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Abstract

In this paper we discuss the problem of finding nontrivial solutions to the Cubic Sieve Congruence problem, that is,
solutions ofz® = y2z (mod p), wherez, y, z < p? andz® # y>2. The solutions to this problem are useful in
solving the Discrete Log Problem or factorization by index calculus method. Apart from the cryptographic interest,
this problem is motivating by itself from a number theoretic point of view. Though we could not solve the problem
completely, we could identify certain sub classes of primes where the problem can be solved in time polynomial in
log p. Further we could extend the idea of Reyneri’s sieve and identify some cases in it where the problem can even
be solved in constant time. Designers of cryptosystems should avoid all primes contained in our detected cases.
Keywords: Cubic Sieve Congruence, Discrete Log Problem, Prime Numbers.

Resumen

En este articulo se discute el problema de como encontrar soluciones no triviales al problema de congruencia de
la criba cibica, esto es, soluciones a la ecuaciéh= y2z (mod p), dondez,y,z < p? y z® # y2z. Las
soluciones a este problema resultan (tiles para resolver el problema del logaritmo discreto o el de factorizacion
entera cuando se utiliza el método iddex calculus Ademas del evidente interés criptografico, este problema
tiene también relevancia desde el punto de vista de la teoria elemental de nimeros. Aunque no logramos resolver
totalmente el problema, si pudimos identificar ciertas subclases de primos donde el problema puede ser resuelto en
tiempo polinomial eflog p. Asimismo, extendimos la idea de cribado de Reyneri e identificamos algunas clases

en donde el problema puede ser resuelto en tiempo constante. Los disefiadores de cripto-esquemas deben evitar
utilizar cualquiera de los primos contenidos en los casos aqui detectados.

Palabras Claves:Congruencia de criba clbica, problema del logaritmo discreto, nUmeros primos.

1 Introduction

Index calculus method (Menezes and Oorschot and Vanstone 1997; Coppersmith, Odlyzko and Schroeppel 1986; Das
1999; Das and Madhavan 2005) appears to be applicable in solving the Discrete Log Problem (DLP) (Menezes and
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Oorschot and Vanstone 1997). One variant of this is the cubic sieve method (Coppersmith, Odlyzko and Schroeppel
1986; Lenstra and Lenstra 1990; Das 1999; Das and Madhavan 2005). In the cubic sieve method, one needs a ‘known
solution (in positive integers) of the Diophantine equation

z? = y?z mod p,

such thatr® # y2z with z, y, z of orderp® for some% <a< % wherep is a prime number. We call this the Cubic
Sieve Congruence (CSC) problem and;, z will be called a solution of CSC. We refer to (Das 1999, Section 3.2.3)
for the logic behind the suggested rangexdbwards the solution of discrete log problem.

Though the problem was first presented back in mid eighties (Coppersmith, Odlyzko and Schroeppel 1986), to the
best of our knowledge the next serious attempt to the problem was made in (Das 1999, Chapter 5) where heuristic
estimates about the density of the solutions were studied in great details. We briefly present the results of (Das 1999,
Chapter 5) in Section 2 with some more experimental evidence to support the conjectured claims of (Das 1999).
However, no effort has yet been made to design a nontrivial algorithm for this problem and we attempt some solutions
in Sections 3, 4. It has been stated in (Coppersmith, Odlyzko and Schroeppel 1986) that “We don't see any easy way
to find such a triple in general” and in (Das 1999) that “in spite of all these theoretical and experimental exercises, the
guestion of existence or otherwise a solution of the CSC for sé)rﬂea < % continues to remain unanswered”.

Itis well known that the “Number Field Sieve” (see (Lenstra and Lenstra 1993; Pomerance 1996)) is faster than the
cubic sieve among index calculus type methods used in solving DLR. Jletc] = exp((c+o(1))(log p)* (log logp)*~?).

It is worth mentioning that once a solution of the cubic sieve is known the running time of the cubic sieve discrete
logarithm and factorization algorithm @F (p) is L,[¢/2/3,1/2] = exp((0.816 .. .+0(1))(log p loglogp)'/?) (Cop-

persmith, Odlyzko and Schroeppel 1986) ThIS could be potentially better than the Number Field Sieve, which has a
running time ofL,[1.923 ..., 1/3]. Thus it is important to answer where exactly the contribution of this work stands

from a cryptographic point of view. We find polynomial and constant time algorithms (inpulcgize whenp is the

prime) to solve the CSC problem for different subclasses of primes. Though these subclasses are very small compared
to the complete set of primes, the primes in these subclasses should not be chosen for any secure cryptosystem which
is based on hardness of DLP as easy solution of CSC presents a potential weakness.

Further, this problem is interesting in itself from a number theoretic point of view. An easy attempt to solve CSC
is to chooser, y < p? at random and then check whether p2 too. As it will be clearer later in this paper, this
random attempt is not going to succeed at all. Thus one needs to consider carefully designed methods to attack this
problem.

We study this problem in parametric form= v%z %p andy = v3z %p. By a %b we mean the remainder when
the integer is divided by the integeb (the operator%p is always applied to the preceding expressiony%o%p
means(v?z) %p). In Section 3, we show that it is possible to find a solution in time polynomikidp (we denote
this by P(log p)) if there exists a suitable > p°-2° having a value®?®> + O(P(log p)). We show that this happens

for approximately% many primesp < N. In Section 4 we extend the idea of Reyneri’s sieve and present precise

solutions for CSC when the primesatisfies:® < Ip < M < Ip + p°, whereM =n (n +i),i=1,2,30r(n+1)3,

0 <1<p®~% —p~land0 < e < ¢. This idea works for approximately’; Z §13)2 many primegp < N. The

ideas used in this paper seem to be extendable for larger subclasses of primes and we are currently working in that
direction.

2 Existing Results

We begin by introducing some notations as in (Das 1999). Fix a prime nymhbet
o S={(2,9,2) | 2° =y*2 mod p,1 < 2,9,z < p}
o S_={(z,y,2) | (z,y,2) € S anda® = y?z}
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o Su={(z,y,2) | (z,y,2) € Sanda?® # y*z}
o So={(z,y,2) € Sx |1 <w,y,2 < p°}

Throughoutthis paper, we use the Vinogradov sympe|s« and the Landau symbol3, © ando with their usual
meanings (see also (Das 1999; Coppersmith, Odlyzko and Schroeppel 1986; Menezes and Oorschot and Vanstone
1997) for details). We recall that < B, B > A andA = O(B) are all equivalent and mean that| < c|B| holds
with some constant, while A = ©(B) means that botll < B andB < A hold. For a positive real numberwe
write log « for the maximum betweeh and the natural logarithm af. We let|z] be the largest integet z, and let
{z} = x — | x| be the fractional part of > 0.

It is clear that the CSC problem (see also (Das 1999, Chapter 5)), ignoring the boundg, enhas exactly
(p — 1)? number of solutions, since one can chooseanyfrom [1, p — 1] and immediately will be obtained. Thus,
#S = (p— 1)? = ©(p?). Further it has been presented in (Das 1999, Chapter 5)}bat< 2(p — 1)In(p — 1) +
(3v—2)(p— 1)+ O(/p) = O(plnp), and#S— > 3p+ O(pf), thatis, #5_ = Q(p).

Here is the Euler's constant defined as= lim, (1 + 3 4+ ... + + —In(n)) = 0.57721566. ... SinceS
is the disjoint union of5_ and S, from above one gets£S: > (p — 1) — 2(p — 1) In(p — 1) + O(p), and so,
#S. < (p—1)? = 3p+O(p?). In particular#S. = O(p?).

We are more interested in the value/#$,,, which is estimated by the following conjecture in (Das 1999, Chapter
5).

Conjecture 1 The expected cardinality &, is asymptotically equal tap3*~! for all 0 < o < 1 and for some
constanty ~ 1.

Table 1.Primes1268002919 (left) and4213586771 (middle) and average values over 50 primes of 30-bit length (right)

Q # sol %pgo"l pla—l @ # sol ép?’o‘*l pla—l « Mean Std.Dev

0340 0 1 0340 0 1 0.34 | 0.2800000] 0.6074369
0350 2 3 0.35] 2 2 3 0.35| 0.4400000| 0.5115004
0.36 | 2 3 5 0.36 | 4 3 5 0.36 | 0.5340000] 0.4082616
037 6 7 11 0.37| 5 7 11 0.37 | 0.6622222| 0.4120630
0.38 | 16 14 22 0.38| 13 14 22 0.38 | 0.7054902| 0.3139408
0.39 | 27 28 43 0.39 | 27 28 43 0.39 | 0.7988400| 0.2547877
0.40 | 69 56 84 0.40| 54 56 84 0.40 | 0.8296789| 0.1910907
0.41| 154 109 164 0.41| 126 108 163 0.41| 0.8618105| 0.1410821
0.42 | 283 212 319 0.42 | 257 211 317 0.42 | 0.8903438| 0.1060304
0.43| 573 413 620 0.43| 547 412 618 0.43| 0.9261365| 0.0804415
0.44| 1135 | 804 1206 0.44 | 1080 | 800 1201 0.44 | 0.9389463| 0.0643277
0.45| 2223 | 1564 2347 0.45| 2150 | 1557 2336 0.45| 0.9533673| 0.0441644
0.46 | 4407 | 3043 4565 0.46 | 4235 | 3028 4543 0.46 | 0.9686826| 0.0338940
0.47 | 8639 | 5919 8879 0.47 | 8300 | 5888 8832 0.47 | 0.9745897| 0.0261893
0.48 | 16910| 11513 | 17270 0.48 | 16427 | 11448 | 17172 0.48 | 0.9799228| 0.0207219
0.49 | 33179| 22392 | 33589 0.49 | 32244 | 22258 | 33387 0.49 | 0.9840180| 0.0138331
0.50 | 65137 | 43552 | 65329 0.50 | 63262 43274 | 64911 0.50 | 0.9883767| 0.0111183

The conjecture is certainly believable, since jf; are selected at random, then the probability that 23 /22 <

p® is expected to be*/p and so the size of,, is aboutp®>*~!. We also make a good number of experimental
verifications with various sizes of primes ranging from 15 bits to 32 bits to support the above conjecture. In (Das
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1999, Chapter 5), experimental results have been tabulated for the F22@&323 (25 bits) and1034302223 (30
bits). We tabulate in Table 1 experimental results for 82ebit primes. In this first column we give the valuescaf
Second column contains the number of solutions with, = < p®. Third column contains the value @%p?’o‘*lj
and fourth column contains the value gf*®~!|. These results indicate that asncreases, the number of solutions
get closer tg®>*~! and also for sufficiently larga depending on the size of prime (in case of 32-bit primesdhis
0.41),| 2p**~!] gives a lower bound to the number of solutions.
Number of SOlUtIOﬂSip

To continue our verification, we calculate for a ranging from0.34 to 0.50 for fifty
randomly chosen primes of 30 bits. Then in Table 1 fnghtmost) we have tabulated informatian fisst column,
the mean of fifty fractions for that in second column. In the last column the standard deviation of the same values is
given. Results here indicate that@ss increasing td.50, the mean is getting closer 100 and standard deviation is
getting closer td.0. This justifies Conjecture 1 further.

In (Coppersmith, Odlyzko and Schroeppel 1986, Page 13) it was noted that Reyneri's sieve apphedte- z,
with z small generates an easy solution having 1. So the idea is to take = [ ¢/p], that is, the minimunmx such
thatz3 > p. If 23 — p < p®3, then putz = 22 — p andy = 1. This gives a solution witlx, y, = < p°5. However,
getting such a solution is not possible in general. It may very well happen that the finstvhich 3 > p is such
thatz® — p > p5. As example, take = 125000003. In that case, the first such thatz® > pis 2z = 501. So
23 — p = 125751501 — 125000003 = 751498 > p# and we can not get a solution according to our need, ag ferl,

z = 23 — p > p%5. However, we note that there are many solutions with the constraint: < p°-5 for this prime
and one such exampleis= 56,y = 605, z = 1025.
A simple algorithm to find a solution for any prime is as follows.

Algorithm 1

fore=1top*, z=ao+1{
fory=1top,y=y+1{
calculate0 < y; < p, such thayy; = 1 mod p;
calculatez = z3y? %p;
if z < p%® output solution(z, y, 2);
}
}

Note that, by the previous analysis, it is clear that if we take b = 0.35, then it is expected to get a solution with
x,y, 2z < p°3° for any large primev. Further, step 3 of Algorithm 1 needXlog p) time. Thus, the overall complexity
become)(p® " logp). On the other hand, we have also experimentally observed that it is possible to get a solution
with y < p%® whenz is very small compared to the large prime Considering this assumption and then letting
a = ¢, a very small quantity anbl = 0.5, it is expected to get a solution whetey, z < p°° with time complexity
O(p®5*<logp). However, given a very large this algorithm is not a practical one.

NogA~wWNE

3 Parametric form for CSC

To have a better understanding of the problem, we express it in parametric form. We rewrite the congruence in the
form (%)2 =2 (mod p). That suggests the parametrization

x = v2z %p andy = v3z %p Q)
Note that in this parametric form the se&isS., S, (as defined in the previous section) can be rewritten as

o S={(z,y,2) |z =v*2%p,y =v*2%p,1 < z,y,2,v < p},
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o Sy={(z.y,2) |z =v*2%p,y =032 %p,1 < w,y,2,v < p,a° # y’z},
o Sy ={(n,y,2) |z =022%p,y =v32%p,1 < z,y,2 < p*, 1 < v < p,ad#y?z}.

However, the condition® # 322z in CSC needs to be tackled carefully in this parametric form. First we present a
technical result.

Proposition 1 If (z,vy, 2) € So 5 satisfy (1), then > p°-2°.

Proof: Letv < p®2°. Thenz = v2z %p = vz sincev?z < p*(029)+05 — pasz < p%. Alsoy = vx %p = vz,
sincex < p°-5 andv < p%2°. Thusz® = y?2 which violates the requirement # y2z.

In the rest of the paper, we consider the specific constgdlifit < v < p®®. Further we need solutions of the
form z,y, z < p®®. Under these constraints? # 3%z in CSC is equivalent ta # vz (see Proposition 2 below).
This serves our purpose, since as presented in Proposition 1, we hay&-2® for any solution withz, y, z < p%°
and further we concentrate on the cases whenp-5 too.

Proposition 2 Letp®25 < v < p%5 1 < x,y,2 < p®°. Then the condition?® +# y22 is equivalent tax # v?z.

Proof : Supposer, y, z is a solution for CSC such that< p%® andz® # y2z. Since,x,v < p’?, soy = vr < p.

Assume that = v%z = z—zz This implies that:® = »?z which is a contradiction te® # y2z. Thus we getr # v2z2.
Conversely, letr, y, z, v be a solution to the system = v2z mod p,y = v mod p,x # v2z, with p®2° <
v < p®.1 < x,y,2z < p®. Theny = vr andx = v?z + Ip, with [ # 0. S0,z = Z—zz + Ip, which implies
3 = y%2 + (I2%)p, that is,z® = y?z mod p, butz? # y2z.
Thus, to find a solution for the CSC problem it suffices to find a solution to

2

x = vz mod p,y = vz mod p, wherep®-25

<v<p0'5,x7év2z,1Sx,y,z<p%. (2)
It is clear that the set of these solutions is a subsé&igf Further it should be noted that for these solutignis, an
exact integral multiple of.

Definition 1 We call a solution:, y, z of CSC as given in equatiqf) a valid solution.

Henceforth, we writes = p® andz = p? for §, 3 real.

Conjecture 1 claims that there are approximately® — many solutiongx ~ 1) wherez, y, z < p®. Fora = 0.5,
the number of solutions is approximateR®. We randomly took 25 primes of length 30-bit and checked that for these
solutions, when turned to parametric domain, the cases whep’- is extremely low. The number of solutions for
30-bit primes is approximate!®. However, in Table 2 we observe that the number of solutions haviag?® is
extremely low compared t2'°. In the most favorable result, we get 19 solutions only for the pfiag828683. Also
it should be noted that there are cases when there is no solutiom with’-> as happened for the prinTe 1799451
(note thatr® + p has the required form, far = 731, 929, 3034, 6039, howevery /x is not an integer)Thus there are
very few solutions, which, in the parametric form, give, z, v < p°°. Still we attempt to find those solutions here as
the range in which we need to varjs much smaller tha®(p) and show that the analysis produces favorable results
in certain cases.

Lemma 1 For any valid solution of CSC, if = p° < p°® thenz < p®°~9 < p%25,

Proof : Sinces < 0.5 and for a valid solutior: < p%®, the congruencg = vz mod p is an equality, that isy = vz.
. 0.5 ..
From this we havex < p°-?, thereforer < E— = p%5~°. From Proposition 1§ > 0.25, hence the result.
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Table 2.Number of solutions with:, y, z < p°® andv < p°

1 0<6<.3].3<6<.35|.3<d<4|.4<i< 45| 45<6< .5

Primes

895917131 | 2 0 0 0 0
593554447 | 0 0 0 1 1
551556059 | O 0 2 0 0
774712823 | O 0 1 1 0
961344259 | 0 1 2 1 0
1052502491| 1 1 0 0 0
877166131 | O 1 0 1 0
669150091 | 1 0 0 2 2
721235807 | O 0 0 1 0
997165739 | 1 0 0 0 0
777782111 | O 0 3 2 1
601873567 | O 2 0 7 6
976974643 | O 1 1 0 0
561998999 | 6 2 1 0 0
784308199 | 0 0 0 0 1
604718867 | 1 1 0 0 0
920692687 | 0 0 2 1 1
678600491 | 1 0 0 1 0
1066913867 O 1 0 1 0
741799451 | O 0 0 0 0
1014893507 3 0 4 1 0
678813823 | 3 1 2 0 0
759828683 | 0 0 14 4 1
548375899 | 0 1 3 0 0
917289047 | O 2 6 1 2

Lemma 2 For a fixedv = p® < p°-5, that is part of a valid solution, we have> p'=2°.

Proof : From the fact thap®?®> < v < p®®, we havep?® < v? < p. Now, if we assume that < p'~2, then without
taking modular operations’® < v?z = p?z < p*p'=2% = p. Thereforer = v2z can not be less thgs?->. This
proves that > p'~2°,

Putting together Proposition 1, Lemma 1, 2, we obtain the following result.

Theorem 1 Let there be a valid solution (recall that y, = < p°-°, in that case) withp®?® < v = p® < p°°. Then
T < p0.575 S p0.25 andZ 2 p1725.

In light of the above discussion, let us present the following result which will be used for the algorithms we discuss
next.

Proposition 3 For somev, z such thap?2® < v = p? < p®® andp' =20 < z < p°5, if there exists an: < p°®°>~9,
theny < p®?, that is, we have a valid solution.

As we have already mentioned, an important question at this point is: “is it guaranteed that for any grere
will be a solution of the fornx, , z, v < p°5?” The answer is no, though for almost all the primes we have considered,
it is possible to get such a solution. We have some experimental results fwimes in Table 2 where there is only
one primer41799451 for which there is no solution of the form y, z, v < p-°.
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In this section we assume that the considered primes will have solutions of the: form v < p®® and present
an algorithm based on that The observation from Theorem 1 presents the basis of the algorithm we propose now.
Here for each fixed = p° in the rangep’-*® to p%-°, we varyz in the rangep' ~*° = £ to p* and computer for
each pair(v, z). Once the suitable is found, withz < p°-°>~%, we output the solutlon

Algorithm 2

1. forv=p"2top’ ,v=v+1{

2 forz=v%t0p0'5,z=z+1{

3 calculatesc = 022 %p;

4, if z < ” output the solutior{z, y = vz, 2);
5.

6

7

}
}

Output no solution withe, y, z, v < p°-%;

If there is no solution, y, z,v < p®%, our Algorithm 2 fails. However, that is not the case in general. Note that
in the worst case, the time complexity of Algorithm 20¢p), which is worse than the trivial Algorithm 1. However,
it should be noted that Algorithm 2 is extremely efficient when there is a solution whisrelose top®-2°. Before
proceeding further, let us present some nontrivial improvement over Algorithm 2.

From Theorem 1, we can see that for fixggmallest: that can be consideredfip! ~2°]. We represent this as
and also writez; = p® for some reaB3; < 0.5. For thisz;, we have

viz = pP P = p 4Ky, ®)

for some0 < k; < p. Now we have two possible cases:

Case 1: k; < p”°~°. In this case our problem is solved by letting= k,. Because, from our earlier analysis we
know that ifv, z < p°-> andz < p°-°—?, then we can have a solution just by taking- vz.

Case 2: k; > p®°~9. In this case we may try for the ‘next suitablein increasing order. Let that b = p”2 of the
form zo = 21 + t1. Also, we need to be such that

V229 = p?tP2 = 2p + ko, andv? (2, — 1) < 2p, 4)

for some0 < ks < p. This is because, if we take any othgr such that:; < 25 < 2o, thenp + k; < v?2 =
p+ kb < 2p and hencé; < k) < p. Thusifz = k; is not a valid solutiong = k% can not be a valid solution, as
well. So we considen?z; = 2p + ko Which givesv?(z1 + t1) = 2p + ko. This gives us??t; = 2p + kg — v%2; =
204+ ke — (p+ k1) = (p— k1) + ko, and so,t; = (’”’Z#. Since our aim is to minimizé-,, we can take
t; = [(p k1) ] Again, as above, we have two cases.
Case 2a: ko < p°°=9 which leads to a solution.
Case 2b: ky > p2°~ 5 , We can continue to the nextsayzs = zo + to Wheret, = [(p ’”)1

We can repeat thls process until it terminates by giving us a ‘valid’ solution or it reaches a stage;whepé>
in somert" cycle. Then we can restart with= v + 1 till v < p°-5. Based on this we present the following algorithm.
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Algorithm 3
I Min = [p®2°];
Il Maz = |p°°];
[ Start withv = Min;
v while(v < Max){
IVa z=[5]
IVb k = v?z %p;
Ve if (k< [2Maz])
Output solution asz = k,y = kv, z,v) and terminate;
Ivd t =227
Ve z=z+t
IVf While (z < Maxzx) {
k = v2z %p;
if (k< Aoz ))
Output solution asz = k,y = kv, z,v) and terminate;
t=[E5Y;
z=z+t
}
Vg v=uv+1,;
}
\% Output no solution withe, v, z, v < |p®?];

In Algorithm 3 we increase by a step oft instead ofl, as was done in Algorithm 2. This gives the improvement.
However, as becomes larger the worst case complexity of Algorithm 3 becaii{g$, which is again theoretically
worse than the trivial method described in Algorithm 1. On the other hand, it is important to note that Algorithm 3 is
much more efficient than Algorithm 1 when there is a solution wheéseclose tgp?-22. We shall now use Algorithm 3
for a few arbitrary primes, which are hard to solve using Algorithm 1. Note that the last but one row in Table 3 contains
a 77-bit prime and the last row contains9&-bit prime. We run Algorithm 3 implemented using C programming
language and GMP (GNU Multi Precision) facility. The operating system is Redhat l8ruand the machine
contains Pentium IV processor with 1 GByte RAM. It took approxima2@lyninutes to have a solution for th&-bit
prime and5 minutes for thed8-bit one. If one uses Algorithm 1, it seems very hard to find solutions in these cases
with present day machines. As in Table 2, all the primes presented in Table 3 are selected at random. We have chosen
five 77-bit primes and obtained a solution every time within half an hour. ¥ebit, we have taken two randomly
chosen primes, out of which one is in Table 3, the other one has not given any solution in 3 hours.

Table 3. Experimental Results running Algorithm 3

0.25 0.5

P P P v x y E
145678132176163 3475 12069719 27009 17 459153 0785284
145678132176162513743 109863 12069719639 115472 18609 2148818448 10925491628
23456543676548754325781 391351 153155202682 1440247 48034 69180824398 147005442243
66666555558888899999267 508133 258198674587 11225651 16104 180777883704 117974951645
165449093126897423470644536537 | 20168152 | 406754340022202 | 52165306 | 5171691 | 269782843552446 | 303998105265466

Theorem 2 Assume that for a prime, there exists a valid solution (recall Definitidnand equation(2)) with v =
O(p®25+¢). Then Algorithn8 requiresO (p-2513¢) time complexity.

Proof: We assume—kis ©(p). If vis ©(p®?>*¢), thent is O (r-Fe ), thatis,0 (p° 2~ *). Soz takes@(}%),

which is, 9 (p?©) steps for each. Hence the total time complexity 8(p®-25+3¢).
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From Table 2, we see that there are solutiongfer 0.3 for 9 primes out of 25 and the time complexityG¥p®-)
in these cases. It should also be noted that this method is extremely effective vgrefp®-2°).

Now let us see under what conditions Algorithm 3 works in tithg° (log p)), that is, in time polynomial itiog p.
This directly follows from the proof of Theorem 2.

Corollary 1 Assume that for a given primg there is a solutionz,y,z < p°5 (as in (2)) with v = p®2° +
O(P(logp)). Then Algorithn8 runs inO(P(log p)) time.

.5

. Now z takes@(%) steps, and considering

Proof : If v = p"** + O(P(log p)), thent is O( 55w )

% is negligible, one can assume thatakes constant number of steps for eacithis gives the proof.

Algorithm 3 uses a suitable gap infor a fixedwv. In a similar way one can try to work with a suitable gapin
for a fixedz. However, we believe a much better improvement could be achieved by finding a ‘fetter’) pair for
given (vo, zo) pair. Here by ‘better’ we aim at having < ko < p, wherev?z; = l1p + k1 andvizo = lop + ko. A
strategy in this direction may improve Algorithm 3 further.

Now one important question is what proportion of primes will have a solution as mentioned in Corollary 1. This
is not clear at this point and needs further investigation.

It should be noted that the primes in Table 3 are selected at random. However, it is possible to identify very large
primes for which Algorithm 3 will give a solution very fast. We first decide on a boungfeay N, and then select
anyv of O(N?2%). Now choose a primg which lies betweerfv — 1)?v? —v +1 < p < (v — 1)?v2. Thusv is
O(p®25). Takez = (v — 1)? and note that < p®°. Itis easy to see that,y < p°-°.

As an example we present an 160 digit prime 176137087374777815393637069
274127644687309130845043890914502471120716308007100351639864691570824
4598438342410668233754646248246087265981544014990191518124512839. Note that

[p%-2%] = 6478324567890123456743789213645386564273,

|p%-°| = 4196868920692875480476482274310255119840085255344263015037
8557202428461773454255= 6478324567890123456743789213645386564273,

x =697,y = 4515392223819416049350421081910834435298281, and
z = 4196868920692875480476 4822743102551198394374228874740026921813413
214816386889984.

Proposition 4 Consider a primep such that(v — 1)%v? —v + 1 < p < (v — 1)?v2. Then we get a valid solution of
(2) for z = (v — 1)2.

Proof: Since(v —1)* < (v —1)%v2 —v+1 < p, we getz = (v — 1)2 < p®5. Nowz = v%2 %p = v%(v — 1) %p.
This givesx < v —2 < p¥25. Hencey = vz = v(v —2) < (v — 1)% < p°5.

The Prime Number Theorem (see reference (Menezes and Oorschot and Vanstone 1997)) states that there are
approximatelylw% many primes less than or equala Proposition 4 implies that, for approximatq@% —

-1’ —vtl v Ni imes less thaiv t a fast solution to CSC using Algorithm 3
Tog((0—1)Z02—v+1) R gt ~ TogN many prlmeS ess , one can ge a Tast solution 1o USlng gorl m o.

Thus we have the following result from the above discussion and Corollary 1.

1
Corollary 2 There are approximatelyé\é;*]v many primesp < N for which we get a valid solution of CSC in
O(P(logp)) time using Algorithn3.
4 Further extension with respect to Reyneri’s sieve
We have already discussed an application of Reyneri’s sieve to CSC in Section 2. Here we use an extension of that

idea to get fast solutions of CSC for certain kind of primes.
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Letp be a given prime then take= |p3 |. So, we havei® < p < (n+1)3. Nowletk = (n+1)>—p. If k < 7’;0—;,

by lettingv = n + 1 andz = n + 1, we have the required solution as seen earlier. One can also consider the cases
0.5

whenn3 < p < n?(n+1i) fori = 1,2, 3. Consider that some particulatb satisfies:?b > p andk = a?b—p < 2

Then we have a solution by taking= a andz = b. Now we look into this idea more carefully.

a "

Theorem 3 Given a primep, assume that there exidtandi such that fom = | /Ip| we have
(i) n® <lp<(n+1)3<lp+p or
(i1) n3 <lIp <n?(n+1i) < Ip+ p°, wherei = 1,2, or 3 andi < p?-> — p0-5—¢,
where( < [ < p%®73¢ — p¢=1. Then there is a valid solution ¢2) with
() v=z=n+1,
(it) v=n,z=n-+1,
respectively. Furthef > 0 implies0 < e < %

Proof: Firstwe provei). Takev = z = n+1. Thenlp < v2z = (n+1)3 < Ip+p¢. Thus,z = vz mod p, z < p°.
Nowy = vz < (n+ 1)p° < (VIp+p)p° < (/(0*573)p + p)p° = (V/pt573¢ — pe + pe)p® = p* >~ p° = p"°.
Similarly, z = n + 1 < p®-5—¢,

Now we prove(ii). In this casep® < Ip < n?(n +1) < Ip +p%, i = 1,2,3. Takev = n, z = n +i. Then we
obtainv?z = n?z = n?(n+1) < lp+p°. Sincex = v?z mod p, z < p°. Furthery = vx < np® < (Ip+p°)'/3p <
((p0.573e _ péfl)p +pe)1/3pe — (p1.573e _pe +pe)1/3pe — (p1.573e)1/3pe — p0.57€p€ — p0.5. Lastly, we have
to show that: < p®° given thatz = n + i. Sincen® < Ip, we haven < (Ip)'/3 < ((p°>=3¢ — pc~)p)1/3 =
(p1.5—3€ _ pe)1/3 < p0.5—€. SO,TL +i< p0.5—€ +4 S p0.5, if 4 S p0.5 _ p0.5—e'

Based on Theorem 3, we present Algorithm 4. Before stating the step by step algorithm, we discuss the following
few issues. Let us consider a prim&nd somé. It is clear that we can immediately calculate= | /Ip]. Now to
get a solution using Theorem 3, one ne&ds p¢ > M, whereM = n?(n +1i),i = 1,2,30r M = (n + 1)3. Thus
Ip must be greater thall — pc. That is why the requirement iy — p¢ < ip < M.

Now we need to check whether there exists afiyr which this is possible. So we calculdte= L%J, and so,

Ip < M < (I + 1)p. Given thisl, we calculate the maximumin the range) < e < & such thatl < p®5=3¢ — p<=1,
There are various ways to calculate sucteaRor instance, labeling = ,/p, X = p®, we can solve forX satisfying
the inequalityd® X4 —1A%2X —1 > 0. (We can also use the next alternative approach: sinde< 0 and0.5—3¢ > 0,
then the termp®-5—3¢ will dominatepc—! and so, fop sufficiently large, we can only solve the inequality p°->—3,
instead, which will givep = {/p°-5/1.) For that maximung, if [p + p¢ becomes greater thad, then we get a valid
solution. Thus, we do not need to check all integar the ranged < I < p°-5=3¢ — pc=L, but we can only check
the values of as! = L@J, fori =1,2,3andl = L@J in the prescribed range. Also it is clear that as we
increasd, the value ok becomes smaller. Thus the expectation of getting a solution decredss$seased. Based
on this we present the following algorithm.
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Algorithm 4

| n=[pliv=[p"2;
Il l=1; My =n?(n+1); My =n?(n+2); M3 =n?(n+ 3); My = n3;

11 while(l < v){
Illa zi=n+1,z0=n+2,23=n+3; 24 =n;
b for (i =1,2,3,4){
Nib(i) L= %]
I1b(ii) Calculatee such that = [p°573¢ — p=1]; g = [p°];
IIb(iii) if (M; —Ip)<g
reporty = n, z = z;, x = v2z %p, y = v3z %p and terminate;
I }
lid n=n+1;
\Y }
Vv Report no solution of this form.

Now it is important to analyze what proportion of primes are covered by Algorithm 4. We only take the case when
I = 1 which gives a lower bound on the number of primes that are being covered by this algorithm and the algorithm
1

will stop just after the first iteration. That is, for these primes, we have a constant time algorithin=Fgre = ;.

Thus if we havell — p% < p < M, then there is a valid solution of CSC for the primeWe can take ~ n3. The
range between® and(n + 1) is 3n? + 3n + 1. In this rangep can have the value in the rangé — ps <p< M,
whereM = n%(n +i),i = 1,2,3 or M = (n + 1) to have a solution by Algorithm 4 in one step. Thus there
are 4 different regions, each of length, where we get a one step solution using Algorithm 4. Thus in the range of
3n? + 3n + 1 integers, we are interested in thentervals containinglp% ~ Anz many integers in total. Now we

M; M;—n?3

can approximate the number of primes in these interval§jtj¥1 (1ogM» Yy l)), where theM;’s are as
K og(M;—n?2

1
described in stepI of Algorithm 4. TakingN =~ n3 ~ M;, we can approximate this by(lOZgVN - ](VN"Z)) ~
og —n2

A( N N-nB) L ynd oy nE 4wl
log N log N ~ Flog N 7 Flog(n+1)3 ™ 3logn"’

Similarly one can look at the interval betwe¢n — 1)2 andn®. Thus one can approximate the total number of

[N

1 L
such primes up t¢n + 1) by 2?22 glg)—;j A Z;V:Q %hj)gj. We summarize the previous analysis in the following
corollary.

1 1
N3 4 42
7j=2 3 logj

Corollary 3 There are approximately many primesp < N for which we get a valid solution of CSC in

one step by using Algorithrh

To further motivate our sieving approach, we now attempt to find some necessary conditions orppsimes
fail Reyneri’s sieve, but pass ours. From its construction, a ppimiél pass Reyneri’s sieve wher? —p < p2, where
x = [ ¢p]. On the other hand, a primewill pass our sieve if there is sonigsatisfying the conditions of Theorem 3.
We first discuss the case with= 1. Given somez, we concentrate on the interval of integers frafto (n + 1)3.
Take the cases when () + 1) — ps < p < (n+1)3 or (2)n2(n + 3) — p& < p < n%(n + 3). In these two cases,
considering: ~ p3, one can see the following solution using Reyneri’s sieve. 'Eake[pﬂ, z=x3—pandy = 1.
In these two cases;® = (n + 1) and hence = 23 — p < 23 — n2(n +3) + ps = 3n+ 1+ ps < p=. Thus one
can get a solution with, y, 2 < p2. However, note that the solutions we get using Algorithm 4 are different from the
ones using Reyneri’s sieve, singeannot bel in our cases, ag > x, in fact a multiple ofz.
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Now consider the other two cases wheni3)n+2)—ps < p < n2(n+2) or (4)n2(n+1)—ps < p < n2(n+1).

In these two cases,= 2% —p > 23 —n?(n+2) =32 +3n+1 > p2. Thus these primes have solution for CSC
with our sieving method, but not by Reyneri’s sieving.

As an experimental result, we tried with = 100000 and foundl16 primes as in the cases (1), (2) which pass
Reyneri’s sieve andl8 primes as in the cases (3), (4) which do not pass Reyneri’s sieve.

The cases consideririg> 1 are not simple to analyze and need further investigation. However, we have experi-
mented with a few cases and the results show that the primes do not pass the Reyneri’s sieve. As example, we tried
with n = 100000. For2 <[ < 9, we got the solutions fa0 primes according to Theorem 3 and none of them can be
approached by Reyneri’s sieve.

Now we extend slightly the notion of valid solution to CSC to include all solutions satisfyingz = O(p%) (in
our previous definition the constant understood Was

Theorem 4 Letp be a prime. Assume that there exist integeiswith clp% < a < cop?5~¢ (for some fixed constants
c1 > co; due to the reasolp% < ch%*E, 0<e< % — Ing(%)) andb > fl—’; such thatlp < a?b < Ip + p¢, for
somel <[ < C3p%. Then there is a valid solution of CSC with= a, 2 = b.

Proof : Takev = a, z = b. It can be checked tha® = y2z mod p andz® # y2z. Sincelp < a?b < Ip + p¢ and
z = a2b mod p, it follows thatz = a2b %p < p¢ < ps. Similarly, usingalp < a3b < alp + ap® andy = a3b mod p,
we gather thay = a3b%p < ap® < cop? p¢ = cop? . Furthermorez = b < fz—’; + 5 < R

2 2
C]p Clp

(%

2
3
Gpz+1< (i—g + 1) pz. Therefore, y, z are allO(pz) and they are solutions to CSC.

1 1

Clearly the result of Theorem 4 covers a lot more primes than Theorem 3. However, it is not clear how to write an
algorithm to gef very fast when the results of Theorem 3 or Theorem 4 are applied. Algorithm 4 works efficiently (in
fact in constant time) when one gets a solution for low valuéglebunded by a constant), however ascreases, the
complexity of the algorithm increases.

5 Conclusion

In this paper we identify some subsets of the set of primes where the Cubic Sieve Congruence problem can be solved
very fast. The solutions to this problem help in solving the Discrete Log Problem (DLP) by index calculus method.
Thus we could identify some subclasses of primes which should not be used in the design of cryptosystems where the
hardness of DLP provides the security. Apart from a cryptographic interest, this problem is motivating by itself from a
number theoretic point of view. We could only provide partial solutions to this problem. Solving it completely seems

to be an extremely challenging task. Thus, getting some more partial solutions to this problem presents an important
research direction.
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