
Dynamic Behavior of Contaminants in the Water Distribution Network  
of Cuernavaca Mexico, a Real Application of Multiobjective  

Distributed Reinforcement Learning 
Comportamiento Dinámico de Contaminantes en la Red de Distribución de Agua 

 de la Ciudad de Cuernavaca México, una Aplicación Real de Aprendizaje  
por Refuerzo Distribuido Multi-Objetivo 

 
Carlos Eduardo Mariano Romero and Eduardo F. Morales Manzanares 

Instituto Mexicano de Tecnología del Agua, Instituto Nacional de Astrofísica, Óptica y Electrónica 
cmariano@tlaloc.imta.mx, emorales@inaoep.mx 

 
Article received on December 20, 2006; accepted on December 27, 2007 

 
Abstract 
Water systems often allow efficient water uses via water reuse and/or recirculation. The design of the network 
layout connecting water-using processes is a complex problem which involves several criteria to optimize. The 
use of the water pinch approach to define which of the effluents from unitary operations are most convenient to 
reuse is a good alternative used by some practitioners. Previously papers have presented an approach to minimize 
the freshwater consumption and infrastructure cost, which had been tested with real data from the Cuernavaca city 
water distribution network with good results (Mariano2005, Mariano2007). One of the challenges identified from 
previous work, was the necessity to incorporate the dynamic behavior of distribution systems. In this paper the 
response of the optimization model to changes in the mass charges of contaminants effluents from unitary 
operations is presented. The test scenario is the distribution system of the city of Cuernavaca in México.  
Key words: Multiobjective optimization, water pinch, water reuse. 
 
Resumen 
El uso eficiente del agua se puede establecer a través del reuso o recirculación de efluentes. El diseño o 
configuración de sistemas que contemplen el uso eficiente de agua con base en el reuso se torna complejo e 
involucra diversos criterios a optimizar. El uso de técnicas basadas en Water Pinch permite definir los efluentes 
más apropiados a ser reutilizados, posicionándose como una buena alternativa para los diseñadores. En trabajos 
previos se presentaron resultados relacionados con la minimización del agua de primer uso suministrada y el costo 
de inversión sobre datos reales de la ciudad de Cuernavaca (Mariano2005, Mariano2007). Sin embargo, uno de los 
retos identificados a partir del la observación del comportamiento de los efluentes en la ciudad de Cuernavaca es 
la necesidad de representar el comportamiento dinámico de los sistemas de distribución. En esté trabajo se 
presenta la respuesta del modelo de optimización a los cambios medidos en los efluentes de las operaciones 
unitarias de las masas de contaminantes. El escenario de validación es el sistema de distribución de la ciudad de 
Cuernavaca en México. 
Palabras clave: Optimización  Multiobjetivo, water pinch, reuso de agua. 

 
1 Introduction 
 
Water pinch technology (WPT) evolved out of the broader concept of process integration of materials and energy 
and the minimization of emissions and wastes in chemical processes. WPT can be seen as a type of mass-exchange 
integration involving water-using operations that enables practicing engineers to answer important questions when 
retrofitting facilities exist and to design new water-using networks. There are three basic tasks in WPT: a) 
identification of the minimum freshwater consumption and wastewater generation in water-using operations 
(analysis), b) water-using network design to comply with the flow rate targets for freshwater and wastewater through 
water reuse, regeneration, and recycling (synthesis), and c) modification of an existing water-using network to 
maximize water reuse and minimize wastewater generation through effective process changes (retrofit). 
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Most WPT problems are formulated as non linear highly restricted programming problems (Alcocer2002, 
Kuo1997, Mann1999). Important efforts have aimed to make the mathematical models more robust and applicable to 
real world problems (Alva-Argaez1999, Coetzer1997, Galan1998). Other efforts have aimed to apply WPT 
technology to other fields such as design and retrofit of urban distribution systems (Arreguín2001, Mariano2005, 
Mariano2007). 

In general, WPT traditionally minimizes the freshwater flow rate entering a system, using mass balance and 
considers the concentrations of contaminants at the inlet and outlet of  all water-using operations as restrictions. 
Because of the diverse types of water-using operations,  the effectiveness of water treatments and cost, and the types 
of contaminants, the criteria for efficient use of water becomes  inherently non linear with multiple and conflicting 
objectives (Alva-Argaez1999, Galan1998, Kuo1997). Some of the criteria that can easily be identified are: 
equipment cost minimization, maximization of reliability (amount of contaminant captured at treatment plants) and 
minimization of wastewater production.  

In (Mariano2007) an optimization bi-objective model was presented and tested with real data from the 
Cuernavaca city water distribution network considering static behavior of the mass charges from unitary operations. 
The model was solved using reduced gradient over a linear combination of the two objective functions and MDQL 
(Multiobjective Distributed Q-Learning). Two objectives were considered in (Mariano2007), freshwater 
minimization entering the system and infrastructure cost. The proposed optimization model was applied on three test 
cases: 1) a benchmark problem with four unitary operations and one contaminant; 2) a real world industrial problem 
with ten unitary operations and four contaminants proposed in literature (Mann1999), and 3) the Cuernavaca city 
water distribution network retrofit problem with six unitary operation two contaminants and three different 
freshwater sources. MDQL, that uses  a heuristic approach based on the solution of  Markov decision processes  was 
compared against  an aggregated approach  that uses a reduced gradient method. The objective of the cited work was 
to demonstrate the capabilities of MDQL in the solution of highly constrained optimization problems with real data. 

In many real world applications, the values of the variables governing the problem can change over time, 
displacing the optimum and creating what is known as a non-stationary problem. The goal for this type of problems 
is to maintain an optimal condition in the face of varying conditions of the environment (Schwefel1995). The search 
of the optimum then becomes a continuous process. According to the speed of movement of the optimum, it may be 
necessary to give the task to an automaton (Schwefel1995), but if the position of the optimum in a dynamic process 
is shifting very rapidly, the way in which the search process follows the extrema takes on a greater significance for 
the overall quality. In these cases iterative methods such as dynamic programming or stepwise optimization of 
Bellman are more adequate (Schwefel1995). 

 MDQL has a strong affinity with the characteristics of dynamic programming; as it satisfies Bellman's optimum 
principle (Mariano2002). 

The current study builds on prior work by considering the dynamic behavior of distribution systems in the 
optimization process. In this paper mass charges or loads of contaminants change over  time. The capabilities of 
MDQL to track the moving optimum are evaluated graphically with the evaluation of Pareto solutions obtained after 
convergence of the algorithm.  
 
2 Mathematical Formulation 
 
The mathematical model describing an industrial water demanding process considers two main components: a) the 
available freshwater sources to satisfy demands, and b) the water-using operations described by loads of 
contaminants and concentration levels. An example of two sources and two operations is sketched in Fig. 1. This 
figure represents with rectangles the two unitary operations Oi, and with solid lines on the left side of the operations 
their corresponding freshwater demands fi. Wastewater from operations is represented with dashed lines on the right 
side of operations. The rest of the connections represent all the potential links between unitary operations (water 
reuse), leaks, and treatment plants. The direction arrow heads at the end of lines indicate the direction of flux. 
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Fig. 1. Block diagram of a water-using system with two sources and two operations 

 

The design task is to find the network configuration that minimizes the overall demand for freshwater, ∑ f i , 

(and consequently reduce the wastewater volume ∑ W i ) compatible with minimum investment cost. In order to 
complete the design task, the optimization problem is stated in terms of low freshwater consumption, a suitable 
network topology for water reuse, Xi,j, and a low investment cost. 

Unitary operations of demanded water are defined through their contaminant loads, required flow rates, and 
allowable minimal and maximal contaminant concentrations at influxes and discharges.  

The objective functions for freshwater consumption minimization and for infrastructure minimization are 
represented by Equations (1) and (2).   
 

TPC+cst=F=Z
j

j∑11min     (1) 

∑
i

if=F=Z 22min      (2) 

 
Where: F1 is the total cost of the distribution network considering the connection of freshwater sources to 

unitary operations receiving water directly, and the connection for reusing water between unitary operations. The 
total distribution network cost is composed by the sum of the partial costs, cstj, of the pipe segments used for 
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connecting freshwater sources to unitary operations and unitary operations to unitary operations, and TPC, the 
treatment plant construction cost that applies only for new treatment infrastructure. In F1 we are not considering 
maintenance and rehabilitation cost because the information required to estimate this type of cost is not sufficiently 
validated for local conditions of Cuernavaca. Also the infrastructure cost is much greater than maintenance and 
rehabilitation cost, and since the infrastructure designed considers most of the time production costs which consider 
rehabilitation and maintenance cost. 

F2, is the total freshwater demanded by the system, obtained by the partial demands of freshwater from each of 
the unitary operations in the system. Partial demands from unitary operations, say operation Oi, are represented as fi. 
That is fi is the partial freshwater demand of operation Oi.  

 
3 Infrastructure Cost 
 
Evaluation of the first objective function, F1, depends only on the pipe segment costs in the network. These costs are 
represented as cstj, and depend on three variables (see Equation (3)): a) pipe length, Lj; b) cost per unit length, PCj; 
which depends on the pipe diameter required to transport the demanded flow of water, Dj; and c) a cost factor, CFj, 
related to pipe materials required to resist corrosive effects of contaminants.  
 

cst j= L j× PC j× CF j      (3) 
 

As previously mentioned, PCj depends on the minimum pipe diameter, Dj, required to transport the water flow 
through the pipe. The minimum diameter, Dminj, is obtained applying Equation (4); deduced from the definition of 
flow ( Q= velocity /area ) considering maximum velocities of water in pipes of 2.5 m/s. Dminj is approximated to 
the closest upper commercial diameter. Table 1 shows diameters and cost per unit length for commercial pipes 
considered in this work. The data in Table 1 is only demonstrative and can be substituted with real data from local 
markets. 

Q=D 0.714min      (4) 

where: Dmin is the minimal pipe diameter in mm required to transport flow rate Q ; { } ji,W,X,fQ ji,ji,i ∀∈ and is 
given in m3.  
 

Table 1. Cost per unit length for commercial diameter pipes 

Diameter 
(mm) 

PC 
(m) 

Diameter 
(mm) 

PC 
(m) 

99 4.8 500 40.9 
150 5 610 42.6 
200 8.9 762 45.9 
250 8.9 838 54.6 
300 17.7 1,016 69.9 
350 23.6 1,118 83 
400 25.6 1,219 94 
450 34.1 1,372 110 

 
In a similar manner, the factor  CFj is related to the capacity of the pipe segments to resist corrosive effects due 

to the presence of contaminants in water flows. Values for the CFj factor are included in Table 2, calculated 
considering local prices in Mexico for non corrosive pipes.  
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Table 2. Cost factors for pipes resistant to abrasive effects of contaminant 

Contaminant 
concentration (mg/l) 

CF 

0 ≤ c ≤50 1.25 
50 < c ≤ 100 1.5 
100 < c ≤ 150 2.0 
150 < c ≤ 200 3.0 
200 < c ≤ 500 5.0 
500 < c 10.0 

 
Finally the treatment plant construction cost considered in this work is 10 $/l, that is the construction cost in 

monetary units per liter of treatment capacity for the plant or plants.  
 
4 Freshwater demand 
 
To guarantee steady state conditions in the system, it is necessary to restrict the objective functions by the mass 
balance between unitary operations, and by the maximum and minimum allowed contaminant concentrations on the 
influxes and discharges of operations (Mann1999).  
 

 
Fig. 2. General structure for mass balance 

 
The flow-rate required in each unitary operation is related to the mass load of contaminants ( totk,i,Δm ) 

discharged by operations. This is described in Equation (5).  
 

maxmax
max

ink,i,outk,i,

totk,i,
ci

cc

Δm
=f

−
                           (5) 
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where fi  is the freshwater flow rate for operation Oi; totk,i,Δm is the total mass transfer for each contaminant, k to the 
water used at operation Oi (this term is also known as the contaminant mass charge (Arreguín2001) and is expressed 
in kg/h); max

outk,i,c  and max
ink,i,c  are the maximum allowed concentration of contaminant k on the discharge and influx of 

operation Oi, in mg/l respectively.  
The optimization model depends on the mass balance between all inlets and all outlets of water to the operation 

Oi. According to Fig. 2, the expression for the mass balance has the form shown in Equation (6). 
 

0=XXWfX+X+f iR,
ij

ij,ilossi,Ri,
ij

ji,i −−−− ∑∑
≠≠

                           (6) 

 
where, Xi,j is the reusable water flow rate from other operations, say Oj, in operation Oi; Xi,R is the treated water from 
the wastewater treatment plants that can be used in operation Oi; fi,loss is the portion considered as water loss in the 
operation or water consumption by the operation; Wi is the wastewater flow rate from operation Oi; Xj,i is the reusable 
water flow rate from operation Oi in operations Oj; and XR,i is the portion of the discharged water from operation Oi 
that receives treatment. All flow-rates are represented in m3/h. TP in Fig. 2 represents a treatment plant. 

Different contaminants k can be considered in the optimization model. This consideration requires the definition 
of constraints to restrict the concentration of contaminants at the inlets and outlets of operations, in order to 
guarantee that water influxes will not affect the operation performance, and to avoid the violation of environmental 
or operation norms. The satisfaction of these constraints will determine the quantities of fresh and reused water to 
supply to operations. The contaminant concentration constraint at the influx of the ith operation, ci,k,in is defined by 
Equation (7).   
 

max
max

0
ink,i,

lossi,Ri,iji,

ink,i,lossi,Ri,k,outk,j,j,i,
ink,i, c

fX+f+X
cfXc+cX

=c ≤
−
−

∑
∑                                   (7) 

 
where, ci,k,out is the concentration of contaminant, k, at the discharge of operation Oj, ck,0 is the concentration of 
contaminant k in the treated water, max

ink,i,c , is the maximum allowable concentration of contaminant k at the influx of 
operation Oi. Concentrations are expressed in mg/l.  

The same way, contaminant concentration constraint at the outlet of jth operation, ci,k,out is defined by Equation 
(8).  

max
outk,i,

lossi,Ri,iji,

totk,i,
ink,i,outk,j, c

fX+f+X
Δm

+c=c ≤
−∑

                  (8) 

 
Finally, non negativity constraints are established according to the following equations.  

0
0

0

≥××
≥

≥

jjj

i

ji,

CFPCL
;f

;X

      

 
5 Multiple Objective Distributed Q-Learning (MDQL) 
 
Taking advantage of some of the characteristics of evolutionary approaches, optimization problems can be solved 
considering the search processes of a Markov decision problem. Similar ideas have been previously used with the 
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Ant Colony Optimization Meta-heuristic (Dorigo1992, Dorigo1996). The main difference between ant Colony Meta-
heuristic and MDQL is the way value functions are updated, being the actualization rule used in MDQL based on 
Markov decision processes theory (see (Putterman1994) and (Mariano2001b)).  

MDQL considers a group of agents searching a terminal state, st, in an environment formed by a set of states, S. 
The set of states or environment is constructed with the division of the parameter space into a fixed number of parts, 
considering that all the decision variables can be discretized into a finite number of divisions. Each division is 
considered as a state, as illustrated in Fig. 3. An environment with these characteristics allows the agents to propose 
values for each one of the decision variables in the problem. 

For each state, s�S , a set of actions, As, is established, see Fig. 3. All state-action pairs have an associated 
value function, Q(s,a), indicating the goodness of taking action a in state s, for reaching a terminal state 
st �S (complete a task).  
 

 

Fig. 3. Variable space division for MDQL 
 
 

 
Fig. 4. An example of a path taken by two agents in the MDQL implementation 
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The search mechanism for an agent in MDQL operates when an agent located in a state selects an action based 
on its value function, Q(s,a). Most of the times the agent selects the best evaluated action (the action with the higher 
estimated value for Q(s,a)), but  sometimes a random action is selected with a probability ε ≈ 0 . Action value 
functions are updated depending on how useful an action can be for an agent to reach a terminal state. This behavior 
is adjusted with the help of a reward value, ℜ∈r  and the value function for the best evaluated action in the future 
state reached by the agent after the execution of the selected action, Q(s’,a’). This update rule is expressed in 
Equation (9). Each action moves the agent to a state of the next consecutive variable, i.e. assigns a value in the 
discretized space of the next consecutive variable. Fig. 4 shows two traces of two different agents. Each of the two 
traces represents a solution to the optimization problem that is a set of values for the parameters of the problem. A 
trace is formed by a value for each of the decision variables in the problem, which are considered as states in the 
environment. Actions in states correspond to the transportation to any of the states or partition in the next decision 
variable.   
 

⎥
⎦

⎤
⎢
⎣

⎡
−

∈
← a)Q(s,)a,Q(s

Á
γ+rα+a)Q(s,a)Q(s, ''

s
'a

max                  (9) 

 
where Q(s,a) is the value function for the action, ( 10 ≤≤ α ) is the learning step1, 10 ≤≤ γ is a discount 

parameter2, r is an arbitrary reward value, ℜ∈r , γ is a discount factor, s’ and a’ are the next state and the best 
evaluated action for s’ respectively. 

As an agent explores the state space, the Q(s,a) estimates improve gradually, and, eventually, each 
)a,Q(sA

''

's
'a∈max  approaches { }∑ −

n+t
n rγE 1  (Putterman1994). Here rt is the reward received at time t due the 

action chosen at time t-1. Watkins and Dayan (Watkins1992) have shown that this Q-learning algorithm converges to 
an optimal decision policy for a finite Markov decision process.  
In MDQL there is a group of agents, instead of a single agent, interacting with the environment described above, and 
since the task for the agents is the construction of the Pareto set, the original Q-Learning (Watkins1992) algorithm 
must be adapted. The main adaptations considered in MDQL are listed below.  
 

                                                 
1 In action-value methods it is required to estimate action values as sample averages of observed rewards. The obvious implementation is to 

maintain, for each action a, a record of all the rewards, r, that have followed the selection of that action 
a

ak
t k

r++r+r
=a)(s,Q

…21
, 

where 
akr,,r …1 are all the rewards received following all selections of action a  prior to play t. So it is easy to devise incremental update 

formulas for computing averages with small, constant computation required to process each new reward. For some action, let Qk denote the 
average of the first k rewards (not to be confused with Qk(s,a), the average for action a at the kthplay). Given this average and a (k+1)reward, 

r k�1 .. the average of all k+1 rewards can be computed by [ ]k+kk+k Qrα+Q=Q −11 , being 
1

1
+k

=α . 

2 The discount parameter determines the present value for future rewards: a reward received k time step in the future is worth only 
1−kγ times of 

what it would value as bound as the reward sequence rk is bounded. If 0=γ , the agent is “myopic” as it maximizes only  with maximizing 
immediate rewards. 
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• Decision variables in the environment have a predefined order, the agents move in the decision variables 
space obeying this order, so the definition of the values for the decision variables is made in the same order 
by all the agents. Each agent assigns a value for one decision variable at a time.  

• When all the agents finish (set values for all the decision variables), all solutions are evaluated using the 
Pareto dominance criterion. Environments for non dominated solutions and solutions that violate any 
constraint remain in memory to be used in future episodes.  

• Agents are randomly assigned to the environments in memory. 
• Action values are updated in two stages. The first is made when agents make a transition using a ‘map’ of 

the environment. Maps are constructed making a copy of the environments in memory, and are used by 
agents to show to the rest of the agents the experience acquired during the search process (Mariano2001b). 
This experience is represented by the actualization of the action value functions in the ‘map’ using the Q-
learning rule of Equation (9). At the end of an episode and after the evaluation of solutions, non dominated 
solutions receive a positive reward and solutions violating any constraint receive a negative reward, which 
is used to update the original value functions in the environment where they were found (second stage). 
After the update procedure, all ‘maps’ are destroyed and a new episode initiates. More details of MDQL 
algorithm can be found in (Mariano2000) and (Mariano2001).  

 
 MDQL was used to solve the bi-objective optimization problem presented in the Mathematical Formulation 

section with two instances of the problem proposed in (Alva-Argaez1999) and an instance of the water distribution 
system of Cuernavaca problem considering static contaminant discharges. Its results and analysis can be consulted 
with detail in (Mariano2007). 

The main objective in this paper is to show the response of MDQL to dynamic changes of contaminant 
discharges for the water distribution system of Cuernavaca.   
 
6 Water distribution system of Cuernavaca 
 
There are three different types of sources of freshwater in the city, according to the National Water Commission 
(NWC): 42 water springs supplying 1,409 l/s, 328 deep wells with a contribution of 1,503.58 l/s, and water wheels3 
contributing with  751.50 l/s  

Water users are classified into five categories according to the water  user census. A brief description of the 
kind of exploitation given to water by each category is given below, accompanied with their freshwater demand 
taken from (CNA2000). In order to be consistent with the nomenclature previously used, every category is 
considered as a unitary operation. 

 
Self service (SS): Users that have its own source to satisfy any kind of needs including human 

consumption.  
Industrial (I): Users exploiting water to operate only industrial processes in which there are no human 

needs to satisfy. 
Agriculture (A): Covers all the users exploiting freshwater only for irrigation. The main crops cultivated in 

the region of Cuernavaca are rice, corn, grass and rose trees.   
Services (S): Users with high consumption rates, such as hotels, schools, restaurants, supermarkets, 

etc. 
Urban & Public (UP): Most of the domestic users in the city, including small schools, stores, public offices and 

small workshops.  
Multiple (M): Users not classified in any of the previous categories with an activity that can be 

classified as a service, but with less consumption rate. 

                                                 
3  It is important to note that the net extractions and run offs from the sources reported are greater because they also supply freshwater to 
other towns close to Cuernavaca. 
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It is relevant to note that part of the demanded water is consumed by the operation itself, another part cannot be 
registered and is considered as a loss caused by leaks occurring along the distribution systems. The rest is declared as 
wastewater and is supposedly discharged with the effluents to the receiving water bodies. For Cuernavaca city this 
body is the Apatlaco river. It is estimated that the water consumption and the flow lost in leaks is about 43.41% of 
the water demanded.   

Two contaminants indexes are considered, in connection with the contaminants threw by the operations to the 
effluents, 5 day biochemical oxygen demand (BOD5) and total suspended solids (TSS). These indexes are used in the 
general water quality index, according to the NOM-001-ECOL-1996 standard, which is the Mexican official 
standard for wastewater discharges. Wastewater treatment plants treat 339.15 l/s to BOD5 and TTS mean 
concentration of 50 mg/l according to the data reported in the literature (Arreguín2001). 

Values for both water quality indexes, max
outk,i,c , were established using information from studies that evaluated 

the degree of contamination in the Apatlaco river (CNA1996). For both contaminants, the concentration in the 
freshwater supplied to the system is considered to be zero, see table 3. 
 

Table 3. Inflow and outflow limit concentration and the min (1) and max (2) contaminant mass charge for  
all current operations in the city of Cuernavaca 
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Fig. 5. Variation of mass charge for urban and public users 

 
 

 
Fig. 6. Variation of mass charge for agriculture users 
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Fig. 5 and Fig. 6 show the variation of contaminant charges of the two more contaminant operations, agriculture 
and urban and public. The values represented in both figures were obtained extracting samples of water and 
analyzing their contaminant concentration. Each of the presented values in the figures was obtained averaging 30 
samples, that is, a sample was extracted every three hours during 30 days. Contaminant charges from the rest four 
operations are considered as static because of the relative small amount of mass they throw.  Fig. 5 and Fig. 6 can be 
considered as variation laws for contaminants discharged by monitored users. These laws are used to verify the 
behavior of the Pareto fronts constructed by MDQL. 
 

 
Fig. 7. Pareto fronts obtained for the variations in mass charge for BOD5 and TSS for agriculture users 
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Fig. 8. Pareto fronts obtained for the variations in mass charge for BOD_5 and TSS for urban and public users 

 
7 Results 
 
The Cuernavaca city water distribution network solution considers the reduction of water losses from 43 to 25% and 
the treatment of waste water using the current operational capacity, which is equal to 339.65 l/s. 

The MDQL operation parameters used for all test cases were: 0.1=α , 0.9=γ , 0.01=ε  and 1=r for non 

dominated solutions and 1−=r  for solutions violating constraints. Previous values for the operation parameters in 
MDQL are in some sense typical and were originally suggested in (Sutton1998). Some work related with the 
sensitivity of the algorithm to these parameters is presented in (Mariano2001) using benchmark evaluation functions. 
The conclusion of the previous work indicates that the best combination of values for the operation parameters is to 
consider 0≈α , 1≈γ  and 0≈ε . 

Discharges from unitary operations to effluents were evaluated considering four different values of the mass 
charge of each of the two contaminants. Contaminant mass charges were taken from the variation curves presented in 
Fig. 5 and Fig. 6. Four decrements for each of the two contaminants in the two most contaminant operations or users 
were evaluated, going from the higher to the lower mass charges. The values of the mass charge considered are 
included in the legend of Fig. 7 and Fig. 8. 

Obtained results are presented in Fig. 7 and Fig. 8 including the best approximation to the Pareto front from ten 
executions of the algorithm. Criterion used to solve the dynamic optimization problem presented considers that 
agents in the algorithm start from the previous Pareto solutions obtained. That is, MDQL starts with a deterministic 
environment constructed with fixed values for the value functions for the first parameter of mass charge in the 
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variation laws; when convergence is reached and a Pareto set is obtained, a new cycle is started, changing 
contaminant mass discharge to the next value in the variation laws. Agents start searching (adapting solutions) from 
the existing environments which correspond to the previous solutions obtained for the previous contaminant mass 
discharge. Searching for new solutions, from the last Pareto set, given the new values of contaminants discharges, 
significantly reduces convergence times. 

 Fig. 7 includes the results obtained with the variation mass charges of BOD5 and TSS by the agriculture user. It 
can be seen that MDQL get four solutions in the Pareto front for each different value of the mass charge. This 
behavior  indicates that there are no more solutions in the Pareto front. The rightmost graphic includes the Pareto 
fronts obtained for each value of the mass charge for the two contaminants discharged by the urban and public user. 
The same behavior is appreciated for this operation. 

There is no established criterion to determine if a solution is good or not in problems for which there is no 
evidence of the location of optimal solutions. For the problem presented in this paper, and considering that the 
problem is formulated with real data about the behavior of contaminants in the effluents from unitary operations, and 
there the aim is to identify layouts between unitary operations that minimize the governing criteria satisfying 
imposed restrictions, an alternative is to consult human experts. The solutions generated by MDQL were given to an 
expert in process engineering. The expert analyzed the solutions and qualified them in terms of its operational 
correctness. 

From Fig. 7 and Fig. 8 it is possible to conclude that freshwater minimization criterion is more sensible to the 
variation of contaminant mass discharges, while cost remains almost with the same values. It is important to note that 
MDQL finds the same number of solutions for all values of contaminant mass discharges, which is a characteristic of 
the consistency of the algorithm and the mathematical model. In order to verify that there are no other Pareto optimal 
solutions not identified by MDQL, an exhaustive procedure was tested but no new solutions were found.  
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Fig. 9. MDQL Performance on the solution of the Cuernavaca city water distribution network for the first 200 function 

evaluations 
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Fig. 10. MDQL Performance on the solution of the Cuernavaca city water distribution network after 1000 function evaluations 
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Fig. 11. Adaptation behavior of MDQL for a change on mass discharge rate 
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MDQL performance was evaluated calculating the number of solutions in the Pareto set (Pareto count) along the 
execution. Fig. 9 shows values for the Pareto count of the first 200 function evaluations. It can be appreciated that 
MDQL identifies all solutions in the Pareto set in a relative short number of evaluations. Fig. 10 shows the behavior 
of MDQL with more function evaluations. No changes in the number of solutions can be detected, and the solutions 
remain the same. This behavior reflects the consistency in the behavior of the algorithm. 

The adaptation capability of MDQL to changes in the contaminant mass discharges was also evaluated. Fig. 11 
shows the comparison of the Pareto count performance metric when a change in the mass discharge occurs. The 
graph presented in Fig. 11 was constructed considering the first value for the BOD5 contaminant discharged by the 
agriculture user (451 t/h). Change in the mass of contaminant discharged was made just after 12,000 function 
evaluations. The Pareto count results indicate that after 10 evaluations of objective functions, only 1 Pareto optimal 
solution was found; at 100 evaluations 2 Pareto optimal solutions were found; and at 500 evaluations all the four 
solutions in the Pareto set were obtained by MDQL. After 1000 evaluations, the number of solutions and solutions 
remain the same.  

This behavior indicate that the adaptation mechanism is not as efficient as MDQL is to find the initial solutions, 
that is, MDQL shows better performance, less function evaluations to reach the Pareto set, starting with initial values 
of mass discharges than adapting solutions when changes in mass discharges occurs, at least for this problem. 
 
8 Conclusions and future work 
 
In this work a multi-objective optimization problem for water distribution systems using water pinch technology 
criteria has been presented. The multi-objective optimization model, was given to MDQL showing that is able to 
solve complex real problems with highly restricted non convex spaces. MDQL capability to solve dynamic changes 
in the decision variables was also tested with the variation of contaminant charges from operations.  

The water pinch optimization model considers more than one criterion. The model considers the reuse of 
wastewater from operations, wastewater treatment, consumption flow-rates and leaks in the system. With the 
reduction of freshwater demands it is possible to guarantee that the quality of the water served to the different users 
do not violate ecological and sanitary norms. The bi-objective optimization model operates considering mass 
balances between operations, freshwater sources, wastewater treatment plants, and wastewater disposal effluents. 
Contaminants loads from operations to water flows are restricted by environmental and operational constraints, and 
their variation in time is implemented in the model, resulting in a highly non linear dynamic optimization model.  

Solutions to water pinch problems represent important technical challenges that are only partially solved by the 
industry. The results presented in this paper represent an example of how real applications can be solved with the 
participation of multidisciplinary teams involving researches from different communities, as in this case. 
There are many papers in the literature related to optimization in water distribution networks, such as (Farmani2005), 
(Halhal1997) or (Keedwell2006) among others, although with a similar name,  the application and type of problems 
addressed are  very different. Such type of optimization is oriented to diameter selection for a given topology of the 
network subject to hydraulic constraints or to the identification of the pipe segments to change in order to reach 
better hydraulic conditions for the network operation.  

As previously mentioned this work presents how well a heuristic approach based on Markov decision processes 
fits arrangements between unitary operations to reach good hydraulic performance and reusing wastewater at 
minimum cost. Which is a problem not treated in the previously cited papers. 

As future work we are considering implementing constraints to select more efficiently different processes. For 
example, if wastewater treatment technology is selected in terms of the type of contaminants, the mass remotion 
could be made more effective and the system more efficient if the proper process is selected and optimized in terms 
of cost and efficiency. Another important aspect to implement is the cost function, which needs to be extended in 
order to quantify operation costs, reuse costs, and other economic factors affecting the operation of a system with 
these characteristics. 
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There is also an interest to increment the precision of Pareto solutions obtained with MDQL, which at this 
moment depends on the partition size adopted for the parameter space. We believe that creating an adaptive 
mechanism for the size of partitions can be helpful in the approximation to more precise solutions.  
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