the agent (5) 
and can be used through the agent's learning method in order to update its knowledge about the environment, and 
consequently it can update its policy (6). Rewards and state transition functions may be in general stochastic, and the 
underlying probability distributions are assumed not to be known to the agent. 

The problem consists of finding a prescriptive rule to choose an action for each state such that a certain criterion 
is optimized (the goal); here we consider the minimization of the total expected discounted reward. A discount factor 
0<γ<1 corresponds to the idea that rewards are less attractive in the far future. 
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Fig. 1. Agent-Environment interaction 

 
4.2 Q-Learning 
Our focus is on RL control using Q-Learning (QL) methods that try to learn the optimal action value function Q as a 
way to obtain an optimal policy (Watkins, 1999). This function is defined for each state-action pair (s, a) as the total 
expected discounted reward starting in state s, taking action a and thereafter following the optimal policy. 

Here the RL-agent's knowledge is an estimation of the optimal action-value function Q. The classical 
representation for the estimation of the action-value function is a lookup table. In this case, for each state-action pair 
(s, a) there is an entry in the table which is the corresponding approximated action value Q(s, a). This estimation is 
updated during the learning process. The agent starts with some estimation and at each decision moment in which the 
environment is in state s the agent chooses an action a according to its behavior. The environment reacts to the taken 
action by giving a reward r to the agent and changing to a new state s´ in the next decision moment. With this new 
information the agent updates the Q-values. The update rule for this method, given the experience tuple < s, a, r, s´>, 
is as follows: 

Q(s,a)←Q(s,a)+α[r+γ maxa´Q(s´,a´)-Q(s,a)] (1)

This method converges to the optimal action values with probability 1 as long as all pairs (s, a) are visited 
infinitely often and the learning rate is reduced over time according to the usual stochastic conditions for the learning 
(Sutton and Barto, 1998). However, it is surprising how many successful applications usually do not use step-sizes 
satisfying these conditions.  

The behavior defines how the agent chooses the actions. The ideal action in a given state is the one which 
maximizes the action-value function, the greedy action. However, if we always choose the greedy action based on 
the actual knowledge, many relevant state-action pairs may never be visited due to the inaccurate estimation of the 
action-value function. Efficient exploration is fundamental for learning. Too much exploration can cause nearly 
random behavior and too little can lead to non-optimal solutions. This is known as the exploitation-exploration trade-
off.  

Exploitation deals with the use of the available knowledge for example by choosing the greedy actions. 
Exploration increases experience for example by choosing actions at random. Here we use the ε-greedy exploration 
rule with a parameter ε decreasing over time. With probability 1-ε one chooses a greedy action with respect to the 
current estimate of the Q-values and with probability ε a random action. 
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5 Implementation of the Q-Learning method for allocating fragments 
 

Here we describe the elements of the RL-system to solve the allocation problem presented in Section 2. The 
environment should include all the necessary information needed by the MDP model to define the dynamics of the 
system: states, actions, immediate rewards, and transitions. It takes into account the restrictions of the problem.  

Making an analogy between the allocation problem and an MDP problem, we consider the solution of the 
allocation problem as the optimal policy for the MDP problem. This solution/policy indicates for each possible pair 
of fragment and location whether the fragment should be located in the location or not. That is why the states should 
be all the pairs (fragment, location). The action space has only two actions: allocate the fragment in the location or 
do not allocate. The immediate reward evaluates the cost of the taken action for the current state. The problem here is 
that, as explained in Section 2, the allocation cost of a fragment depends on several costs related to the other 
locations where this fragment is also allocated (remember we are considering replication) and the applications 
accessing those locations. Thus, all this information is related to previous states and previous actions. This breaks the 
Markov property; i.e., “the reward function only depends on the current state and the action taken in that state”. In 
our approach, we save the necessary information in the current solution, which is updated every time an action is 
taken, and in the data from the applications, including this information in the state representation might create a very 
complicated structure. We choose instead a naive strategy which is to ignore the information for the state, thus the 
states are like actual observations. This strategy have been used in dealing with Partially Observed MDPs, “small 
violations of the Markovian properties are well handled by Q-learning algorithms” (Kaelbling et al., 1996).  

Summarizing, the environment has the following elements.  
State Space: Is the set }m...1k,n...1j|)l,f{( kj == . Each state represents a pair (fragment, location). 
Actions: At each state (fragment, location) the agent could choose between two actions: allocate the fragment in 

the location (action=1) or not (action=0). 
Immediate reward: Given the current state s= and action a, the current solution is updated making = a, 

and the immediate reward evaluates the cost of allocating the fragment taking into account the updated current 
solution. According to the problem description in Section 2, this cost is given by:  

)l,f( kj jkx

jkar jf

∑∑
∈∀∈∀

+++=
Ss

jk
Aa

ijijijj
ki

STCTCIEACTOC  

where: 
( )∑

∈∀
⋅⋅⋅+⋅=

Ss
kjkijijijijij

k

SPCxRRrURuAC  

ijijij TCRTCUTC +=  

∑ ∑
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⋅⋅+⋅⋅=
Ss Ss

o(i)k,jkijko(i),jkijij
k k

gxugxuTCU  

)g)length(f
fsize

)(fsel
xrgx(rminTCR o(i)k,j

ji
jkijko(i),jkijSsij

k

⋅⋅⋅⋅+⋅⋅=
∈  

Thus, we consider an episodic task. At each episode there are n times m transitions, going through the whole state 
space. In our experiments, we use 200 episodes. 

The RL-Agent should learn to allocate database fragments in the locations of the network in such a way that the 
total costs are minimized. It is characterized by the knowledge structure, the policy and the learning method. The 
learning process is episodic; at each episode the RL-Agent visits all the states and updates its knowledge.  

The knowledge structure: The Q action-value function represented by the Q(s, a) matrix is updated using equation 
(1) at each transition. The transitions are deterministic; actually the next state only depends on the previous state, see 
table 1. In a deterministic world this matrix may be initialized arbitrarily and we consider a zero matrix.  
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Table 1. State transitions 

 
 
The policy: The agent follows an ε-greedy policy based on the current action-value function given by the Q 

matrix. 
Next, we summarize the algorithm. Besides initializing the Q matrix as a zero matrix, we need an initial solution 

satisfying all the constraints for the problem, excluding the storage capacity constraint that was disregarded. This 
solution is used to evaluate the costs of each action and it is initialized allocating each fragment randomly in only 
one location.  

Algorithm 1. A Q-Learning method for allocating fragments 

 
 
During the learning process, after an action is chosen, this solution is updated taking the action into account. At 

the end of each episode the solution matrix is updated considering a greedy policy with respect to the current Q 
matrix, that is, assigning to each state the action with the smallest value in the Q matrix. Thus, any fragment can be 
allocated to more tan one location since it is possible to find for one fragment in the state space the smallest value in 
the Q matrix corresponding to the same action=1. If a fragment is not allocated in any location (unfeasible solution) 
we force the fragment to be in the location with the smallest difference in the action-values for that fragment. In the 
algorithm we keep record of the best feasible found solution (btSol), which is initially the same initial solution, not 
necessarily feasible (goodSolution←false). A parameter tuning was completed as a result of the tests applied to the 
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algorithm 1. Parameters α, ε and γ were fixed with values 0.5, 0.99 and 0.8 respectively. For the implementation we 
used Visual C# from Visual Studio 2005 by Microsoft®. 

 
6 Experimental cases 

 
In order to test the intelligent RL-Agent from Section 5 in the allocation problem, we generate 15 random test cases 
given the rank of values for the amount of fragments (FRG.), locations (LOC.) and applications (APP.). In the first 
three cases we obtained the optimal solution using an exact method. In the rest of the cases (†), we report the best 
solution found by using heuristics like Simulated Annealing and Genetic Algorithms (Rosa, 2006).  

Table 2 shows these cases and the lesser time elapsed to find the solution for the total cost function (TOC) as in 
section 5, namely the best solution costs (BSC) measured in milliseconds. 

 
Table 2. Experimental cases 

 
 

7 Experimental results 
 

Here we present the experimental results of our approach in order to evaluate the quality of the solution and the 
processing time. Times are also considered in milliseconds. Table 3 shows these results. 

Each case has been solved 20 times and the average cost was found (AVE). The table also shows the times the 
best known solution was found (TB), the cost of the worst found solution (WORST) and the absolute value of the 
relative error (RE) calculated as follows: 

 
100

BEST
BESTAVE

RE ⋅
−

= 

The best known solution obtained by the Q-Learning is guaranteed to converge to the optimal due to the use of a 
lookup table to store the Q-values. Every state-action pair continues to be visited, and the learning rate is decreased 
appropriately over time. It has been assumed our function approximator is a lookup table. This is normally the case 
in classical dynamic programming. However, this assumption limits the size and complexity of the problems 
solvable.  
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Table 3. Experimental results 

 
 
 

 

Fig. 2. Execution time for comparing methods 

Figure 2 depicts the time elapsed to find the optimal solution for every case by using a Genetic Algorithm in 
(Rosa, 2006) and the Q-Learning method proposed here. Both methods have been developed to find a near-optimal 
allocation such that the total cost (TOC) is minimized as much as possible. These methods use the same quantitative 
data about the database, the applications behavior, the locations and network information. Both methods also use the 
same cost function. As a result, we find that the Q-Learning method performed better than Genetic Algorithm in 
(Rosa, 2006) for smaller cases. The relative error values for both methods are fairly similar in most cases.  

 
8 Conclusions 

 
We consider the allocation problem in a distributed database and propose an intelligent RL-Agent to solve it by using 
the Q-Learning algorithm. The improvements are sought by maintaining copies of the fragments. The decision 
regarding replication is a trade-off which depends on the ratio of the read-only applications to the update applications. 
The problem is then modeled using the Reinforcement Learning approach and the algorithm is adapted to the 
problem. The parameters are chosen through experimental experience and are by no means optimized. This method 
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neglects integrity enforcement and concurrency control costs as well as the storage capacity constraint, as an attempt 
to reduce the complexity of the problem.  

The results show that this approach could obtain practical solutions, even for larger cases. We believe the RL 
approach is a very flexible method that can be applied to obtain good solutions in complex problems. 

 
9 Recommendations and future work 

 
Further research could study the tuning of the parameters involved in the algorithm. Specifically we would like to 
recommend the tuning of the number of episodes according to the size of the problem, i.e., fragments times locations.  

Many real-world problems have extremely large or even continuous state spaces. In practice it is not possible to 
represent the value function for such problems using a lookup table. Hence, we recommend using a function 
approximator that can generalize and interpolate values of states never before seen as an extension to classical value 
iteration. For example, one might use a neural network for the approximation. 

At this moment we work on the integration of several algorithms for the allocation problem, specifically Q-
Learning and SARSA from RL, Genetic Algorithms, Bird Flocks and some other tools developed by our research 
group. The main goal is to help in the design of Distributed Databases in a more efficient way by using less effort 
and time. 
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