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Abstract

In this paper, we present theoretical constructions of Rotation Symmetric Boolean Functions (RSBFs) on odd
number of variables with the maximum possible algebraic immunity. To get high nonlinearity, we generalize our
construction to a search technique in the RSBF class. We present RSBFs with the maximum algebraic immunity
and high nonlinearity for odd number of variables. We also study the RSBFs on even number of variables for max-
imum algebraic immunity.

Keywords: Algebraic Immunity, Boolean Function, Nonlinearity, Nonsingular Matrix, Rotational Symmetry,
Walsh Spectrum.

Resumen

En este articulo, presentamos construcciones teoricas de funciones Booleanas de rotacion simétrica (RSBFs por sus
siglas en inglés) con un nimero impar de variables y con maxima inmunidad algebraica. Con el objeto de obtener
funciones Booleanas de muy alta no linealidad, generalizamos nuestra construccion a una técnica de bsqueda en la
clase RSBF. Presentamos asi RSBFs con inmunidad algebraica maxima y alta no linealidad para un nUmero impar
de variables, y tambien RSBFs con un nimero par de variables que exhiben inmunidad algebraica maxima.
Palabras Claves:Inmunidad algebraica, funciones Booleanas, no-linealidad, matrices no singulares, simetria rota-
cional, Espectro de Walsh.

1 Introduction

Algebraic attack has received a lot of attention recently in studying the security of stream ciphers as well as block
ciphers (Armknecht 2004; Batten 2004; Braeken and Preneel 2005; Canteaut 2005; Cheon and Lee 2004; Cho and
Pieprzyk 2004; Courtois and Pieprzyk 2002; Courtois and Meier 2003; Courtois 2003; Armknecht, Carlet, Gaborit,
Kunzli, Meier, and Ruatta 2006; Didier and Tillich 2006; Courtois, Debraize, and Garrido 2006). One necessary
condition to resist this attack is that the function used in the cipher should have high Algebraic ImrAlnity is
known (Courtois and Meier 2003) that for anyvariable function, the maximum possibiis [ % .

So far, a few theoretical constructions of functions with optiflahave been presented in the literature. In (Dalai,
Gupta, and Maitra 2005), the first ever construction of functions with the maxiklumwas proposed. Later, the
construction of symmetric functions with the maximuthwas given in (Dalai, Maitra, and Sarkar 2006). For odd

*This is an extended and revised version of the paper (Sarkar and Maitra 2007).
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number of input variables, majority functions are the examples of symmetric functions with the ma&imRecently
in (Li and Qi 2006a), the idea of modifying symmetric functions to get other functions with the max#hhas been
proposed using the technique of (Dalai and Maitra 2006).

It is known that the class ai-variable symmetric functions forms a subclasswefariable rotation symmetric
functions. Therefore, all the symmetric functions with the maximAnare also examples of RSBFs with the max-
imum Al. However, so far there has been no known construction method available whicmegreemble RSBFs
having maximumAl which are not symmetric. It has been proved in (Li and Qi 2006b; Qu, Li, and Feng 2007), that
the majority function (up to complementation) is the only possible symmetric function on odd number of variables
which has the maximurAl. Hence, there is a need to get a theoretical construction method which provides new class
of RSBFs with the maximurAl, which are not symmetric.

We present a construction (Construction 1) that provides RSBFs on odd number of variabisafth the
maximumAl, which are not symmetric. Note that updwariables, RSBFs are all symmetric, and that is the reason
we concentrate on > 5. In this construction, the complementwefvariable majority function is considered and its
outputs are toggled at the inputs of the orbits of sizg and [ 5] respectively. These orbits are chosen in such a
manner that a sub matrix associated to these points is nonsingular. This idea follows the work of (Dalai and Maitra
2006), where the sub matrix was introduced to reduce the complexity for determihaig function. We also show
that the functions of this class have nonlineagity ! — (’E;Jl) +2 which is better thag™ ! — (T;j) the lower bound
(Lobanov 2005) on nonlinearity of amy(odd) variable function with the maximus. Prior to this work (Sarkar and
Maitra 2007), the general theoretical constructions (Dalai, Gupta, and Maitra 2005; Dalai, Maitra, and Sarkar 2006)
could achieve this lower bound only. Later to the work (Sarkar and Maitra 2007), very recently in (Carlet, Zeng, Li,
and Hu 2007), construction of-variable functions with the maximurl has been provided for odd with good
nonlinearity too.

Further, Construction 1 is generalized in Construction 2 which is further generalized in Construction 3. In each
of the generalizations we release the restrictions on choosing orbits and achieve better nonlinearity of the constructed
RSBFs with the maximuml. We find RSBFs having nonlinearities equal to or slightly less thian' — 2" for
oddn,7<n <11.

Contributions discussed above cover up to Section 5 of the paper which were the main contributions of the paper
(Sarkar and Maitra 2007). Section 6 is the new addition to the contributions provided in (Sarkar and Maitra 2007).
In this section, we show how one can get a construction (Construction 4) of RSBFs (which are not symmetric) on
even number of variables with the maximukh from the construction given in (Dalai, Maitra, and Sarkar 2006,
Construction 2). We also show that the nonlinearity of these functions is eq2&tto— (";1). This nonlinearity
is equal to the nonlinearity of the functions constructed in Construction 2 of (Dalai, Mf’:\itra, and Sarkar 2006). We
discuss the recent work (Carlet, Zeng, Li, and Hu 2007), where construction of functions with the makirham
been given for even number of variables. We show how RSBFs on even number variables with the makianm
be obtained from this construction. Fer> 8, the nonlinearity of this class of RSBFs is equato ! — ("*1) + 4.

o : ) 3
We also present some generalizations of this construction.

2 Basics of Boolean functions

Let us denotd/,, = {0, 1}". An n-variable Boolean functiof can be seen as a mappifig V,, — V4. By truth table
of a Boolean function on input variablegz1, . . ., z,, ), we mean th@™ length binary string

f=1f(,0,---,0), f(1,0,---,0), f(0,1,---,0),..., f(1,1,--- ,1)].

We denote the set of all-variable Boolean functions ds,,. Obviously|B,| = 22". The Hamming weighbf a
binary stringT is the number of 1's iff", denoted bywi(T'). An n-variable functionf is said to bebalancedf its
truth table contains an equal number of 0's and 1's, ig(f) = 2"~!. Also, theHamming distancéetween two
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equidimensional binary strings and 7% is defined byl(71,7%) = wt(Th ® T»), whered denotes the addition over
GF(2). Support off denoted byupp(f) is the set of inputs: € V,, such thatf (z) = 1.

An n-variable Boolean functiorf (x4, ..., z,) can be considered to be a multivariate polynomial a#&#(2).
This polynomial can be expressed as a sum of products representation of all digtirartder product$0 < k£ < n)
of the variables. More preciselj(z1, . .., z,) can be written as

ag D @ a;x; b @ Qi TiT; D ... D a12..nT1T2 ... Ty,

1<i<n 1<i<j<n

where the coefficientsy, a;, a;j, ..., a12.., € {0,1}. This representation of is called thealgebraic normal form
(ANF) of f. The number of variables in the highest order product term with nonzero coefficient is callddebeaic
degree or simply the degree of and denoted byeg( f).

Letz = (x1,...,2,) andw = (w1, ...,w,) both belonging td/,, andz - w = w1 & ... @ x,wy,. Let f(x) be
a Boolean function om variables. Then th&/alsh transfornof f(z) is an integer valued function ov&f, which is

defined as '
Wiw)= ) (-1,
€V,

The Walsh spectrum of is the multiset{ W, (w)|w € V,,}. In terms of Walsh spectrum, the nonlinearity ofs

given by .
nl(f) =2""" = 5 max [Wr(w).

An n-variable Symmetric Boolean functions are the ones which are invariant under the action of the Symmet-
ric group S, on'V,, i.e., forpu,v € V,, if wt(p) = wt(v) then f(u) = f(v). In (Dalai, Maitra, and Sarkar
2006), analysis of the Walsh spectra of the Symmetric functions has been done in terms of Krawtchouk polyno-
mial. Krawtchouk polynomial (MacWilliams and Sloane 1977, Page 151, Part |) of degregven by K;(z,n) =
Y01 (5)(1Z5), i =0,1,...,n. Itisknown thatfor afixed € V;,, such thawt(w) = k, 3,y =i (1) =
K;(k,n). Thus it can be checked that jfis ann-variable Symmetric function, then fart(w) = k, Wy(w) =
S o(=1)rer O K (k,n), whererey (i) is the value off at an input of weight. Itis also known that for a symmetric
function f onn variables and:, v € {0,1}", W;(u) = Wy (v), if wt(u) = wi(v). Note thatK; (k, n) is the(i, k)-th
element of the Krawtchouk matri¥< R,,) of order(n + 1) x (n + 1). Thus Walsh spectrum ¢f can be determined
as(ref[0],...,ref[n]) x (KRp[0],..., KRa[n]), where eacS Ry/[i], (0 < i < n) is a column vector ol R;.

A nonzeran-variable Boolean functiogis called an annihilator of a-variable Boolean functiofiif fxg = 0. We
denote the set of all annihilators by AN (f). Then algebraic immunity of, denoted byAZ,,(f), is defined (Meier,
Pasalic, and Carlet 2004) as the degree of the minimum degree annihilator among all the annihijatmrs of f,

i.e., AZ,(f) = min{deg(g) : g # 0, g € AN(f) U AN(1 & f)}. We repeat that the maximum possible algebraic

immunity of fis [ ].

2.1 Rotation Symmetric Boolean Functions

We consider the action of the Cyclic grodp, on the setV,. Letx = (1,72,...,Zn_1,7,) € V, andpt, € C,,
where: > 0. ThenC,, acts onV, as follows,

7
pn('rlvaa ey Tn—1, In) - (Il+’ia Logigy e - axn71+i7xn+i)7

wherek+i (1 < k < n) takes the valug +: mod n with the only exception that whéti-7 = 0 mod n, then we will
assignk + ¢ mod n by n instead of0. This is to cope up with the input variable indices. ., n for z1,...,z,. An
n-variable Boolean functioif is calledRotation Symmetric Boolean function (RSBH)is invariant under the action
of C,,, i.e., for each inputzy, ..., z,) € Vp, f(p!,(x1,...,2,)) = f(z1,...,2,) for 1 <i < n — 1. We denote the
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orbit generated by: = (x1,...,x,) under this action a&',., therefore G, = {pi (x1,...,2,)|1 <i < n} and the
number of such orbits is denoted hy. Thus the number ai-variable RSBFs ig9~. Let ¢ be Euler’sphi-function,
then it can be shown by Burnside’s lemma that (see also (Stanica and Maitra 2068)} Zk‘n (k) 2%.

An orbit is completely determined by it®presentative elemert,, ;, which is the lexicographically first ele-
ment belonging to the orbit (Stanica, Maitra, and Clark 2004) and we define the weight of the orbit is exactly the
same as weight of the representative element. These representative elements are again arranged lexicographically as
Aoy ..oy A g, —1. Note that for anyn, A, o = (0,0,...,0) (the all zero input)A,, 1 = (0,0,...,1) (the input of
weight1) andA,, 4,-1 = (1,1,...,1) (the all1 input). Thus am-variable RSBFf can be represented by tgg
length stringf (An.0), - .., f(An,g,.—1) Which we call RSTT off and denote it bYRST'T.

In (Stanica, Maitra, and Clark 2004) it was shown that the Walsh spectrum of an R$&8¢€es the same value
for all elements belonging to the same orbit, i¥;(u) = W (v) if w € G,. Therefore the Walsh spectrum of
f can be represented by thg length vecto(wa[0],...,war[g,]) Wwherewar[j] = Wy(A, ;). In analyzing the
Walsh spectrum of an RSBF, thed matrix has been introduced (Stanica, Maitra, and Clark 2004). The matrix

nA = (nAi_’j)gnxgn |S deﬁned as
A= Y,
IEGAn,i
for ann-variable RSBF. Using thig, x g, matrix, the Walsh spectrum for an RSBF can be calculated as

gn—1
Wi(An) = > (1) i) A, .

=0

3 Existing results related to annihilators

LetV,, = {0,1}". We take the degree graded lexicographic ordet?*” on the set of all monomials on-variables

{Zmy oo @y, 1<k <n,1<my,....omg <N}, €T, Tong « - Ty, < Tpy Ty - .- Ty, If €IthErk < lork =1
and there id < p < k such thatng, = 7, mi—1 = 7k—1,..., Mpy1 = Tp+1 @andm,, < r,. For example, fon = 7,
r123T6 <MW xir9msms @Ndry 3y < rz4T7.
Let vpa(z) = (ma(x),ma(x),... My ) (z)), wherem;(x) is thei-th monomial as in the order(#9’)
=0 \ i
evaluated at the point = (1, z2, ..., Zn).

Definition 1. Given a functionf onn-variables, letM, 4(f) be thewt(f) x Zf:o (") matrix defined as

Un,d(Pl)
Un,d(PQ)
Mn,d(f) = : s

Un,d(Pwt(f))

where0 < d < n, P; € supp(f), 1 <i < wt(f) andPy <! Py <! ... <49l P, 0.

Let f(x1,...,z,) be am-variable function and the-variable functioy(x1, ..., z,) be an annihilator of, i.e.,
fg=o0forall (x1,...,2,) € V,. That means,
g(Ilvvxn):Olff(Ilavxn)zl (1)

If the degree of the functionis less than or equal i then the ANF of; is of the form

n
9(x1, ..., 2n) = ag + E a;Ti + -+ E iy ..igTiy " Tig,
i=0

1<y <ig--<ig<n

Computacion y Sistemas Vol. 12 No. 3, 2009, pp 267-284
ISSN 1405-5546



Construction of Rotation Symmetric Boolean Functions with... 271

whereag, a1, . .., a12, ... Gn—d+1,....n are from{0,1} not all zero. Then the relation 1 gives a homogeneous linear
equation
n
ag + Zaﬂ?i +- Z @iy ..igTiy - Ty, = 0, 2
1=0 1<i1<i2---<ig<n

with ag, a1,...,a12,...an_4+1..n @S variables foreach inpQty, . .., z,) € supp(f) and thuswt(f) homogeneous
linear equations in total. If this system of equations has a nonzero solutiory trevring the coefficients in its ANF
which is the solution of this system of equations is an annihilatof of degree less than or equaldo Note that
in this system of equation&/,, 4(f) is the coefficient matrix. Then it is clear that if the rankidf, 4(f) is equal to
Z?:o (™), i.e., the number of variableg,does not posses any annihilator of degte¢ for d = | Z |, both of f and

1 @ f do not have any annihilator of degree less than or equgltteen f has the maximum algebraic immunifys |.

Theorem 1. (Dalai and Maitra 2006) Ley be ann-variable function defined ag(x) = 1 if and only ifwt(z) < d
for0 < d < n. ThenM,, 4(g9)~! = My, a(g), i.e., M, 4(g) is a self inverse matrix.

3.1 Existence of functions with the maximumAl on odd number of variables

We start this section with a few available resultsromariable functions with the maximurl. Henceforth, we will
consider the<%! ordering of the inputs o}, unless stated for odd.

Proposition 1. (Dalai, Gupta, and Maitra 2004) An odd variable function with the maxinmddmust be balanced.
Then we have the following result.

Proposition 2. Let f be ann (odd) variable function. TheAl of f is [ 3] if and only iff is balanced and\/,, | = | (f)
has full rank.

We define the: (odd) variable functior),, as follows

{1 if wt(z) < 2],

0ifwt(z) > [5].

The function@,, is a balanced symmetric function and it has been proved in (Dalai, Maitra, and Sarkar 2006)
that this function has the maximum algebraic immunity, i[&]. Then both of the matrices,, »(Q,) and
M, = (1® Q) are ofthe orde2”~! x 27~ and nonsingular. Now we take a look at a construction of-aariable
function having the maximurl by modifying some outputs a9,,.

Let {X1,...,Xon1} and {Y1,..., Y51} be the support ofp,, and1 & Q,, respectively. Suppos&’ =
{ X, s X € {X1,.. ., Xona bandY? = {Y;,,....Y;, } C {V1,...,You1} are twok-subsets. Construct
the functionF;, as

F (2) 1®Qn(x), ifz c XIUY?,
n T = .
Qn(x), otherwise.

The next result follows from Proposition 2.

Proposition 3. The functionF,, has the maximural if and only if the twdk-setsX? andY be such thaMnyL%J (Fn)
is nonsingular.

This idea was first proposed in (Dalai and Maitra 2006) and using this idea, a few examples of functions on odd
number of variables with the maximuAl have been demonstrated in (Li and Qi 2006a). However, this has not been
studied in the domain of RSBFs.

Let’'s have a quick look at a result from linear algebra which is a consequence of the Steinitz Exchange Lemma
(Kurosh 1955).
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Theorem 2. Let V' be a vector space over the field of dimensionr and {a4,...,a,} and{f,..., [, } are two
bases of”. Then for anyk (1 < k < 1), there will be a pair ofc-sets{3,,, - .., 8a, } and{ay,, ..., as, } such that
the set{ay, ...,y U{Bay, -+, 0ar} \ {Qby,- .., an, } Will be a basis of.

The row vectors,, | n | (X1),... s Un, | 2] (Xan-1) of My | »| (Qn) form a basis of the vector spatg.-:. Sim-
ilarly the row vectorSvM%J(Yl), . ,vn,L%J(Y%l) of Mn7L%J(1 @ @) also form a basis of the vector space
Van—1. By finding two k-sets{v,, | = |(Xj,), ..., v 2 (X;,)} and {v, |2 (Yi,), ... v, 2] (Yi,)} (Which always
exist by Theorem 2), one can constructawvariable functionF,, with the maximum algebraic immunity if and
only if the corresponding matriMnyL%J(Fn) is nonsingular. Complexity of checking the nonsingularity of the

matrix M, |» | (F,) is O(( ié ())?). However, this task can be done with lesser effort by forming a matrix,
W =M, 2/ (1©Qn)x (M, 2(Q,))"" and checking a sub matrix of it. SiN¢&L,, |2 (Qn)) ™" = M, |2 (Qn),

thenW = M,, = (1® Qn) x M, = (Qy). We have the following proposition.

Proposition 4. (Dalai and Maitra 2006) LetA be a nonsingularn x m binary matrix where the row vectors are
denoted ag, ..., an. LetB be ak x m matrix,k < m, where the vectors are denotedas. . . , b;,. LetZ = BA™1,
be ak x m binary matrix. Consider that a matrid’ is formed fromA by replacing the rows;, , ..., a;, of A by the
vectorshy, ..., bi. Further consider thé x k matrix Z’ is formed by taking thg; -th, j»-th, .. ., jx-th columns ofZ.
ThenA’ is nonsingular if and only iz’ is nonsingular.

From the construction of),, it is clear that it is balanced. Now construct the maifix= MmL%J (1® Q) x
My = (Qn). ConsiderA to be the matrian_,L%J (Qr) and let B be the matrix formed by, -th, ...,i,-th rows of
M, = (1 ® Qn) which are the row vectors,, | (Y7, ), ..., v, (Y7, ) respectively. Replace thg-th, ..., ji-th
rows of M,, | = (@, ) which are respectively the row vectarg = | (X, ), ..., v, 2] (X}, ) by the rows ofB and form
the new matrix4’. Note thatA’ is exactly theM,, | (Fy) matrix. LetW)y+ | xs| be the matrix formed by taking
i1-th, ... ,ig-th rows andj;-th, . . ., ji-th columns ofiV/. ThenMn,L%J (Fy) is nonsingular if and only itVy-+ || x|
is nonsingular. Thus, we have the following result.

Proposition 5. The functionF;, has the maximum algebraic immunity if and only if the sub matijx: x| is
nonsingular.

The next proposition characterizBs.
Proposition 6. (Dalai and Maitra 2006) Théq, p)-th element of the matri} is given by

3 )= wi(X)
Wep = 7 3 ’ (wt(Yq)—wt(Xp)

; ) mod 2, else;

t=0

whereW S((x1,...,zn)) ={i:2; =1} C {1,...,n}.

4 New class of RSBFs with the maximunil for odd n

Proposition 7. Given oddn, all the orbitsG,, generated by: = (u1,...,u,) € V,, of weight| 2 | or [5] haven
elements.

Proof : From (Stanica and Maitra 2008), it is known thayifd(n, wt(p)) = 1, then the orbitG,, containsn
elements. Sincged(n, |5 |) = ged(n, [§]) = 1, the result follows.
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Construction 1.
1. Take oddh > 5.
2. Take an element € V,, of weight| 5 | and generate the orbif,.

3. Choose an orbi€x,, by an element € V,, of weight[ % | such that
for eachz’ € G, there is a unique’ € G, whereW S(z') C WS(y').
4. Construct

R.(z) = Qn(z)®l, ifz e G, UG,,
" ] Qu(), otherwise.

We have the following theorem.
Theorem 3. The functionR,, is ann-variable RSBF with the maximu#.

Proof : R, is obtained by toggling all outputs @},, corresponding to the inputs belonging to the two orbifs
andG,. Therefore,R, is an RSBF om variables. By Proposition 7, we hay€,| = |G,|. Itis also clear that
Qn(z) =1forallz € G, andQ, (z) = 0forallz € G,. Sowt(R,) =2""' — |G|+ |Gy| = 2""*. Thus,R, is a
balanced RSBF on-variables.

Let us now investigate the matri¥|c, x|, |- We reorder the elements @, andG, asz", ... z(1%D and
yD, ..., ylGD respectively wherdV S(z(?)) ¢ WS(y®), forall1 < p < |G, = |G,|. As WS(zP) ¢
WS(y@)forallg € {1,...,|G,|} \ {p}, then by Proposition 6, the value Bf , ,, = 0, forallg € {1,...,|G,[}\
{p}. Again by Proposition 6, the value &F,, ,y can be determined as

3] —wt()

Wom = > (wt(y(”);m(f(”)))_L3§3J<(%1;L%J>_L

t=0 t=0

Thus, the matritV|q, x|, | IS @ diagonal matrix where all the diagonal elements are all equal to 1. Héfeg |a,,|
is nonsingular. Therefore, Theorem 5 implies tRathas the maximural.

Example 1. Taken = 5. Consideru = (1,0,0,1,0) andv = (1,0, 0, 1, 1) and generate the orbits

G, = {(1,0,0,1,0),(0,1,0,0,1),(1,0,1,0,0),(0,1,0,1,0),(0,0,1,0,1)} and
G, = {(1,0,0,1,1),(1,1,0,0,1),(1,1,1,0,0),(0,1,1,1,0),(0,0,1,1,1)}.

Here, for eache’ € G,, there is a uniqug/ € G, such thatWS(z’) C WS(y’). Therefore, by Theorem 3, the
function
Ro(a) {Qn(:c)GBI, ifzeG,UG,,

Qn(z), otherwise,
is a5-variable RSBF with the maximuad 3.

It is known (Lobanov 2005) that for an (odd) variable functiory with the maximumAl, we havenl(f) >
on—l (’[;Jl) Therefore, nonlinearity of the functiaR,, will be at leas™ ! — (’[:Jl) Let us now examine the exact
nonlinearizty ofR,,. In the rest of the paper, we denote an orbit representativezfm\miable RSBF by\"™ for both
odd and evem. We also consider the weight of an orbit as the weight of the elements it contains.
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Theorem 4. The nonlinearity of the functioR,, is 2"~ — (’[;Jl) + 2.
2

Proof : As per the assumptions of Constructibnn > 5 and it is odd; and weights of the orbis, and G,
are respectively 5| and [5]. Now @,, being a symmetric function, it is also an RSBF. B can be viewed as a
function, which is obtained by toggling the outputs of the RSBJ corresponding to the orb@, andG,. From
(Dalai, Maitra, and Sarkar 2006), we know thatQ,,) = 2"~* — (T_Jl) It is also known that the maximum absolute
Walsh spectrum value a@,,, i.e. 2(L J) occurs at the inputs corresponding to the orbits of weighhdn. Note
that when,wt(A™) = n, the value ofiVg, (A") is —2(}, ) or 2(L J) according as| %] is even or odd, and for
wi(A") = 1, Wa, (A") = =2(5 ).

Let us first find the relation between the valuedigf, (A™) andWy,, (A™). We have

L3)

WA = 3 ()TN 3 )@
CEVR\{GLUG} CeEG,
+ Z Rn(C) C AT
CEGU
— 3 (—1)9n©O ()¢ 4 3 (—1)1en @ —1)¢A”
CEVR\{GLUGL} CEG,
T Z 1)1€Qn (O (_1)cA"
¢eGy
= X PO - 3 (O
CEVR\{GLUG,} CEG,
_ Z Qn(C) C A"
CEGU
_ Qn(C) C A" 1 C AT C A"
= > (-1 -2y (- 2y (-
CEVR ¢eGy CEG,
= Wo, (A" +2 > (-1 —2 > (-t €)
CeGy CeG,

Conmderthatut(A") = 1. It can be proved that for any two orbﬂsy andG; of weight| % | and [ 5 ] respectively,
Yeea, (D =1and}y g, (1P = —1. Thus, 3 (-1)¢* = 1and} ¢, (—1)¢* = —1. Therefore,
from Equation 3 we geli/z, (A") = —2(L J) + 4.

Let us now check the Walsh spectrum vallig,, (A™) for wt(A™) = n. We do it in the following two cases.
CASE I | 5] is even.

We have,ZCEGM(—l)CA" = |G,| = n, since¢ - A™ is | %] which is even. Again fo{ € G,, we have,
¢-A™ = [%] whichis odd, 0" ., (—1)*" = |G,| = —n. Therefore, from Equation 3, we gBtr, (A") =
=2(7y)) +2n+2n = =2(]5)) +4n.

CASE II: 5] is odd.

Using the similar argument as we have applied in the previous case, we can sh@ég@t (—1)¢*" = —nand

Yceq, (=1 = n. Then from Equation 3, we gétg, (A") = 213 ) —2n—2n= 213 }) —4n.

Note thalz(’[ Jl) > 4n, except for the case = 5. Therefore, for both of the cases and fob> 7, |Wg, (A™)| =

2(L J) — 4n. Moreover2(L J) 4n < 2(L J) 4, forn > 7. This implies thatWg, (A™)| < |[Wg, (A™)| for
n > 7, whereA" € V,, is an input of weightl. Forn = 5, 2(L J) = 12 and thusWg, (A") = =8 = Wg, (A").
Therefore|Wg, (A™)| < |Wg,, (A™)| for all n > 5.
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Let us check the Walsh spectrum valueg®fat the other inputs, i.e., except inputs of weighgndn. Forn > 7,
the second maximum absolute value in the Walsh spectru@lnocbccurs at the inputs of weightandn — 2. The
exact value at weight input isC = [("53) - 2(£31) + (nZI ,)], whereas at the input of weight— 2, the exact
value isC when | %] is even and it is-C WhenL | is odd. Equation 3 implies that Whemt(A") =30rn—2,
|W, (A™)| can attain value maximum up t&Vg, (A")| + 4n, i.e., (’,i%f’) - 2(;1’31) + (n 1%,) +4n. Butitis

(
clear that,(nT,l) - 2(%51) + (nT,l_g) +4n < 2(L%J1) — 4 = |Wg, (A™)|. Therefore, for alh > 7, the maximum

absolute Walsh Spectrum value®f, is 2(’[;}) — 4.

Forn = 5, it can be verified that for f?my choice of a pair of orhifg andG,, assumed in Construction 1, the
absolute Walsh spectrum value Bf, for all the inputsA™ of weight3 is 8 which is equal tqWx, (A™)].

Hencepnl(R,) = 2"~ — ((5]) +2.
2

5 Generalization of Construction 1

Construction 2. Take orbitsG.,,...,G,, With Q,(z;) = 1, for z; € V,,,1 < i < k and Gy, ..., Gy, With
Qn(w;) =0forw; € V,,,1 <i <. Assume that,

1. Zf:o |Gzt| = Zf&:o |th|-
2. Foreachy’ € Uf_,G., there is a unique/ € UL_G,, s.t. WS(2') c WS(y').

3. Skl (Wt(y/)ZWt(””/)) is odd, for any:’ € U¥_,G., and corresponding’ UL_ G, such thatV S(z') C
WS( "). Then construct,

R;l(:v) = {Qn(l') ® 1’ ifz e {U?ZOGZt} U{Uft:Oth}

Qn(x), otherwise.

Theorem 5. The functionR,, is ann-variable RSBF with the maximu#i.

Proof : Following the same argument as used in Theorem 3, we can show that the Wiatrix;_ |, u:
diagonal whose diagonal elements are all equa| tee., it is nonsingular. This proves the theorem.

0Guwyl

Example 2. Letn = 7. Takez; = (0,0,0,1,1,0,1),22 = (0,0,1,0,1,0,1) andw; = (0,0,0,1,1,1,1),we =
(0,0,1,0,1,1,1) and generate the orbits

G., = {(o,0,0,1,1,0,1),(0,0,1,1,0,1,0),(0,1,1,0,1,0,0),(1,1,0,1,0,0,0),
(1,0,1,0,0,0,1),(0,1,0,0,0,1,1),(1,0,0,0,1,1,0) };

G., = {(0,0,1,0,1,0,1),(0,1,0,1,0,1,0),(1,0,1,0,1,0,0),(0,1,0,1,0,0,1),
(1,0,1,0,0,1,0),(0,1,0,0,1,0,1),(1,0,0,1,0,1,0)};

Gv, = {(0,0,0,1,1,1,1),(0,0,1,1,1,1,0),(0,1,1,1,1,0,0),(1,1,1,1,0,0,0),
(1,1,1,0,0,0,1),(1,1,0,0,0,1,1),(1,0,0,0, 1,1,1)}

Gwz = {(0 07170717171)

:(0,1,0,1,1,1,0), (1, 0,1,1717070)7(07171,1,0707 1),
(1,1,1,0,0,1,0), (1

7170707 7 ) )(17 7 ) 7 7 7 )}

Here for eachz’ € G,, U G,,, there exists a uniqug’ € G,, U G, such thativS(z') ¢ WS(y') and
LEJmete) (wil)—wi@)) s odd. Then construct,
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R’ (z) Qn(z) @1, ifx € {G2, UG, }U{Gu, UGu, }
" Qn(x), otherwise.

Then by Theorem &/, is an7-variable RSBF with the maximu#d 4.

As in Construction 2, outputs @,, are toggled at more inputs, one can expect better nonlinearity than the Con-
struction 1.

For 7-variable functions with the maximuAl, the lower bound on nonlinearity is 44 (Lobanov 2005) and that
is exactly achieved in the existing theoretical construction (Dalai, Gupta, and Maitra 2005; Dalai, Maitra, and Sarkar
2006). Our Construction 1 provides the nonlinearity 46. Further we used Construction 2 to get all possible functions
R/, and they provide the nonlinearity 48.

5.1 Further generalization

Construction 3. Taken > 5 and odd. Consider the orbis.,, ..., G,, andG,,, ..., Gy, such that the sub matrix
Wius_ a.,1x|ut_,c., | 1S nonsingular. Then construct,

R”(I) _ Qn(x) d1,ifze {UzISC:OGzt} U{Ué:Oth}
" ] Qun(2), otherwise.

Clearly, the functionR!! is ann-variable RSBF with the maximurl. Construction 3 will provide all the RSBFs
with the maximumAl. In this case we need a heuristic to search through the space of RSBFs with the maXimum
as the exhaustive search may not be possible as the number of input variabdéesases. One may note that it is
possible to use these techniques to search through the space of general functions, but that space is nfaéh)larger
in comparison with the space of RSBfs 2%) and getting high nonlinearity after a small amount of search using a
heuristic is not expected. We present a simple form of heuristic as follows that we run for several iterations.

1. Start with an RSBF having the maximukhusing Construction 1.

2. Choose two orbits of the same sizes having different output values and toggle the outputs corresponding to both
the orbits (this is to keep the function balanced).

3. If the modified function has the maximui and having better nonlinearity than the previous ones, then we
store that as the best function.

By this heuristic, we achieved 7, 9, 11 variable RSBFs with the maximum possitha@ving nonlinearities 56,
240, 984 respectively with very small amount of search. Note that these nonlinearities are either equal or close to
gn—1 _ o

Later to the work (Sarkar and Maitra 2007), a construction has been shown in (Carlet, Zeng, Li, and Hu 2007)
for Boolean functions (in general, i.e., not in RSBF class) on odd number of variables with good nonlinearity and
the construction works for higher number of variables, i.e., for odgd 15. The nonlinearity is given as (Carlet,
Zeng, Li, and Hu 2007, Theorem 4.2y ! — (EJ) + O(n), where the value 0B(n) is as follows. O(n) =

2[5 (P2 e forn = 4k + 1,k > 4 and2| S0 (38 BE25t ] for n = 4k + 3,k > 5. Further,9(15) =
268 and©(19) = 2436. One should note that the nonlinearity of 15-variable function with the maxirAums
16384 — 3432 + 268 = 13220 in (Carlet, Zeng, Li, and Hu 2007), but a much sharper search result is available which

gives nonlinearity 16272 (Sarkar and Maitra 2008).

—1
2 .
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6 RSBFs with the maximumAIl on even number of variables

Let us start with an existing construction of functions with the maxindurfor even number of variables provided
in (Dalai, Maitra, and Sarkar 2006, Construction 2).

Po(z) = 1foruwt(z) < g
= 0 forwt(z) g,
= ¢, €{0,1} forwt(z) = g

This construction directly gives a construction of mivariable symmetric function (Dalai, Maitra, and Sarkar
2006) with the maximundl for evenn as follows.

Sp(x) = 1forwt(z) <

)

DIl 3

= 0forwt(z) >

From P,,, we can also get a constructionefvariable RSBFs (which are not symmetric) with the maximiAim
for evenn. Since all the:-variable RSBFs are also symmetric foK 3, we consider even > 4.

Construction 4.
1. Taken > 4 and even.

2. LetG) be any orbit generated by € V,, such thatwt(\) = %.

3. Construct

Ho() = Sp(z) @1, if x € Gy,
" ~ | Sa(z), otherwise.

Itis clear thatH,, is RSBF and not symmetric.
Theorem 6. The functionH,, is ann-variable RSBF with the maximufi.

Proof : SinceP, can have any output corresponding to all the inputs of wejghhe proof follows.

In Theorem 7, we analyze the nonlinearity of the functién First we need the following lemma.

Lemma 1. Letn be even andx, be the orbit generated by € V,, such thatwt(z) = %. Then the number of

occurrence ofl’'s and0’s at any coordinate position among all the elementé&/gfare the same.

Proof : The orbits generated by the elements of wei§ltan be divided into two classes, s&y, andCs. Let C;
contains orbits such that the complement of each of the elements in an orbit situates in the same orbit, otherwise the
orbits are inCs. The proofis clear if7, € C;.

Next we consider tha€7, belongs toCy; and containg: number of elements. Since hasn different cyclic
permutations irG,,, then each bit of appears exactly once at any fixed coordinate position among all the elements of
G,. Sincewt(z) = %, the proof follows.

Finally we consider thaf7, belongs toC; and containg < n elements. One may note thai andk is even.

Now in z, all the adjacent-blocks (each of length) will be the same. Sincet(x) = 3, the proof follows.

Computacion y Sistemas Vol. 12 No. 3, 2009, pp 267-284
ISSN 1405-5546



278 Sumanta Sarkar and Subhamoy Maitra

Therefore, according to this lemma, for an orbit of weightthe number of occurrence dfs and0’s in any
coordinate position among all the elements are equdl.td-or example, fom = 4, we take the following orbit
{(0,0,1,1),(0,1,1,0),(1,1,0,0),(1,0,0,1)}. Consider the last coordinate position. The number of occurrence of
1's in the last coordinate position 25 It is clear that for this orbit, this happens for any coordinate position.

Theorem 7. The nonlinearity of the functioff,, is 2"~ — (", ').

Proof : Itis known from (Dalai, Maitra, and Sarkar 2006) thdtS,,) = 2"~* — (", "). Moreover, the maximum
2
absolute Walsh spectrum value occurs at the inputs of weight zero, oneaarttithe value |$E).
2
First we find the relation between the Walsh spectrum valuds,pdnd.S,,. We have,

W, (A") = Z (— 1)Hn(<) CA"+ Z Hn(C) C/\"
CEVR\G CeGx
=Y (CDSOC 4 Y (1)@ (e
CEVR\G A CeGy
Y RO - 3 e
CEVR\G [SSIEN
— Z( 1)571(4) CAn -9 Z 1 CA"
CEVR [SS1E5Y
= Ws,(A")+2 > (=) 4
CEG

Now we investigate the values Bfy, (A™) for different weights ofA™.
CASE I: wt(A™) = 0.
From (Dalai, Maitra, and Sarkar 2006), we ha¥#s, (A") = — (). Since,|Gx| < n, the maximum value that can
2
be atta.ined bY e, (1) isn. Therefore| Wy, (A™)] < (g) +2n, if ( ) < 2nand Wy, (A™)] < (g) —2n,
otherwise.
CASE II: wt(A™) = n.
From (Dalai, Maitra, and Sarkar 2006), it is known ti};, (A™) = HF(Z) according asy is even or odd. If is
2
even, the scaler produ¢t A™ will be even for all¢ € G, and hence, the maximum value t@geGk(—l)C'A" can
attain isn. Therefore|Wy, (A™)] < —(%) + 2n, if (%) < 2nand|Wg, (A™)| < (%) — 2n, otherwise.
2 2 2

If 3 is odd, the scaler produ¢tA™ will be odd for all¢ € G and hence, the minimum value tlﬁtCeGA (—=1)e0"

can attain is-n. Therefore|Wy, (A™)| < (%) — 2n,if () > 2nand Wy, (A™)| < — (%) + 2n, otherwise.
2 2 2
CASE lll: wt(A™) = 1.
From Lemma 1, we havE .., (—1)*" = —% + 2 = 0. ThereforeVp, (A") = (Z)
CASE IV: 2 <wt(A") <n-—1.
From (Dalai, Maitra, and Sarkar 2006), it is known that, the second maximum valiig ofs attained at the inputs of
weights2, 3, n — 2 andn — 1 respectively and that value is equal—tb— ( ) Since,|G | < n, toggling outputs of,,
at the orbitG,, can increase the absolute value at mos2hyHowever, |t can be checked th;’%\i— (_) +2n < (_)
2 2

forn > 6.

Therefore, fom > 6, the maximum absolute value Bfy, is (% ).

2

Forn = 4, it can be checked from the corresponding Walsh spectrum matrix is that the maximum absolute value

of Wy, isalso(%).
2
Hence, fom > 4, the maximum absolute value Bfy,, is (7 ) andnl(H,) = 2"~1 — 3(3) =21 — (", ).
2

[CEE~]

N[
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Note that the nonlinearity off,, is equal to that of,.

As per the construction aP,,, for toggling outputs of5;,, at any number of orbits of weigh}, Al will not drop.
Moreover, for each modified functions, nonlinearity would be the same, which follows from the proof of Theorem 7.

Very recently in (Carlet, Zeng, Li, and Hu 2007), construction of functions with the maxiflumas been given
for even number of variables. Let W< be the set of all elements db, 1}" with weightd and W<¢ = W° U
Whu...uwiatandw>? = Wittt ywit2y...uWw". LetT = {a1,..., a0} CW<3,8 = {B1,...,0s} C
W>2 U= {uy,...,u,} CW?3andV = {vy,...,v,} C W=. Then the construction is as follows.

Construction 5.

1. Choosel’, S, U,V such that

Unv =10,
V1<i<I|,WS(e;) CWS(w;) and V1<j<i<IWS(a;) g WS(u,),
V1<i<s,WS(v;) CWS(B) and V1<j<i<s WS(v;)g WS(g;).

2. Construct
0,ifxre W<z USUU\T,
I(z) = (cgifzeWs\UUYV,
L,ifreW>sUTUV\S,
wherec, € {0,1}.

In the following construction, we show howvariable RSBFs with the maximuril for evenn can be obtained
using Construction 5. Lett = {Z|x € A}, thenG, = {Z|z € Go} = G7.

Construction 6.
1. Choosey; € W31,
2. Chooses; € W2 such that

(a) |G(¥1| = |G’U«1|’
(b) w1 ¢ G, and
(c) WS(an) € WS(uq).

3. Construct
0,ifz € W<2 UG, UGy, \ Ga,,

II(x) = 0ifx € W3\ Gy UG,,,
L ifz e W>3 UGy, UGy, \ Ga,.

Forn = 4, itis not possible to get such pair of orb,, andG,,, which satisfy all the conditions of Construction
6. So we have the following preposition.

Proposition 8. The function/, is ann-variable function with the maximurd for n > 6.

Proof: Sincewt(a1) = % — 1, wt(uy) = % andWS(a1) C WS(u1), the sets,,, Gu,, Gu, andG,, have the
property as required by for the sétsU, V, S in Construction 6. This proves the result.
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Example 3. Letn = 8. Takeay = (0,0,0,1,0,0,1,1)andu; = (0,0,0,1,0,1,1,1). Formthe orbits7,, , Gu, , Ga,
andG,,. Then construct, as in Construction 61, will have the maximurl.

Though the proposition works for > 6, the following theorem is valid fon. > 8 only. Forn = 6, nonlinearity
obtained for the RSBFs from Construction 6 are 18 and 22 respectively.

Theorem 8. For n > 8, the nonlinearity of//, is 2" ! — (" 1) + 4.

Proof : The function!, is the function obtained from @ S,, by complementing its outputs corresponding to the
inputs which belong to the orbits,,, , G, and G+ respectively. We have,

Wi, (A") = > (~D) O 3 (—) ROy
C€Va\Gaq UGu; UG, C€Gay
= ()OOt 4 N (- IO (Zpyea”
CEV, CEGal
+ Z In(C) CAn + Z Il (C) CAn
CECu; ¢eGay
_ Z 1easn<<) 1)<-A”
CEGay
_ Z 1®Sn(0 1)('/\" _ Z (_1)1®Sn(<)(_1)<'/\n
¢€Guy ¢eGay
= Z( 1)1@sn<<) <A" +2 Z 1 (4) CA"
CEVn C€Ga,
I/ A I/ AT
+ Z (<) C + Z (C) < ]
¢€Guy ¢€Gay

(sinceL’L(C) =1@® Su(¢)for¢ € Goy, UGa, UGy,)

= Wies, (W) +2 3 (DY = 3 (DN = 3 ()]

¢€Gay (€Gay CEGY,

(6)

From (Dalai, Maitra, and Sarkar 2006), we know théatl & S,) = 2"~ — (", 1) Moreover, the maximum
2
absolute Walsh spectrum value occurs at the inputs of weight zero, oneamithe value |§E).
2

Following results are required for the analysis of the Walsh spectruif).dince,wt(a1) = § — 1, wt(u1) = §
and W S(a1) C WS(uy), we can easily conclude thiE,,, | = n which implies thalG,,,| = n. Moreover, as the
number ofl’s at any coordinate position among all the elementé&gf is n/2 (by Lemma 1), we can say that the
number ofl’s at any coordinate position among all the elemeni€ gf andG.,, are 5 — 1 and 5 + 1 respectively. In
the following cases, we analyze the Walsh spectruifj,of

CASE I wt(A™) = 0.

Since|Gaq, | = |Ga, | = |Gu, | = n, from Equation 5, we geit;, (A") = (;) +2n—n—n]= (g) — 2n.

CASE Il wt(A™) = n.

From (Dalai, Maitra, and Sarkar 2006), it is known th&}, (A") = i(g) according asg is even or odd. Fof
even, weight of bothG,,, andG,,, is odd. Then for both the cas&se G, and( € G,,, the scalar produaf - A"
will be odd. Obviously, for¢ € G,,, the scalar produaf - A™ will be even. Therefore, from Equation 5, we get
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Wi (A™) = (g) +2[-n+n—n]= (g) — 2n. On the other hand, fo¢ is odd, using similar argument we get from
Equation 57, (A™) = —(g) +2[n—n+n]= —(g) + 2n.
CASE lll: wt(A™) =1
Since the number of’'s at any coordinate position among all the elementé/ef andG,,, ae 5 — 1 and § + 1
respectively, theECeG—al(—l)C'A" = —(5+1)+(5-1) = —2 Similarly, " ;. (1SN = —(2-1)+(2+1) =
2. Since, the number df's and the number di’s are the same at any coordinate position among all the elements of
Gy theny . co—(~1)*" = —% + % = 0. Therefore, from Equation 5, we g8ty (A") = (3)+2[~2-2-0]=
(z) -8
CASE IV: 2 <wt(A") <n-—1.
From (Dalai, Maitra, and Sarkar 2006), it is known that, the second maximum absolute vaite,of is attained
at the inputs of weight8, 3,n — 2 andn — 1 respectively and that value is equal;ttéT : (g) Toggling outputs of
1 @ S,, at three orbits can increase the absolute value at moghbyHowever, it is easy to check that far > 8,
arr (5) +6n < (3) -8

Asn > 8, the maximum absolute Walsh spectrum valué& af (Z) —8. Thereforenl(I}) = 2"—1—%((2) —8) =
2= (") + 4

For example, nonlinearities of this class of RSBFs+for 8,10, 12 are respectively7, 390, 1590. Forn = 6,
the maximum and the second maximum absolute Walsh spectrum valuies 6f, are 20 and 4 respectively. From
Theorem 8, we know that the valuesf;, (A™) will be 8,12, —12 for wt(A™) = 0,1,n respectively. Sincé), is
constructed by toggling outputs 6f, at three orbits, the second maximum Walsh spectrum valué ofn reach
maximum up tot + 36, i.e., 40. Therefore, the functioff, may not have 12 as the maximum absolute value in its
Walsh spectrum. Hence, the nonlinearity may not be equ2ittd — (”%1) + 4. We constructed all the-variable

RSBFs using Construction 6 and found the nonlinearities obtained in this claksamd22 respectively.
Construction 6 can be generalized as follows.

Construction 7.
1. Choosey; € W<z-1,
2. Chooses; € W2 such that
(a) |G(¥1| = |G’U«1|’
(b) w1 ¢ G, and
(c) WS(an) Cc WS(uq).
(d) G, andG,,, have the property thaf' andU respectively have in Construction 5 have.
3. Construct
0, ifr € W<2 UG, UGy, \ Ga,,

I'(z) = (0ifzeW?z\ G, UG,,,
L, ifzr e W>3 UGy, UGy, \ Ga,-

This is clear that such pair of orbit,, andG,,, can not be available for = 4. It follows from Construction 7 that
the orbitsG,,, G, , Gu, , G, follow the same property as required by the §&t§, V, S respectively in Construction
6. Therefore, we have the following result.
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Proposition 9. For n > 6, the functionl/ is ann-variable function with the maximur.

Example 4. Letn = 8. Takea; = (0,0,0,0,0,0,1,1)andu; = (0,0,1,0,1,0,1,1). Formthe orbits7,,, G, , Ga,
and G, . Then construct!” as in Construction 71/ will have the maximunl.

In this class we obtained better nonlinearity thdn For example, the maximum nonlinearity we obtained for
n = 8,10, 12 are respectively01, 394, 1598. The8-variable function described in Example 4 has nonlinedlitl.

Construction 6 can be generalized further as follows. Instead of chad'sisid/, V' arbitrarily but only satisfying
the conditions of Construction 5, if we choose such four orbit9iri }, then Construction 5 will directly give us the
construction of an RSBF with the maximuAu.

In (Carlet, Zeng, Li, and Hu 2007), nonlinearity analysis of functions constructed for some particular cases of
Construction 5 has been given. It has been shown that for particular paranigteas, achieve nonlinearity higher
than I,,. The setsT’, U, V, S were chosen as follows. Take = {z|wt(z) = § — wt(u), WS(z) N WS(u) = 0}
andU = {z @ ulzr € T}, whereu is any fixed element if¥<%. Then takeS = T and V = U. For this,

n—k
I,, can achieve nonlinearitlf, = 2"~ — (g:ll) + k(n%:,:) for3 < wt(u) = k < % — 1. Taking an element
u € W<% \ WP one cannot generate an orbitC W= by XORing u with each element of another orliit such
thatT = {z|wt(z) = § — wt(u), WS(x) N WS(u) = 0}. Thus, this construction cannot directly give any RSBF
with the maximumAl and nonlinearity equal tb,. Further, constructions of balanced functions with the maximum
Al and nonlinearity’;, for 2 < k < % — 1, have also been presented by a little modification of the BetadU. For
example, they have shown that it is possible ';0 get balanced functiomssanables, ¢ > 8) with the maximumAl
2575

n—2 "

and nonlinearity, i.e., 2"~ — (2 7}) +

21

7 Conclusions

We have given theoretical constructions of RSBFs which do not belong to the class of symmetric functions and have
the maximum algebraic immunity for odd number of variables. We further generalize our construction idea to an
efficient search technique in the RSBF class to find functions with the maximum possible algebraic immunity and very
high nonlinearity. We have studied the case for even number of variables too. We would like to point out that random
functions have very high nonlinearity (Olejar and Stanek 1998) and also possess @ypfjivialer, Pasalic, and Carlet

2004). Therefore, theoretical constructions of Boolean functions with very high nonlinearity and maginaitrbe

a great interest of research.

Acknowledgments: The authors would like to thank the anonymous reviewer for his comments and suggestions on
this paper.
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