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Abstract
In this paper, we first analyse the method of finding algebraic immunity of a Boolean function. Given a Boolean
function f on n-variables, we identify a reduced set of homogeneous linear equations by solving which one can
decide whether there exist annihilators off at a specific degree. Moreover, we analyse how an affine transformation
on the input variables off can be exploited to achieve further reduction in the set of homogeneous linear equations.
Next, from the design point of view, we construct balanced Boolean functions with maximum possible AI with an
additional property which is necessary to resist the fast algebraic attack.
Keywords: Algebraic Attacks, Algebraic Normal Form, Annihilators, Boolean Functions, Fast Algebraic Attacks,
Homogeneous Linear Equations.

Resumen
En este artı́culo, analizamos primero el método que permite encontrar la inmunidad algebraica de una función
Booleana. Dada una función Booleanaf den variables, identificamos un conjunto reducido de ecuaciones lineales
homogéneas resolviendo cuál de ellas puede ser usada para determinar si existen nulificadores def de un grado
especı́fico. Además analizamos cómo una transformación afı́n de las variables de entrada def puede ser aplicada
para alcanzar una mayor reducción en el conjunto de ecuaciones lineales homogéneas. En seguida, y analizando
desde el punto de vista de diseño, construimos funciones Booleanas balanceadas con inmunidad algebraica máxima
y una propiedad adicional necesaria para resistir versiones rápidas de ataques algebraicos.
Palabras Claves:Ataques algebraicos, froma normal algebraica, nulificadores, funciones Booleanas, ataques alge-
bracios rápidos, ecuaciones lineales homogéneas.

1 Introduction

Results on algebraic and fast algebraic attacks have received a lot of attention recently in studying the security of cryp-
tosystems (Armknecht 2004; Batten 2004; Canteaut 2005; Cheon and Lee 2004; Cho and Pieprizyk 2004; Courtois

⋆This is a substantially revised and merged version of two conference papers. (i) “Reducing the Number of Homogeneous Linear Equations in
Finding Annihilators”, inSequences and Their Applications, SETA ’06, pages 376–390, volume 4086, Lecture Notes in Computer Science, Springer
Verlag, 2006. Section 3.1 and Appendix A are added over the conference version. (ii) “Balanced Boolean Functions with (more than) Maximum
Algebraic Immunity”, inInternational Workshop on Coding and Cryptography, WCC ’07, pages 99–108, INRIA, Rocquencourt, France in April
16–20, 2007. The proceedings of WCC ’07 is only a workshop record and it is not printed by any publisher.
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and Pieprzyk 2002; Courtois and Meier 2003; Courtois 2003; Lee, Kim, Hong, Han, and Moon 2004; Armknecht,
Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006; Didier and Tillich 2006; Courtois, Debraize, and Garrido 2005).
Boolean functions are important primitives to be used in the cryptosystems and in view of the algebraic attacks, one
should concentrate on the annihilators (Braeken and Praneel 2005; Dalai, Gupta, and Maitra 2004; Dalai, Gupta, and
Maitra 2005; Dalai, Maitra, and Sarkar 2006; Meier, Pasalic, and Carlet 2004; Nawaz, Gong, and Gupta 2006).

Let Bn be the set of all Boolean functions{0, 1}n → {0, 1} onn input variables. One may refer to (Dalai, Gupta,
and Maitra 2004) for detailed definitions related to Boolean functions, e.g., truth table, algebraic normal form (ANF),
weight (wt), support (supp), nonlinearity (nl) and Walsh spectrum of a Boolean function. Any Boolean function can
be represented as a multivariate polynomial overGF (2), called the algebraic normal form (ANF), as

f(x1, . . . , xn) = a0 +
∑

1≤i≤n

aixi +
∑

1≤i<j≤n

ai,jxixj + . . . + a1,2,...,nx1x2 . . . xn,

where the coefficientsa0, ai, ai,j , . . . , a1,2,...,n ∈ {0, 1}. The algebraic degree,deg(f), is the number of variables in
the highest order term with nonzero coefficient.

Givenf ∈ Bn, a nonzero functiong ∈ Bn is called an annihilator off if fg = 0. A functionf should not be
used iff or 1 + f has a low degree annihilator. In this regard, an important property of Boolean function is defined as
algebraic immunity (in short, AI) (Meier, Pasalic, and Carlet 2004) (annihilator immunity (Dalai, Maitra, and Sarkar
2006)) as follows.

Definition 1 Givenf ∈ Bn, its algebraic immunity is defined as (Meier, Pasalic, and Carlet 2004) the minimum
degree of all annihilators off or 1 + f , and it is denoted byAI(f).

It is also known (Courtois and Meier 2003; Meier, Pasalic, and Carlet 2004) that for any functionf or 1+ f must have
an annihilator at the degree⌈n

2 ⌉ i.e.,AI(f) ≤ ⌈n
2 ⌉.

The target of a good design is to use a functionf such that neitherf nor1+f has an annihilator at a degree less than
⌈n

2 ⌉. The first construction in this direction appeared in (Dalai, Gupta, and Maitra 2005). Later symmetric functions
with this property has been presented in (Dalai, Maitra, and Sarkar 2006; Braeken and Praneel 2005). However, all
these constructions are not good in terms of other cryptographic properties.

In this situation, one needs to consider Boolean functions which are rich in terms of other cryptographic properties,
and then the AI of the functions has to be checked. One has to find out the annihilators of a given Boolean function
for this. Initially a basic algorithm in finding the annihilators has been proposed in (Meier, Pasalic, and Carlet 2004,
Algorithm 2). A modification of (Meier, Pasalic, and Carlet 2004, Algorithm 2) has been presented in (Braeken, Lano,
and Praneel 2006) to find out relationships for algebraic and fast algebraic attacks. In (Braeken and Praneel 2005),
there is an efficient algorithm to find the annihilators of symmetric Boolean functions. Algorithms using Gröbner
bases are also interesting in this area (Ars and Faugére 2005), but they are not considerably consistent. Recently more
efficient algorithms have been designed in this direction (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006;
Didier and Tillich 2006; Didier 2006). The algorithm presented in (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and
Ruatta 2006) can be used efficiently to find out relationships for algebraic and fast algebraic attacks. In (Armknecht,
Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006), polynomial interpolation has been proposed to solve the annihilator
finding problem (of degreed for ann-variable function) inO(wt(f)

(
n
d

)
) time complexity. In (Didier and Tillich 2006)

a probabilistic algorithm having time complexityO(nd) has been proposed where the function is divided to its sub
functions recursively and the annihilators of the sub functions are checked to study the annihilators of the original
function. Using Weidmann’s algorithm, a space efficient probabilistic algorithm havingO(n2n

(
n
d

)
) time complexity

andO(n2n) space complexity has been proposed in (Didier 2006).
The main idea in our effort is to reduce the size of the matrix (used to solve the system of homogeneous linear

equations) as far as possible, which has not yet been studied in a disciplined manner to the best of our knowledge. In
the process, some nice structures of the associated matrices could be discovered in this paper. efficiently to find out
relationships for algebraic and fast algebraic attacks.
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Given a Boolean functionf on n-variables, we find a reduced set of homogeneous linear equations by solving
which one can decide whether there exist annihilators at degreed or not. Using our method the size of the associated
matrix becomesνd

f×(
∑d

i=0

(
n
i

)
−µd

f ), where,νd
f = |{x|wt(x) > d, f(x) = 1}| andµd

f = |{x|wt(x) ≤ d, f(x) = 1}|
and the required time to construct the matrix is same as the size of the matrix. This is a preprocessing step before the
solution to decide on the existence of the annihilators that requires to solve the set of homogeneous linear equations.

We start with an involutary matrixMn,d(g) (see Theorem 1) and we discover certain structures that allow to com-
pute the new equations efficiently by considering the matrixUAr (see Theorem 3, Section 3). Moreover, each equation
associated with a low weight input point directly provides the value of an unknown coefficient of the annihilator, which
is the key point that allows to lower the number of unknowns.

Further reduction in the size of the matrix is dependent on getting a proper linear transformation on the input
variables of the Boolean function, which is discussed in Section 4. As the affine transformation on the input variables
of the Boolean function keeps the degree of the annihilators invariant, our preprocessing step can be more efficiently
applied if one can find an affine transformation overf(x) to geth(x) = f(Bx + b) such thatµd

h is maximized (and in
turnνd

h is minimized too). We present an efficient heuristic towards this. Our study identifies for what kind of Boolean
functions the asymptotic reduction in the size of the matrix is possible.

Our contribution here is two-fold.

1. We prove new algebraic and combinatorial results related to the matrix structure in finding annihilators.

2. For certain class of functions, our technique finds the annihilators more efficiently than (Armknecht, Carlet,
Gaborit, Kuenzli, Meier, and Ruatta 2006), the currently best known general algorithm.

We do not claim that our algorithm is better than (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006; Didier
2006; Didier and Tillich 2006) which work for any Boolean function in general. Our observation identifies a subclass
of Boolean functions for which our technique presents the currently best known results.

One should note that a Boolean function, to be used in a cryptosystem, should not have low AI. Good AI provides
certain kind of resistance against algebraic attacks done in a particular way, i.e., using linearization. Further, based on
some recent works related to fast algebraic attacks (Armknecht and Krause 2003; Courtois 2003; Braeken, Lano, and
Praneel 2005; Armknecht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006), one should concentrate more carefully
on the design parameters of Boolean functions for proper resistance. The weakness of AI against fast algebraic attack
has been demonstrated in (Courtois 2005) by mounting an attack on SFINKS (Braeken, Lano, Mentens, Praneel, and
Verbauwhede 2005).

Let us now discuss the situation with respect to fast algebraic attack. It has been shown in (Courtois 2003) that
given anyn-variable Boolean functionf , it is always possible to get a Boolean functiong with degree at most⌈n

2 ⌉
such thatdeg(g) + deg(h) ≤ n. Thus, while choosing a functionf , the cryptosystem designer should be careful that
it should not happen thatdeg(g) + deg(h) falls much belown with a nonzero functiong whose degree is also much
below⌈n

2 ⌉. In that case the lower degree ofg can be exploited to a faster attack (known as fast algebraic attack).
Takef ∈ Bn with maximum possible AI⌈n

2 ⌉. It may very well happen thatfg = h, wheredeg(h) = ⌈n
2 ⌉,

but deg(g) < ⌈n
2 ⌉. In that case the lower degree ofg may be exploited to mount the fast algebraic attack even if

the AI of f is the maximum possible. In fact, there are examples, where one can get a linearg too. Initial study
of Boolean functions in this area has been started in (Braeken, Lano, and Praneel 2005; Armknecht, Carlet, Gaborit,
Kuenzli, Meier, and Ruatta 2006). Since AI is now understood as a necessary (but not sufficient) condition against
resisting algebraic attacks, we feel there is a need to consider the functions with full AI for their performance in terms
of fg = h relationship. That is for the functionsf with full AI we considerdeg(h) ≥ ⌈n

2 ⌉, and then after fixing the
degree ofh, we try to get the minimum degreeg. Even after this concept, the necessary condition of using functions
with maximum possible AI stays, but one needs to check the profile of the functions for otherfg = h relations before
using that in a cryptosystem. One should be aware that only checking thesefg = h relationships are not sufficient in
terms of resistance to (fast) algebraic attacks as there are number of scenarios to mount algebraic and fast algebraic
attacks (Courtois and Meier 2003; Courtois 2003).
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It is always meaningful to considerfg = h only whendeg(g) ≤ deg(h) as otherwisefg = h implies(1+f)h = 0.
So for all the discussion we will considerdeg(g) ≤ deg(h) for a relationfg = h unless mentioned otherwise.

In this paper, we present a specific class of balanced functionsf for even number of input variablesn having AI
n
2 such that for anyfg = h relation ifdeg(h) = n

2 thendeg(g) cannot be less thann2 . This class of functions was not
known earlier. Further we show that existence of these functions has direct implication towards existence of resilient
functions with maximum possible algebraic immunity. A few important open questions are also raised based on our
work. The main contribution regarding the construction is presented in Subsection 5.3.

Since the functions we present are modifications of symmetric functions, we do not refer them directly to be
used in a cryptosystem. Our main motivation in the construction part is to present new theoretical results related to
construction of Boolean functions that were not known earlier. Our ideas may be exploited towards further effort in
construction of cryptographically significant Boolean functions resistant against algebraic and fast algebraic attacks.

2 Preliminaries

Consider all then-variable Boolean functions of degree at mostd, i.e.,R(n, d), the Reed-Muller code of orderd and
length2n. Note thatR(n, d) is a vector subspace of the vector spaceBn, the set of alln-variable Boolean functions.
Any Boolean function can be seen as a multivariate polynomial overGF (2). Now if we consider the elements of
R(n, d) as the multivariate polynomials overGF (2), then the standard basis is the set of all nonzero monomials of
degree≤ d. That is, the standard basis is

Sn,d = {xi1 . . . xik
: 1 ≤ k ≤ d and1 ≤ i1 < i2 < . . . < ik ≤ n} ∪ {1},

where the input variables of the Boolean functions arex1, . . . , xn.
The ordering among the monomials is considered in lexicographic ordering (<l) as usual, i.e.,xi1xi2 . . . xip

<l

xj1xj2 . . . xjq
if either p < q or p = q and there is1 ≤ k ≤ p such thatip = jp, ip−1 = jp−1, . . . , ik+1 = jk+1

andik < jk. So, the setSn,d is a totally ordered set with respect to this lexicographical ordering (<l). Using this
ordering we refer the monomials according their order, i.e., thep-th monomial asmp, 1 ≤ p ≤

∑d

i=0

(
n
i

)
following

the conventionmp <l mq if p < q.

Definition 2 Givenn > 0, 0 ≤ d ≤ n, we define a mappingvn,d : {0, 1}n 7→ {0, 1}
∑

d

i=0
(n

i), such thatvn,d(x) =
(m1(x), m2(x), . . . , m∑d

i=0
(n

i)
(x)). Heremi(x) is theith monomial as in the lexicographical ordering (<l) evalu-

ated at the pointx = (x1, x2, . . . , xn).

To evaluate the value of thet-th coordinate ofvn,d(x1, x2, . . . , xn) for 1 ≤ t ≤
∑d

i=0

(
n
i

)
, i.e.,[vn,d(x1, . . . , xn)]t,

one requires to calculate the value of the monomialmt (either 0 or 1) at(x1, x2, . . . , xn). Now we define a matrix
Mn,d with respect to an-variable functionf . To define this we need another similar ordering (<l) over the elements
of vector space{0, 1}n. We say foru, v ∈ {0, 1}n, u <l v if either wt(u) < wt(v) or wt(u) = wt(v) and there is a
1 ≤ k ≤ n such thatun = vn, un−1 = vn−1, . . . , uk+1 = vk+1 anduk = 0, vk = 1.

Definition 3 Givenn > 0, 0 ≤ d ≤ n and ann-variable Boolean functionf , we define awt(f) ×
∑d

i=0

(
n
i

)
matrix

Mn,d(f) =








vn,d(x1)
vn,d(x2)

...
vn,d(xwt(f))








wheresupp(f) = {x1, x2, . . . , xwt(f)} andx1 <l x2 <l . . . <l xwt(f); supp(f) is the set of input vectors for which
f outputs1.
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Note that the matrixMn,d(f) is the transpose of the restricted generator matrix for Reed-Muller code of length
2n and orderd, R(d, n), to the support off (see also (Canteaut 2005, Page 7)). Any row of the matrixMn,d(f)
corresponding to an input vector(x1, . . . , xn) is

0 deg 1 deg . . . ddeg
︷︸︸︷

1
︷ ︸︸ ︷
x1, . . . , xi, . . . , xn . . .

︷ ︸︸ ︷
x1 . . . xd, . . . , xi1 . . . xid

, . . . , xn−d+1 . . . xn .

Each column of the matrix is represented by a specific monomial and each entry of the column tells whether that
monomial is satisfied by the input vector which identifies the row, i.e., the rows of this matrix correspond to the
evaluations of the monomials having degree at mostd on support off . As already discussed, here we have one-to-one
correspondence from the input vectorsx = (x1, . . . , xn) to the row vectorsvn,d(x) of length

∑d

i=0

(
n
i

)
. So, each row

is fixed by an input vector.

2.1 Annihilator of f and rank of the matrix Mn,d(f)

We are interested to find out the lowest degree annihilators off ∈ Bn. Let g ∈ Bn be an annihilator off , i.e.,
f(x) g(x) = 0 for all x ∈ {0, 1}n. That means, for eachx = (x1, . . . , xn) ∈ {0, 1}n,

g(x1, . . . , xn) = 0 if f(x1, . . . , xn) = 1. (1)

Suppose degree of the functiong is ≤ d, then the ANF ofg is of the formg(x1, . . . , xn) = a0 +
∑n

i=0 aixi + · · · +
∑

1≤i1<i2···<id≤n ai1,...,id
xi1 · · ·xid

where the subscripteda’s are from{0, 1} and not all of them are zero. Following
Equation 1, we get the followingwt(f) many homogeneous linear equations

a0 +
n∑

i=0

aixi + · · · +
∑

1≤i1<i2···<id≤n

ai1,...,id
xi1 · · ·xid

= 0, (2)

considering the vectors(x1, . . . , xn) ∈ supp(f). This is a system of homogeneous linear equations ona’s with
∑d

i=0

(
n
i

)
manya’s as variables. The matrix form of this system of equations isMn,d(f) Atr = O, whereA =

(a0, a1, a2, . . . , an−d+1,...,n), the row vector of coefficients of the monomials which are ordered according to the
order<l. Each nonzero solution of the system of equations formed by Equation 2 gives an annihilatorg of degree
≤ d. This is basically the Algorithm 1 presented in (Meier, Pasalic, and Carlet 2004). Since the number of solutions
of this system of equations are connected to the rank of the matrixMn,d(f), it is worth to study the rank and the set of
linear independent rows/columns of matrixMn,d(f). If the rank of matrixMn,d(f) is equal to

∑d

i=0

(
n
i

)
(i.e., number

of columns) then the only solution is the zero solution. So, for this casef has no annihilator of degree≤ d. This
implies that the number of rows≥ number of columns, i.e.,wt(f) ≥

∑d

i=0

(
n
i

)
which is the Theorem 1 in (Dalai,

Gupta, and Maitra 2004). If the rank of matrix is equal to
∑d

i=0

(
n
i

)
− k for k > 0 then the number of linearly

independent solutions of the system of equations isk which givesk many linearly independent annihilators of degree
≤ d and2k − 1 many number of annihilators of degree≤ d. However, to implement algebraic attack one needs only
linearly independent annihilators. Hence, findingAI(f), one can use the following simplest algorithm.

Algorithm 1
Input: f ∈ Bn andn.
Output: AI(f).
for(i = 1 to ⌈n

2 ⌉ − 1) {
find the rankr1 of the matrixMn,i(f);
find the rankr2 of the matrixMn,i(1 + f);
if min{r1, r2} <

∑i
j=0

(
n
j

)
then outputi;

}
output⌈n

2 ⌉;
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Since eitherf or 1 + f has an annihilator of degree≤ ⌈n
2 ⌉, one needs to check tilli = ⌈n

2 ⌉. This algorithm is
equivalent to Algorithm 1 in (Meier, Pasalic, and Carlet 2004).

The simplest and immediate way to find out the rank ofMn,d(f) is the Gaussian elimination process. To check the
existence or to enumerate the annihilators of degree≤ ⌈n

2 ⌉ for a balanced function, the complexity is approximately
(2n−2)3. Considering this time complexity, it is not encouraging to check annihilators of a function of20 variables
or more using the presently available computing power. However, givenn andd, the matrixMn,d(f) has pretty good
structure, which we explore in this paper towards a better algorithm (that is solving the set of homogeneous linear
equations in an efficient way by decreasing the size of the matrix involved).

3 Faster strategy to construct the set of homogeneous linear equations

In this section we present an efficient strategy to reduce the set of homogeneous linear equations. First we present a
technical result.

Theorem 1 Letg ∈ Bn defined asg(x) = 1 iff wt(x) ≤ d for 0 ≤ d ≤ n. ThenMn,d(g)−1 = Mn,d(g), i.e.,Mn,d(g)
is an involution.

Proof : SupposeF = Mn,d(g)Mn,d(g). Then thei-th row andj-th column entry ofF (denoted byFi,j) is the scalar
product ofi-th row andj-th column ofMn,d(g). Suppose thei-th row isvn,d(x1, . . . , xn) for (x1, . . . , xn) ∈ {0, 1}n

havingxq1
, . . . , xql

as1 and others are0. Further consider that thej-th column is the evaluation of the monomial
xr1

. . . xrk
at the vectors belonging to the support ofg. If {r1, . . . , rk} 6⊆ {q1, . . . , ql} thenFij = 0. Otherwise,

Fi,j =
(
l−k
0

)
+
(
l−k
1

)
+ . . . +

(
l−k
l−k

)
mod 2 = 2l−k mod 2. So,Fi,j = 1 iff {xr1

, . . . , xrk
} = {xq1

, . . . , xql
}. That

implies,Fi,j = 1 iff i = j i.e.,F is identity matrix. Hence,Mn,d(g) is its own inverse.
See the following example for the structure ofMn,d(g) whenn = 4 andd = 2.

Example 1 Let us present an example ofMn,d(g) for n = 4 andd = 2. We have{1, x1, x2, x3, x4, x1x2, x1x3, x2x3,
x1x4, x2x4, x3x4}, the list of4-variable monomials of degree≤ 2 in ascending order (<l).

Similarly,{(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 1, 0), (1, 0, 0, 1),
(0, 1, 0, 1), (0, 0, 1, 1)} present the4 dimensional vectors of weight≤ 2 in ascending order (<l). So the matrix

M4,2(g) =





















1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0
1 0 1 1 0 0 0 1 0 0 0
1 1 0 0 1 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 1 0
1 0 0 1 1 0 0 0 0 0 1





















One may check thatM4,2(g) is involution.

Lemma 1 Let A be a nonsingularm × m binary matrix where them-dimensional row vectors arev1, v2, . . . , vm.
LetU be ak ×m binary matrix,k ≤ m, where the rows areu1, u2, . . . , uk. LetW = UA−1, a k ×m binary matrix.
Consider that a matrixA′ is formed fromA by replacing the rowsvi1 , vi2 , . . . , vik

of A by the vectorsu1, u2, . . . , uk.
Further consider that ak × k matrix W ′ is formed by thei1-th, i2-th, . . . , ik-th columns ofW (out ofm columns).
ThenA′ is nonsingular iffW ′ is nonsingular.
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Proof : Without loss of generality, we can takei1 = 1, i2 = 2, . . . , ik = k. So, the row vectors ofA′ are
u1, . . . , uk, vk+1, . . . , vm.

We first prove that if the row vectors ofA′ are not linearly independent then the row vectors ofW ′ are not linearly
independent. As the row vectors ofA′ are not linearly independent, we haveα1, α2, . . . , αm ∈ {0, 1} (not all zero)
such that

∑k
i=1 αiui +

∑m
i=k+1 αivi = 0. If αi = 0 for all i, 1 ≤ i ≤ k then

∑m
i=k+1 αivi = 0 which impliesαi = 0

for all i, k + 1 ≤ i ≤ m asvk+1, vk+2, . . . , vm are linearly independent. So, allαi’s for 1 ≤ i ≤ k can not be zero.
Further, we haveUA−1 = W , i.e.,U = WA, i.e.,








u1

u2

...
uk








=








w1

w2

...
wk















v1

v2

...
vm








, i.e.,ui = wi








v1

v2

...
vm








.

Hence,
∑k

i=1 αiui =
∑k

i=1 αiwi








v1

v2

...
vm








= r








v1

v2

...
vm








wherer = (r1, r2, . . . , rm) =
∑k

i=1 αiwi.
If the restricted matrixW ′ were nonsingular, the vectorr′ = (r1, r2, . . . , rk) is nonzero as(α1, α2, . . . , αk) is not

all zero. Hence,
∑k

i=1 αiui +
∑m

i=k+1 αivi = 0, i.e.,
∑k

i=1 rivi +
∑m

i=k+1(ri + αi)vi = 0. This contradicts that
v1, v2, . . . , vm are linearly independent asr′ = (r1, r2, . . . , rk) is nonzero. HenceW ′ must be singular. This proves
one direction.

On the other direction if the restricted matrixW ′ is singular then there areβ1, β2, . . . , βk not all zero such that
∑k

i=0 βiwi = (0, . . . , 0, sk+1, . . . , sm).

Hence,
∑k

i=0 βiui =
∑k

i=1 βiwi








v1

v2

...
vm








= sk+1vk+1 + . . .+smvm, i.e.,
∑k

i=0 βiui+
∑m

i=k+1 sivi = 0 which

implies matrixA′ is singular.
Following Lemma 1, one can check the nonsingularity of the larger matrixA′ by checking the nonsingularity of the

reduced matrixW ′. Thus checking the nonsingularity of the larger matrixA′ will be more efficient if the computation
of matrix productW = UA−1 can be done efficiently. The involutive nature of the matrixMn,d(g) presented in
Theorem 1 helps to achieve this efficiency. In the following result we present the Lemma 1 in more general form.

Theorem 2 LetA be a nonsingularm×m binary matrix withm-dimensional row vectorsv1, v2, . . . , vm andU be a
k×m binary matrix withm-dimensional row vectorsu1, . . . , uk. ConsiderW = UA−1, ak ×m matrix. The matrix
A′, formed fromA by removing the rowsvi1 , vi2 , . . . , vil

(l ≤ m) fromA and adding the rowsu1, u2, . . . , uk (k ≥ l),
is of rankm iff the rank of restrictedk × l matrixW ′ including only thei1-th, i2-th, . . . , il-th columns ofW is l.

Proof : Here, the rank of matrixW ′ is l. So, there arel many rows ofW ′, sayw′
p1

, . . . , w′
pl

which are linearly
independent. So, following the Lemma 1 we have the matrixA′′ formed by replacing the rowsvi1 , . . . , vil

of A by
up1

, . . . , upl
is nonsingular, i.e., rank ism. Hence the matrixA′ where some more rows are added toA′′ has rankm.

The other direction can also be shown similar to the proof of the other direction in Lemma 1.
Now using Theorem 1 and Theorem 2, we describe a faster algorithm to generate smaller system of equations of

certain degreed of a Boolean functionf . Supposeg be the Boolean function described in Theorem 1, i.e.,supp(g) =
{x|0 ≤ wt(x) ≤ d}. In Theorem 1, we have already shown thatMn,d(g) is nonsingular matrix (in fact it is involution).
Let {x|wt(x) ≤ d andf(x) = 0} = {X1, X2, . . . , Xl} and{x|wt(x) > d andf(x) = 1} = {Y1, Y2, . . . , Yk}. Then
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we considerMn,d(f) asA, vn,d(X1), . . . , vn,d(Xl) asvi1 , . . . , vil
andvn,d(Y1), . . ., vn,d(Yk) asu1, . . . , uk. Then

following Theorem 2 we can ensure whetherMn,d(f) is nonsingular. If it is nonsingular, then there is no annihilator
of degree≤ d, else there are annihilator(s). We may write this in a more concrete form as the following corollary.

Corollary 1 Letf ∈ Bn. LetAr be the restricted matrix ofA = Mn,d(g), by using the columns corresponding to the
monomialsxi1xi2 . . . xil

such thatl ≤ d andf(x1, . . . , xn) = 0 whenxi1 = 1, xi2 = 1, . . . , xil
= 1 and rest are0.

Further U =








vn,d(Y1)
vn,d(Y2)

...
vn,d(Yk)








, where{Y1, . . . , Yk} = {x|wt(x) > d andf(x) = 1}. If rank ofUAr is l thenf has

no annihilator of degree≤ d, elsef has annihilator(s) of degree≤ d.

Proof : As per Theorem 2, hereW = UA−1 = UA, sinceA is involution following Theorem 1 and henceW ′ is
basicallyUAr. Thus the proof follows.

Now we can use the following technique for fast computation of the matrix multiplicationUAr. For this we first
present a technical result and its proof is similar in the line of the proof of Theorem 1.

Proposition 1 Considerg as in Theorem 1. Lety ∈ {0, 1}n such thati1, i2, . . ., ip-th places are1 and other places are
0. Consider thej-th monomialmj = xj1xj2 . . . xjq

according the ordering<l. Then thej-th entry ofvn,d(y)Mn,d(g)

is 0 if {j1, . . . , jq} 6⊆ {i1, . . . , ip} else the value is
∑d−q

i=0

(
p−q

i

)
mod 2.

One can precompute the sums
∑d−q

i=0

(
p−q

i

)
mod 2 for d + 1 ≤ p ≤ n and0 ≤ q ≤ d, and store them and the total

complexity for calculating them isO(d2(n− d)). These sums will be used to fill up the matrixUAr which is anl× k

matrix according to Corollary 1. Let us denoteµd
f = |{x|wt(x) ≤ d, f(x) = 1}| andνd

f = |{x|wt(x) > d, f(x) =

1}|. Thenwt(f) = µd
f + νd

f and the matrixUAr is of dimensionνd
f × (

∑d
i=0

(
n
i

)
− µd

f ). ClearlyO(d2(n − d)) can

be neglected with respect toνd
f × (

∑d

i=0

(
n
i

)
− µd

f ). Thus we have the following result.

Theorem 3 ConsiderU andAr as in Corollary 1. The time (and also space) complexity to construct the matrixUAr

is of the order ofνd
f × (

∑d
i=0

(
n
i

)
− µd

f ). Further checking the rank ofUAr (as given in Corollary 1) one can decide
whetherf has an annihilator at degreed or not.

In fact, to check the rank of the matrixUAr using Gaussian elimination process, we need not store theνd
f many

rows at the same time. One can add one row (following the calculation to compute a row of the matrix given in
Proposition 1) at a time incrementally to the previously stored linearly independent rows by checking whether the
present row is linearly independent with respect to the already stored rows. If the current row is linearly independent
with the existing ones, then we do row operations and add the new row to the previously stored matrix. Otherwise we
reject the new row. Hence, our matrix size never crosses the size(

∑d

i=0

(
n
i

)
− µd

f ) × (
∑d

i=0

(
n
i

)
− µd

f ).

If νd
f < (

∑d
i=0

(
n
i

)
− µd

f ), then there will be nontrivial solutions and we can directly say that the annihilators

exist. Thus we always need to concentrate on the caseνd
f ≥ (

∑d
i=0

(
n
i

)
− µd

f ), where the matrix size(
∑d

i=0

(
n
i

)
−

µd
f ) × (

∑d

i=0

(
n
i

)
− µd

f ) provides a further reduction than the matrix sizeνd
f × (

∑d

i=0

(
n
i

)
− µd

f ) and one can save
more space. This will be very helpful when one tries to check the annihilators of small degreed.

One may refer to Appendix A to get detailed description why our strategy provides asymptotic improvement
than (Meier, Pasalic, and Carlet 2004) in terms of constructing this reduced set of homogeneous linear equations. In
terms of the overall algorithm to find the annihilators, our algorithm works around eight times faster than (Meier,
Pasalic, and Carlet 2004) in general. Using our strategy to find the reduced matrix first and then using the standard
Gaussian elimination technique, we could find the annihilators of any random balanced Boolean functions on 16
variables in around 2 hours in a Pentium 4 personal computer with 1 GB RAM. Note that, the very recently known
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efficient algorithms (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006; Didier and Tillich 2006) can work
till 20 variables. Comparison of our algorithm with that of (Meier, Pasalic, and Carlet 2004) is not to demonstrate
the efficiency of our algorithm as there are more efficient general algorithms known (Armknecht, Carlet, Gaborit,
Kuenzli, Meier, and Ruatta 2006; Didier and Tillich 2006), but to explain how our strategy works efficiently to reduce
the matrix size. In fact, when the matrix size is reduced significantly, then our algorithm is currently the best known
and for such class of functions, it is better than the algorithm of (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and
Ruatta 2006). Below we describe that clearly.

3.1 Efficiency of our strategy

Our algorithm works efficiently for the functions having higher value ofµd
f .

Proposition 2 Let f ∈ Bn with µd
f =

∑d

i=0

(
n
i

)
− c(

∑d

i=0

(
n
i

)
)δ, for some constantc ≥ 0, and someδ ≥ 0.

Then the time and space complexity to check the existence ofd degree annihilators areO(νd
f (
∑d

i=0

(
n
i

)
)2δ) and

O((
∑d

i=0

(
n
i

)
)2δ) respectively.

The proof follows from Theorem 3 and the paragraph next to Theorem 3. Hence low value ofδ increases efficiency in
both the time and space complexities. In the following theorem we present when our strategy for checking optimal AI
will be faster than the currently best known algorithm (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006).

Theorem 4 Letf ∈ Bn is balanced and

1. n is odd withµ
n−1

2

f = 2n−1 − c(2n−1)
2
ω
−ǫ, for some constantc ≥ 0, ǫ > 0 andω is the time complexity order

to solve a system of linear equations. Then the time complexity to check the existence ofn−1
2 -degree annihilator

of f is O((2n−1)2−ωǫ).

2. n is even withµ
n
2
−1

f =
∑n

2
−1

i=0

(
n
i

)
− c(

∑n
2
−1

i=0

(
n
i

)
)0.5−ǫ, for some constantc ≥ 0, ǫ > 0. Then the time

complexity to check the existence of(n
2 − 1)-degree annihilator off is O(2n−2(

∑n
2
−1

i=0

(
n
i

)
)1−2ǫ).

Proof : For oddn,
∑n−1

2

i=0

(
n
i

)
= 2n−1 = wt(f). Hence,UAr is a square matrix of dimensionc(2n−1)

2
ω
−ǫ. Then the

result follows asω is time complexity order for solving a square matrix.

Whenn is even, the matrix isν
n
2
−1

f × c(
∑n

2
−1

i=0

(
n
i

)
)0.5−ǫ. Hence, the time complexity to solve the system is

O(ν
n
2
−1

f (
∑n

2
−1

i=0

(
n
i

)
)1−2ǫ) i.e.,O(2n−2(

∑n
2
−1

i=0

(
n
i

)
)1−2ǫ).

Now we compare the complexity of our strategy with the fastest known algorithm (Armknecht, Carlet, Gaborit,
Kuenzli, Meier, and Ruatta 2006) for the class of functions presented in Theorem 4. The algorithm in (Armknecht,
Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006) requiresO((2n−1)2) and O(2n−1

∑n
2
−1

i=0

(
n
i

)
) time complexi-

ties for n odd and even respectively. Therefore, for this class of functions, our strategy gainsO((2n−1)ωǫ) and

O((
∑ n

2
−1

i=0

(
n
i

)
)2ǫ) over the algorithm in (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006) forn odd and

even respectively. Further, for this type of functions, our strategy gains in space complexity also. Our strategy needs
O(4n−1)

2
ω
−ǫ andO(

∑n
2
−1

i=0

(
n
i

)1−2ǫ
) memory forn odd and even respectively, where as the algorithm in (Armknecht,

Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006) needs4n−1 andO((
∑n

2
−1

i=0

(
n
i

)
)2) memory respectively.

Therefore, our technique to find the existence of annihilators of degreed is more efficient than (Armknecht, Carlet,
Gaborit, Kuenzli, Meier, and Ruatta 2006) for the functions having higher value ofµd

f . The size of this class is

(
2n−1

c(2n−1)
2
ω

−ǫ

)2

whenn is odd and

( ∑n
2

−1

i=0

(
n
i

)

c(
∑n

2
−1

i=0

(
n
i

)
)0.5−ǫ

)2




(
n
n
2

)

1
2

(
n
n
2

)



 whenn is even for eachc andǫ. Though the
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relative size of this class is very small compare to22n

, the size ofBn, in absolute terms this class is quite big. Further
with the results of the next section, this class will be substantially extended.

We now present some examples to show the efficiency of our algorithm. Consider a functionf on n variables
whenn is odd. To check for optimal AIn+1

2 , we have to check the existence of annihilators at degreen−1
2 . Here we

considerω = 3 as the order of time complexity for Gaussian elimination technique. Further there are better techniques
whenω = 2.8 (Strassen 1969) andω = 2.4 (Coppersmith and Winograd 1990).

Consider balancedf ∈ B51 such thatµ25
f = 251−1 − (251−1)

2
3
−0.4 ≈ 250 − 213, wherec = 1 andǫ = 0.4. Then

one needs213·2 = 226 memory bits and213·3 = 239 operations to check the existence of a25-degree annihilator of
f . In this case, the algorithm in (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006) needs22·50 = 2100

operations and memory bits.
Next, we present an example of11-variable function of this class. The following is the hexadecimal representation

of the truth table off ∈ B11 balanced Boolean function having nonlinearity 796 and degree 10.

FFFFFFFDFFFFFFF7FFFBBFF7FEF7F771FFFBFEF7FFF7F773FFF7F771F7737110
FFDFFFF7FFF7F771FFF7D771F7617150FFF7D770F7717110F771711071101000
FDFFFFF7FFF7E571FFF7FF71F7617110FFF7F751F7617110F771715031101001
FFF7F751FF517110F771711071101200F7717110711010007110108410000020
EFFFBFF7FEF7F771FFB5F771F7717110FFF7F775F7717110F761713071101000
FFF7F771E771F110F771511071101200F7713110711810847114108010200000
FFF7F771D77171107775711070111480FF717110711010047110101010000000
F773711071101008713010001800000071101000100000001000000000000000

Hereµ5
f = 210 − 210(2

3 − 1
6 ) = 210 − 25. To check whether the AI off is 6, we need to find the rank of a25 × 25

matrix. Hence we need an order of25·3 = 215 operations. However, using the algorithm presented in (Armknecht,
Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006), one needs an order of210·2 = 220 operations.

Now we consider the cases whenn is even. In this case the complexity computation is more complex as the matrix

is not square. Since the value ofν
n
2
−1

f > 1
2

(
n
n
2

)

≈ 2n−2, the time complexity is not as low as in the case of odd

n. Still we get better efficiency than (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006) for the class
of functions we concentrate on. Consider balancedf ∈ B30 such thatµ14

f =
∑14

i=0

(
30
i

)
− (
∑14

i=0

(
30
i

)
)0.1, where

c = 1 andǫ = 0.4. Then one needs228(
∑14

i=0

(
30
i

)
)0.2 ≈ 234 operations and(

∑14
i=0

(
30
i

)
)0.2 ≈ 26 memory bits to

check the existence of a14-degree annihilator off . In this case the algorithm in (Armknecht, Carlet, Gaborit, Kuenzli,
Meier, and Ruatta 2006) needs229

∑14
i=0

(
30
i

)
≈ 257 operations and(

∑14
i=0

(
30
i

)
)2 ≈ 256 memory bits.

Next we present a function of12 variables. The following is the hexadecimal representation of the truth table of a
12-variable balanced Boolean function having nonlinearity 1586 and degree 11.

FFFFFEFFFFFFFFF7FFFF7FFFFFF7FF75FFFFFFFFFFFDFB73FFF7FBF7FFF17311
FFFFFFFBFFF7FD73FBF7F7F3FB71F510FFF7F5F1F7F37570F7F5771071503000
FFFFFFFFFFF7FFF3FF7FFF7BFFF57714FF77DFF5FF73F710F773D550F3315010
FFF7F775F7737750FFF7777173711010FFF77351735011007370510031301280
FFFFFFFFFFF7FF73EFF7F7F5FFF7F310FFFEF7F1FFE1F170F7757710B1317110
FFF7FF73F7F17710F7F1F77173105010F771777071101110F511511058401080
FFFFEF75FFE27170FE717371F5315010FF757130731131007358100030808000
FFF5F531715070107111101031140020F3101880501010003010000000000020
FFFBFFF7FFFFFFF1FFFFEFF3FF77DD78FFF7FF75F7F67330FF757370F1D01100
FFF6F7F5FF75F570FF77F77175711000F777F55071711110F731111070101000
F7FFF774B7F1F371F7F7751173515100F7757370F57151107511100038101000
F777F311E7113010F131511010001000F3517110301030005110000010000400
FFF7FFF3F7F1F510FF75F370F1315110B777F711F7311100F118311450101000
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FFF77F1177305000777051107000000071517110501000003110000000000000
F777733175121011F711300070001000F3701110301000001010300010020000
7171511071101100110010000000000055121000000000000000000000000000

Hereµ5
f = 1554 = 1586− 32 =

∑5
i=0

(
12
i

)
− 25. To verify the optimal AI, i.e.,AI = 6 we have to find the rank

of 211 − 1554× 25 i.e.,494× 25 matrix. Hence, we need an order of494× 22·5 ≈ 219 operations and25 × 25 = 210

memory bits. But using the algorithm presented in (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006),
one needs an order of211 × 1586 ≈ 221.5 operations and1586 × 1586 ≈ 221 memory bits.

4 Further reduction in matrix size applying linear transformation over the input variables
of the function

In this section we will demonstrate a more general class of Boolean functions than what presented in Section 3.1 for
which our strategy works efficiently.

To check for the annihilators, we need to compute the rank of the matrixUAr. Following Theorem 3, it is clear
that the size of the matrixUAr will decrease ifµd

f increases andνd
f decreases. LetB be ann × n nonsingular binary

matrix andb be ann-bit vector. The functionf(x) has an annihilator at degreed iff f(Bx + b) has an annihilator at
degreed. Thus one will try to get the affine transformation on the input variables off(x) to geth(x) = f(Bx + b)
such that|{x|h(x) = 1, wt(x) ≤ d}| is maximized. This is because in this caseµd

h will be maximized andνd
h will

be minimized and hence the dimension of the matrixUAr, i.e.,νd
f × (

∑d
i=0

(
n
i

)
− µd

f ) will be minimized. This will
indeed decrease the complexity at the construction step (discussed in the previous section). More importantly, it will
decrease the complexity to solve the system of homogeneous linear equations.

See the following example that explains the efficiency for a 5-variable function.

Example 2 Consider the5-variable Boolean functionf constructed using the method presented in (Dalai, Gupta, and
Maitra 2005) such thatAI(f) = 3. The standard truth table representation of the function is01010110010101100101
011001101001, i.e., the outputs are corresponding to the inputs which are of increasing value. One can check that
|{x ∈ {0, 1}5 | f(x) = 1 & wt(x) < 3}| = 6. Now if we consider the functionh(x) = f(Bx + b) such that

B =









1 1 1 0 1
1 1 1 1 0
1 0 1 0 0
1 1 0 0 0
1 0 0 0 0









, andb = {1, 1, 0, 0, 1}, then|{x ∈ {0, 1}5 | h(x) = 1 & wt(x) < 3}| = 16 and one

can immediately conclude (from the results in (Dalai, Maitra, and Sarkar 2006)) thatAI(h) = 3. This is an example
where after finding the affine transformation there is even no need for the solution step at all. For the functionf , here
h(x) = f(Bx + b) such that|{x|h(x) = 1, wt(x) ≤ d}| is maximized.

We also present an example for a sub optimal case. In this case we considerB =









1 0 1 0 0
1 1 0 0 0
1 1 1 0 1
0 0 0 1 1
0 1 1 1 0









, andb an

all zero vector, then|{x ∈ {0, 1}5 | h(x) = 1 & wt(x) < 3}| = 14. Thus the dimension of the matrixUAr becomes
2 × 2 asνd

f = 2 and
∑d

i=0

(
n
i

)
− µd

f = 2. Thus one needs to check the rank of a2 × 2 matrix only.

Now the question is how to find such an affine transformation (for the optimal or even for sub optimal cases) efficiently.
For exhaustive search to get the optimal affine transform one needs to checkf(Bx + b) for all n × n nonsingular

binary matricesB andn bit vectorsb. Since there are
∏n−1

i=0 (2n − 2i) many nonsingular binary matrices and2n many
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n bit vectors, one needs to check2n
∏n−1

i=0 (2n − 2i) many cases for an exhaustive search. As weight of the input
vectors are invariant under permutation of the arguments, checking for only one nonsingular matrix from the set of
all nonsingular matrices whose rows are equivalent under certain permutation will suffice. Hence the exact number of
search options is1

n!2
n
∏n−1

i=0 (2n − 2i). One can check forn × n nonsingular binary matricesB whererowi < rowj

for i < j (rowi is the decimal value of binary pattern ofith row). It is clear that the search is infeasible forn ≥ 8.
Now we present a heuristic towards this. Our aim is to find out an affine transformationh(x) of f(x), i.e.,

h(x) = f(Bx + b), which maximizes the value ofµd
h. This means the weight of the most of the input vectors having

weight≤ d should be insupp(h). So we attempt to get an affine transformation for a Boolean functionf such that the
transformation increases the probability that an input vector, having output 1, will be translated to a low weight input
vector.

Considerh(V x + v) = f(x), whereV is ann × n binary matrix andv = (v1, v2, . . . , vn) ∈ {0, 1}n. Suppose
r1, r2, . . . , rn ∈ {0, 1}n are the row vectors of the transformationV . By V x + v = y we meanV xtr + v = ytr,
wherex = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ {0, 1}n. Given anx, we find ay by this transformation and
thenh(y) is assigned to the value off(x). If f(x) = 1, we like that the correspondingy = V x + v should be of
low weight. The chance of(y1, y2, . . . , yn) getting low weight increases if the probability ofyi = 0, 1 ≤ i ≤ n is
increased. That means the probability ofri · (x1, x2, . . . , xn) + vi = 0 for 1 ≤ i ≤ n needs to be increased. Hence
we will like to choose a linearly independent setri ∈ {0, 1}n, 1 ≤ i ≤ n andv ∈ {0, 1}n such that the probability
ri · (x1, x2, . . . , xn) + bi = 0, 1 ≤ i ≤ n is high when(x1, x2, . . . , xn) ∈ supp(f). Since we use the relations
h(V x + v) = f(x), andh(x) = f(Bx + b), that meansB = V −1 andb = V −1v.

The heuristic is presented below. Bybin[i] we denote then-bit binary representation of the integeri.

Heuristic 1

1. loop = 0; max = |{x|f(x) = 1, wt(x) ≤ d}|;

2. For (i = 1; i < 2n; i + +) {

(a) t = |{x = (x1, x2, . . . , xn) ∈ supp(f)|bin[i] · x = 0}|

(b) if t ≥ wt(f)
2 , val[i] = t andai = 0 elseval[i] = wt(f) − t andai = 1.

}

3. Arrange the triplets(bin[i], ai, val[i]) in descending order ofval[i].

4. Choose suitablen many triplets(rj , vj , kj) for 1 ≤ j ≤ n such thatrjs are linearly independent andkj ’s are
high.

5. Construct the nonsingular matrixV takingrj , 1 ≤ j ≤ n asj-th row andv = (v1, v2, . . . , vn).

6. Incrementloop by1; while (loop < maxval)

(a) B = V −1, b = V −1v.

(b) if max < |{x|f(Bx + b) = 1, wt(x) ≤ d}| replacef(x) byf(Bx + b) and updatemax by |{x|f(Bx +
b) = 1, wt(x) ≤ d}|.

(c) Go to step 2.

The time complexity of this heuristic is(maxval×n22n). See the following example, where we trace Heuristic 1
for the5-variable functionf given in Example 2.
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Example 3 We havef = 01010110010101100101011001101001 and check that|{x ∈ {0, 1}5 | f(x) = 1 & wt(x)
≤ 2}| = 6. In step 2, we get(val[i], ai) for 1 ≤ i ≤ 31 as1 : (11, 1), 2 : (8, 1), 3 : (11, 1), 4 : (8, 1), 5 : (11, 1),
6 : (8, 1), 7 : (9, 0), 8 : (8, 1), 9 : (9, 1), 10 : (8, 1), 11 : (9, 1), 12 : (8, 1), 13 : (9, 1), 14 : (8, 1), 15 : (11, 0),
16 : (8, 1), 17 : (9, 1), 18 : (8, 1), 19 : (9, 1), 20 : (8, 1), 21 : (9, 1), 22 : (8, 1), 23 : (11, 0), 24 : (8, 1),
25 : (9, 0), 26 : (8, 1), 27 : (9, 0), 28 : (8, 1), 29 : (9, 0), 30 : (8, 1), 31 : (11, 1). Then after ordering according
the value ofval[i], we choose the row of matrixV as the5-bit binary expansion of1, 3, 5, 15 and7 with frequency
values of0’s as 11, 11, 11, 11, 9 respectively andv = (a1, a3, a5, a15, a7) = (1, 1, 1, 1, 0). Here the matrixV is a
nonsingular matrix. The new function isg = f(Bx + b), whereB = V −1, b = V −1v and one can check that
|{x ∈ {0, 1}5 | g(x) = 1 & wt(x) ≤ 2}| = 16.

Experiments with this heuristic on different Boolean functions provide encouraging results. First of all we have
considered the functions which are random affine transformationsg(x) of the function (Dalai, Maitra, and Sarkar
2006),fs(x) = 1 for wt(x) ≤ ⌊n−1

2 ⌋ and fs(x) = 0 for wt(x) ≥ ⌊n+1
2 ⌋, which has no annihilator having degree

≤ ⌊n−1
2 ⌋. This experimentation has been done forn = 5 to 16. For all the cases running Heuristic 1 ong(x) we could

go back tofs(x). Then we have randomly changed2ζn bits on the upper half offs(x) (0.5 ≤ ζ ≤ 0.8 at steps of0.1)
to getf ′

s(x) and then put random transformations onf ′
s(x) to getg(x). Running Heuristic 1, we could also go back to

f ′
s(x) easily. For experiments we have takenmaxval = 20.

The important issue is exactly when this matrix size is asymptotically reduced than the trivial matrix sizewt(f)×
∑d

i=0

(
n
i

)
if one writes down the equations by looking at the truth table of the function only. This happens only when

µd
f is very close to

∑d
i=0

(
n
i

)
(see Proposition 2 and Theorem 4). Let

∑d
i=0

(
n
i

)
− µd

f ≤ 2ζn, whereζ is a constant

such that0 < ζ < 1. Note that2ζn is the approximation ofc(
∑d

i=0

(
n
i

)
)δ in Proposition 2. In that case the matrix

size will be less than or equal to(wt(f) + 2ζn −
∑d

i=0

(
n
i

)
) × 2ζn. Whend = ⌊n

2 ⌋ and n odd,
∑d

i=0

(
n
i

)
= 2n−1.

Thus for a balanced function, the size of the matrix becomes as low as2ζn × 2ζn. We summarize the result as follows.

Theorem 5 Predetermine a constantζ, such that0 < ζ < 1. Consider any Boolean functionf(x) ∈ Bn for which
there exist a nonsingular binary matrixB and ann-bit vectorb such that

∑d

i=0

(
n
i

)
− |{x|f(Bx + b) = 1, wt(x) ≤

d}| ≤ 2ζn. If B and b are known, then the size of the matrixUAr will be less than or equal to(wt(f) + 2ζn −
∑d

i=0

(
n
i

)
) × 2ζn which is asymptotically reduced in size thanwt(f) ×

∑d
i=0

(
n
i

)
.

That matricesB, b may be available as output of Heuristic 1.
Next we have run our heuristics on randomly chosen balanced functions. The number of inputs up to weightd

for a Boolean function is
∑d

i=0

(
n
i

)
. Thus for a randomly chosen balanced function, it is expected that there will

be 1
2

∑d

i=0

(
n
i

)
many inputs up to weightd for which the outputs are1. Below we present the improvement (on an

average of 100 experiments in each case) we got after running Heuristic 1 withmaxval = 20 for n = 12 to 16.

Table 1.Efficiency of Heuristic 1 on random balanced functions
n 12 13 14 15 16
d 3 4 5 4 5 6 4 5 6 5 6 7 5 6 7

∑
d

i=0

(
n

i

)
299 794 1586 1093 2380 4096 1471 3473 6476 4944 9949 16384 6885 14893 26333

⌈ 1
2

∑
d

i=0

(
n

i

)
⌉ 149 397 793 541 1190 2048 735 1736 3238 2472 4974 8192 3442 7446 13166

Heuristic Value 228 535 964 717 1438 2322 957 2051 3648 2917 5525 8811 3995 8194 14114

It should be noted that after running our heuristic on random balanced functions, the improvement is not significant.
There are improvements as we find that the the values are significantly more than1

2

∑d

i=0

(
n
i

)
(making our algorithm

efficient), but the value is not very close to
∑d

i=0

(
n
i

)
. This is not a problem with the efficiency of the heuristic, but

with the inherent property of a random Boolean function that there may not be an affine transformation at all onf(x)
such that|{x|f(Bx + b) = 1, wt(x) ≤ d}| is very high. In fact we can show that for highly nonlinear functionsf(x),
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the increment from|{x|f(x) = 1, wt(x) ≤ d}| to |{x|f(Bx + b) = 1, wt(x) ≤ d}| may not be high for any choice
of B, b. The reason for this is as follows.

Proposition 3 Let f ∈ Bn be a balanced function (n odd) having nonlinearitynl(f) = 2n−1 − 2
n−1

2 . Then for any

nonsingularn×n matrixB and anyn-bit vectorb, 2n−1−|{x|f(Bx+b) = 1, wt(x) ≤ n−1
2 }| ≥ 1

2

(
n−1
n−1

2

)

−2
n−1

2
−1.

Proof : Let f ∈ Bn be a balanced function (n odd) having nonlinearitynl(f) = 2n−1 − 2
n−1

2 . Let g ∈ Bn be
the function such thatg(x) = 1 for wt(x) ≤ n−1

2 . By (Dalai, Maitra, and Sarkar 2006, Theorem 3),nl(g) =

2n−1 −
(

n−1
n−1

2

)

. Now we like to find out a functionh(x) = f(Bx + b) such that|{x|h(x) = 1, wt(x) ≤ n−1
2 }| is

high. Consider the valueT = |supp(g) ∩ supp(h)|, i.e.,T = |{x : h(x) = 1 & wt(x) ≤ n−1
2 }|. Without loss of

generality considerT ≥ 2n−2. Hence,d(h, g) = 2(2n−1 −T ) = 2n − 2T . Now,nl(f) = nl(h) ≤ nl(g)+ d(h, g) =

(2n−1−
(

n−1
n−1

2

)

)+2n−2T . Thus,2n−1−2
n−1

2 ≤ (2n−1−
(

n−1
n−1

2

)

)+2n−2T , i.e.,2n−1−T ≥ 1
2

(
n−1
n−1

2

)

−2
n−1

2
−1.

Thus if one predetermines aζ, then for a largen we may not satisfy the condition that
∑n−1

2

i=0

(
n
i

)
−|{x|f(Bx+b) =

1, wt(x) ≤ d}| ≤ 2ζn.
In this direction we present the following general result where the constraint of nonlinearity is removed.

Theorem 6 Supposef ∈ Bn be a randomly chosen balanced function. Then the probability to get an affine transfor-
mation such that

|{x|f(Bx + b) = 1, wt(x) ≤ ⌊
n − 1

2
⌋}| >

⌊n−1

2
⌋

∑

i=0

(
n
i

)
− k is

1. less than
(n+1)2n

∑
k−1

i=0

(
2n−1

i

)2

(
2n

2n−1

) for n odd.

2. less than

(n+1)2n
∑

k−1

i=0

(
∑n

2
−1

j=0

(
n
j

)

i

)


2n−
∑n

2
−1

j=0

(
n
j

)

i+ 1
2

(
n
n
2

)





(
2n

2n−1

) for n even.

Proof : First we prove it forn odd. The number of balanced functionsh ∈ Bn such that|{x|h(x) = 1, wt(x) ≤

n−1
2 }| > 2n−1 − k is

∑k−1
i=0

(
2n−1

i

)2

(consider the upper and lower half in the truth table of the function). So,

there will be at most
∑k−1

i=0

(
2n−1

i

)2

many affinely invariant classes of such functions. Further the total num-

ber of balanced function is
(

2n

2n−1

)

. Hence the total number of affinely invariant classes of balanced function is

≥

(
2n

2n−1

)

2n(2n−1)(2n−21)...(2n−2n−1) >

(
2n

2n−1

)

(n+1)2n . Hence the probability of a randomly chosen balanced function will be

function typeh is bounded by
(n+1)2n

∑
k−1

i=0

(
2n−1

i

)2

(
2n

2n−1

) . Similarly, the case forn even can be proved.

If one takesk ≤ 2
3
4

n, then it can be checked easily that the probability decreases fast towards zero asn in-
creases. Thus for a random balanced functionf , the probability of getting an affine transformation (which generates

the functionh from f ) such that|{x|f(Bx + b) = 1, wt(x) ≤ ⌊n−1
2 ⌋}| >

∑⌊n−1

2
⌋

i=0

(
n
i

)
− 2

3
4
n is almost improbable.
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Thus when one randomly chosen balanced function is considered, using the strategy of considering the function
after affine transformation, one can indeed reduce the matrix size by constant factor, but the reduction may not be
significant in asymptotic terms when the annihilators at the degree of⌊n−1

2 ⌋ are considered for largen.

5 Additional constraint over maximum AI

In this section we consider the functionsf ∈ Bn with maximum possible AI value⌈n
2 ⌉ with the following additional

constraint: givenfg = h, whendeg(h) = ⌈n
2 ⌉ thendeg(g) must be greater than or equal to⌊n

2 ⌋.
These functions are indeed better than any functions with only maximum AI with respect to fast algebraic attacks

since one can not get ag havingdeg(g) < ⌊n
2 ⌋ whendeg(h) is fixed at⌈n

2 ⌉. This is the best possible case when
deg(h) is fixed at⌈n

2 ⌉ as from (Courtois 2003, Theorem 7.2.1), there always existg, h, such thatfg = h, with
deg(g) + deg(h) ≤ n.

5.1 Some Basic results

First concentrate on functions having full AI as presented in (Dalai, Gupta, and Maitra 2005; Dalai, Maitra, and
Sarkar 2006). For such a functionf ∈ B2k, the lowest degree annihilators are at degreek and for its complement
1 + f , the lowest degree annihilators are at degreek + 1 and hence it can be shown that these functions cannot have
fg = h relation such thatdeg(h) = k anddeg(g) < k. Now one can also check that the(2k + 1)-variable function
F = x2k+1 + f is of AI k + 1; furtherF is balanced. One can also check that the functionx2k+2 + x2k+1 + f has
algebraic immunityk + 1 and it is also an1-resilient function. We summarize these results below.

Theorem 7

1. For any evenn, it is possible to get unbalancedf ∈ Bn with maximum possible AIn2 such that given any
fg = h relation havingdeg(h) = n

2 , deg(g) 6< n
2 .

2. For any evenn it is possible to get1-resilient function having full AI.

With respect to Theorem 7(1), it is open to get such balanced functionsfb whenn is even. We solve this problem in
Subsection 5.2 for all evenn except whenn is an exact power of2 and then consideringxn+1 + fb the corresponding
case for Theorem 7(2) will be solved forn + 1 (odd) variable functions. Note that experimental evidences of resilient
functions with full AI are available in (Dalai, Gupta, and Maitra 2004), but no theoretical result is available in the
literature.

Note that the results in Theorem 7 are proved using the functions available in (Dalai, Gupta, and Maitra 2005;
Dalai, Maitra, and Sarkar 2006) which are of the property that only one off and1+f has minimum degree annihilators
at AI(f) and the other one has minimum degree annihilators at degree1 + AI(f). For such functions (Dalai,

Gupta, and Maitra 2006, Proposition 5),wt(f) = 22k−1 −
(

2k−1
k

)

(i.e., these functions are not balanced) and

nl(f) ≤ 22k−1 −
(

2k−1
k

)

.

5.2 Annihilators of f and 1 + f at the same degree

Now we will concentrate on the functions such that the minimum degree annihilators of the function and its comple-
ment are at the same degree but they never cancel out when added. We formally define this as below.

Definition 4 Supposef ∈ B2k be such thatAI(f) = k, the maximum possible; the lowest degree annihilators of
both f and1 + f are at degreek. Further there is no two nonzerok-degree annihilatorsg andh of f and 1 + f

respectively, such thatdeg(g + h) < k. We denote such functions byP2k functions.
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Theorem 8 Supposef be aP2k function. Then

1. AI(x2k+1 + f) = k + 1, which is the maximum possible;

2. if for f1, f2 ∈ B2k, ff1 = f2 wheredeg(f1) ≤ deg(f2) = k thendeg(f1) = k;

3. nl(f) ≥ 22k−1 −
(

2k−1
k−1

)

.

Proof : Let us denoteF = x2k+1 + f . Any annihilator ofF is of the formg1 + x2k+1(g1 + g2), whereg1 ∈ AN(f)
andg2 ∈ AN(1 + f) and bothg1, g2 are not0 at the same time. Similarly any annihilator of1 + F is of the form
g2 + x2k+1(g1 + g2). As g1 6= g2 and their highest degree terms can not cancel out ing1 + g2, their degree of the
annihilators can not be≤ k. ThusAI(F ) = k + 1.

Now we prove item 2. Consider we have somef1, f2 such thatff1 = f2 with deg(f1) ≤ k, deg(f2) = k. Note
thatff1 = f2 iff f(f1 + f2) = 0 and(1 + f)f2 = 0 (Braeken, Lano, and Praneel 2005). So,f1 = (f1 + f2) + f2

is the sum of the twok degree annihilatorsf1 + f2 andf2 of f and1 + f respectively. As their highest degree terms
never cancel out we havedeg(f1) = k.

Next we prove the last item. Sincex2k+1 + f is of full AI k + 1, following (Lobanov 2005, Corollary 1), one

getsnl(x2k+1 + f) ≥ 22k −
(

2k
k

)

. As for every2k-variable functionf , we havenl(x2k+1 + f) = 2nl(f), we get

nl(f) ≥ 22k−1 −
(

2k−1
k−1

)

.

This kind of function provides the best possible relationship when we use functionsf ∈ Bn and considerfg = h

relationship withdeg(h) = n
2 as in that casedeg(g) can not be less thann2 . This is the optimum situation when

deg(h) = n
2 .

Now consider the following construction from (Dalai, Maitra, and Sarkar 2006; Dalai, Gupta, and Maitra 2006).

Construction 1 Considerζ2k ∈ B2k, k ≥ 0, as follows:

ζ2k(x) =







0 for wt(x) < k,

ax for wt(x) = k, ax ∈ {0, 1},
1 for wt(x) > k.

We will specifically consider the case where the outputsax corresponding to weightk inputs take both the distinct
values0, 1 i.e., the function is nonsymmetric. One can get a balancedζ2k(x) if the outputs corresponding to half of
the weightk inputs are0 and the outputs corresponding to half of the weightk inputs are1.

Note that there are





(
2k
k

)

1
2

(
2k
k

)



many balanced functions of the formζ2k in Construction 1. Fromζ2k(x), the following

construction is attempted (Dalai, Maitra, and Sarkar 2006; Dalai, Gupta, and Maitra 2006) to get balanced functions.

Construction 2

G(x1, . . . , x2k) = 0 for wt(x1, . . . , x2k) < k,

= 1 for wt(x1, . . . , x2k) > k,

= b(x1, . . . , x2k) for wt(x1, . . . , x2k) = k,

whereb(x1, . . . , x2k) is a Maiorana-McFarland type bent function.

1. If wt(G) < 22k−1, then we choose22k−1 −wt(G) points randomly from the inputs having weightk and output
0 of G and toggle those outputs to1 to getζ2k.

2. If wt(G) > 22k−1, then we choosewt(G)− 22k−1 points randomly from the inputs having weightk and output
1 of G and toggle those outputs to0 to getζ2k.
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Thus one gets balancedζ2k.

Now we like to point out the problems with the Constructions 1, 2 where the annihilators off and1 + f are at the
same degree.

1. The constructions are randomized and hence the exact nonlinearity of the functions cannot be calculated. In

fact, the experimental results show that the nonlinearity of the functions are slightly less than22k−1 −
(

2k−1
k−1

)

.

2. Experimental results (Dalai, Gupta, and Maitra 2006, Table 3) show that there existsg havingdeg(g) < k such
thatζ2kg = h, wheredeg(h) = k.

We solve these problems in the construction presented in the following subsection where the functions will have

nonlinearity not less than22k−1 −
(

2k−1
k−1

)

(see Corollary 2 later) and there cannot be anydeg(g) < k (see Theorem 9

later).

5.3 The exact construction

We present the following construction that has been considered in (Armknecht and Krause 2006, Theorem 1) in terms
of algebraic immunity. However, the additional property over algebraic immunity that we are considering here was
not studied in (Armknecht and Krause 2006).

Construction 3 Considerη2k ∈ B2k, as follows:
η2k(x) = { 1 for wt(x) < k,

ax for wt(x) = k, ax ∈ {0, 1}, with the constraintax = ax,

0 for wt(x) > k,

wherex is the bitwise complement of the vectorx. Further all theax’s are not same, i.e.,η2k is non-symmetric.

Theorem 9 The functionsη2k(x) as in Construction 3 areP2k functions.

Proof : Using the similar proof technique used in (Dalai, Maitra, and Sarkar 2006, Theorem 1), one gets that bothη2k

and1+ η2k has no annihilators at degree less thank. Further,
∑k

i=0

(
n
i

)
is greater than bothwt(η2k) andwt(1+ η2k)

and hence from (Dalai, Gupta, and Maitra 2004, Theorem 1), bothη2k and1 + η2k must have annihilator at degree
less than or equal tok. Hence bothη2k(x) and1 + η2k(x) have minimum degree annihilators exactly at degreek.

Any k degree functiong ∈ B2k can be written as

a0 +
n∑

i=0

aixi + . . . +
∑

1≤<i1<...<ik≤n

ai1,...,ik
xi1 . . . xik

,

where the coefficientsa’s are either 0 or 1. Ifg is an annihilator ofη2k theng(x) = 0 whenη2k(x) = 1. Since
η2k(x) = 1 for wt(x) < k, we can eliminate all the coefficients (a’s) associated to monomials of degree≤ k − 1
of g. Then we haveη2k(x) = 1 for some input vectorsx of weight k. For such anx = (b1, . . . , bn), where
bi1 = . . . = bik

= 1 and rest0, one can eliminate the coefficientai1,...,ik
. Thus thek degree independent annihilators

of η2k form the setS1 = {xj1 . . . xjk
: η2k(b1, . . . , bn) = 0 andbj1 = . . . = bjk

= 1, rest are0}. Here anyk-degree
annihilator ofη2k does not contain any monomial of degree< k.

Definef ′(x) = 1 + η2k(x). Following the similar proof forη2k(x), one can prove that the space ofk degree
annihilators off ′ is generated by the basis set{xj1 . . . xjk

: f ′(b1, . . . , bn) = 0 andbj1 = . . . = bjk
= 1, rest are0}.

Hence, thek degree annihilator space off ′(x) = 1 + η2k(x) is generated by the basis set{(1 + xj1 ) . . . (1 + xjk
) :

f ′(1 + b1, . . . , 1 + bn) = 1 + η2k(b1, . . . , bn) = 0 andbj1 = . . . = bjk
= 0, rest are1}. So, the subspace ofk degree

monomials ofk degree annihilators of1 + η2k is generated by the basis setS2 = {xj1 . . . xjk
: η2k(b1, . . . , bn) =
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1 and bj1 = . . . = bjk
= 0, rest are1}. One can check that these two setsS1 andS2 are disjoint iffη2k(x) = η2k(x)

for wt(x) = k.
Since the basis setsS1, S2 are disjoint, thek degree terms of any annihilator ofη2k and thek degree terms of any

annihilator of1 + η2k cannot be the same. Thus the proof.

Corollary 2 nl(η2k) ≥ 22k−1 −
(

2k−1
k−1

)

.

Proof : Consider the(2k + 1)-variable functionx2k+1 + η2k(x1, . . . , x2k). As η2k(x) is a P2k function, from
item 1 of Theorem 8,x2k+1 + η2k is of full AI k + 1 and hence following (Lobanov 2005, Corollary 1), one gets

nl(x2k+1 + η2k) ≥ 22k −
(

2k
k

)

. As for every2k-variable functionf , we havenl(x2k+1 + f) = 2nl(f), we get the

proof.
Note that the above proof is similar to the proof of (Carlet, Dalai, Gupta, and Maitra 2006, Theorem 6). Now we

concentrate on balanced functions.

Corollary 3 One can get a balancedη2k iff 2k is not a power of2 and the count of such balanced functions is




1
2

(
2k
k

)

1
4

(
2k
k

)



.

Proof : For a2k-variable function, there are
(

2k
k

)

many input vectors of weightk and there are12

(
2k
k

)

many(x, x)

distinct pairs of weightk. One can construct a balancedη2k if and only if 1
2

(
2k
k

)

is even, i.e.,
(

2k
k

)

is divisible by4.

Since
(

2k
k

)

= 2
(

2k−1
k−1

)

, we need to test whether
(

2k−1
k−1

)

is even.

Suppose thet = ⌊log2 2k⌋+1 bit binary representations of2k, k, 2k−1 andk−1 are as follows (most significant
bit at the left most position):

2k = bt bt−1 . . . bl+1 bl = 1 0 0 . . . 0,

k = 0 bt . . . bl+2 bl+1 bl = 1 0 . . . 0,

2k − 1 = bt bt−1 . . . bl+1 1 + bl = 0 1 1 . . . 1,

k − 1 = 0 bt . . . bl+2 bl+1 1 + bl = 0 1 . . . 1,

where1 < l ≤ t, bi ∈ {0, 1} andbt = bl = 1. Now following Lucas’ theorem (Comtet 1974, Page 79) with the

prime 2, we have
(

2k−1
k−1

)

≡
(

bt

0

)(
bt−1

bt

)

. . .
(

0
bl+1

)(
1
0

)(
1
1

)
. . .
(

1
1

)
mod 2. If 2k is a power of2, thent = l. So,

(
2k−1
k−1

)

≡
(

1
0

)(
1
1

)
. . .
(

1
1

)
mod 2, i.e.,

(
2k−1
k−1

)

≡ 1 mod 2. Hence
(

2k−1
k−1

)

is odd.

If 2k is not a power of2, then
(

2k−1
k−1

)

≡
(

bt−1

bt

)

. . .
(

bl+1

bl+2

)(
0

bl+1

)

mod 2. At some place we will getbs = 0 and

bs+1 = 1 for l ≤ s < t becausebt = 1. Hence
(

2k−1
k−1

)

is even if2k is not a power of2.

Thus
(

2k
k

)

is divisible by 4, when2k is not exactly a power of 2. In such a case, there will be1
2

(
2k
k

)

many

distinct pairs of(x, x), wherex is a2k bit binary pattern of weightk. One can choose14

(
2k
k

)

many distinct pairs and

in such inputs ofη2k, output 1 is assigned and for the rest of1
4

(
2k
k

)

many distinct pairs of inputs, output 0 is assigned.

This provides a balancedη2k. Note that the number of such distinct balancedη2k is





1
2

(
2k
k

)

1
4

(
2k
k

)



.

Now an important question is whether there exist balancedP2k functions when2k is a power of2. We have
checked that for2k = 4 = 22, there is no balancedP4 function by running exhaustive computer program.

314   Deepak Kumar Dalai and Subhamoy Maitra

Computación y Sistemas Vol. 12 No. 3, 2009, pp 297-321 
ISSN 1405-5546 



For2k = 6, we have exhaustively checked all theη6 functions. There are210 − 2 such functions (including
(

10
5

)

many balanced functions). All of them are of nonlinearity 22 and algebraic degree either 4 or 5. The algebraic degree
of all 252 balanced functions is5. If we consider theη6g = h kind of relations, then we finddeg(g) = 1, when
deg(h) = 4 for each of theη6 functions.

For 2k = 10, it is not possible to experimentally study all theη10 functions. We have checked randomly chosen
100 many balancedη10 functions. Always we achieved the nonlinearity 386 and algebraic degree 8. If we consider
theη10g = h kind of relations, then we finddeg(g) ≥ 2, whendeg(h) = 6 for each of the 100 many balancedη10

functions we have randomly chosen.
Similarly, for2k = 12, we have checked randomly chosen 100 many balancedη12 functions. Always we achieved

the nonlinearity 1586 and algebraic degree 8. If we consider theη12g = h kind of relations, then we finddeg(g) ≥ 3,
whendeg(h) = 7 for each of the 100 many balancedη12 functions we have randomly chosen.

Theoretically proving the algebraic degree and nonlinearity of balancedη2k functions and finding the degrees of
g, whenη2kg = h anddeg(h) > k are interesting open questions.

5.4 Functions on odd number of input variables
Now let us study the functionsf on odd number of input variables2k + 1 having maximum possible AIk + 1.
That is the functions must be balanced (Dalai, Gupta, and Maitra 2004). Consider the following balanced symmetric
functions (Dalai, Maitra, and Sarkar 2006; Braeken and Praneel 2005; Braeken, Lano, and Praneel 2005) on2k + 1
variables having full algebraic immunityk + 1.

Construction 4 Considerτ2k+1 ∈ B2k+1, as follows:

τ2k+1(x) =

{
1 for wt(x) ≤ k,

0 for wt(x) ≥ k + 1,

We list a few experimental values of minimum degree ofg whenτ2k+1g = h anddeg(h) = k + 1. In the format
< 2k + 1, deg(g), deg(h) > these values are< 5, 1, 3 >, < 7, 1, 4 >, < 9, 1, 5 >, < 11, 2, 6 >. Note that the
minimum degree ofg is substantially less thank and hence the functionsτ2k+1 are not interesting in resistance against
fast algebraic attacks.

To get a better resistance against fast algebraic attack, we are interested about the balanced functions with the
following additional property. Given anyfg = h relation havingdeg(h) = k + 1, we require thatdeg(g) ≥ k.

We run exhaustive search for2k + 1 = 5 variable functions and found such functions. One example is the truth
table 00000001000101110001101111011111 which is of nonlinearity 10 and algebraic degree 4. Note that there is no
nonlinearity 12 function on 5 variables with such property. Existence of such functions for7 variables onwards is an
open question.

6 Conclusion

In this paper, first we study how to reduce the matrix size which is involved in finding the annihilators of a Boolean
function. Our results show that considerable reduction in the size of the matrix is achievable. We identify the classes
where it provides asymptotic improvement. We also note that for randomly chosen balanced functions, the improve-
ment is rather constant than asymptotic. The reduction in matrix size helps in running the actual annihilator finding
steps by Gaussian elimination method. Though our method is less efficient in general than the recently known efficient
algorithms (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006; Didier and Tillich 2006) to find the anni-
hilators, our main motivation is to theoretically understand the structure of the matrix involved. Further, for certain
classes of functions, our technique provides better effciency than the currently best known algorithm (Armknecht,
Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006).

Next we present theoretical results on balanced Boolean functions having some additional properties over max-
imum possible AI. Our construction providesn-variable (n even) balanced functionsf with maximum possible AI
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n
2 such that given twon-variable Boolean functionsg, h with fg = h, if deg(h) = n

2 , thendeg(g) will be greater
than or equal ton2 . This is the first time such a result is demonstrated. Following this result, one can get theoretical
construction of resilient Boolean functions having maximum possible AI. Though the nonlinearity of the functions we
construct are not encouraging to use them as building blocks in cryptosystem, our results provide theoretical insights
in the area of constructing Boolean functions that are resistant to certain kinds of algebraic attacks.
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Appendix A: Comparison with Meier et. al. Algorithm

Here we compare the time and space complexity of our strategy with (Meier, Pasalic, and Carlet 2004, Algorithm 2).
In paper (Meier, Pasalic, and Carlet 2004), Algorithm 2 is probabilistic. In this section we study the time and space
complexity of the algorithm along with it’s deterministic version. Using these algorithms we check whether there exist
annihilators of degree less than or equal tod of ann-variable functionf . As we have already described, ANF of any
n-variable functiong of degreed is of the form

g(x1, . . . , xn) = a0 +

n∑

i=0

aixi + · · · +
∑

1≤i1<i2···<id≤n

ai1,...,id
xi1 · · ·xid

where subscripteda’s are from{0, 1}. First we present the exact probabilistic algorithm (Meier, Pasalic, and Carlet
2004, Algorithm 2).

Algorithm 2
Input: f ∈ Bn andn.
Output: AI(f).

1. Initialize weightw = 0.

2. For all x’s of weightw with f(x) = 1, substitute eachx in g(x) = 0 to derive a linear equation on the
coefficients ofg, with a single coefficient ofw degree monomial. Use this equation to express this coefficient
iteratively by coefficients of lower degree monomials.

3. If w < d, incrementw by1 and go to step 2.

4. Choose random argumentsx of arbitrary weight such thatf(x) = 1 and substitute ing(x) = 0, until there are
same number of equations as unknowns.

5. Solve the linear system. If there is no solution, output no annihilator of degreed, but if there is a solution then
it is not clear whether there is an annihilator of degreed or not.

Next we present the deterministic version of the original probabilistic algorithm (Meier, Pasalic, and Carlet 2004,
Algorithm 2).

Algorithm 3
Input: f ∈ Bn andn.
Output: AI(f).

1. Initialize weightw = 0.

2. For all x’s of weightw with f(x) = 1, substitute eachx in g(x) = 0 to derive a linear equation in the coefficients
of g, with a single coefficient ofw degree monomials. Use this equation to express this coefficient iteratively by
coefficients of lower degree monomials.

3. If w < d, incrementw by1 and go to step 2.

4. Substitutex such thatwt(x) > d andf(x) = 1 in g(x) = 0 to get linear equation in the coefficient ofg.

5. Solve the linear system. Output no annihilator of degreed iff there is no nonzero solution.
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Since first three steps of both algorithms are same, we initially study the time and space complexity of both the
algorithms for first three steps for a randomly chosen balanced functionf . In step 2, we applyx, such thatwt(x) ≤ d

andf(x) = 1, in g(x) and hence we get a linear equation in the coefficient ofg such that a single coefficient of that
weight is expressed as linear combination of its lower weight coefficients. Here we consider a particularw for each
iteration. Asf is random and balanced, one can expect that there are1

2

(
n
w

)
many input vectors of weightw in set

supp(f). For eachx = (x1, . . . , xn) ∈ supp(f) wherexi1 , . . . , xiw
are1 and others are0 of weightw, we will get

linear equation of the form

ai1,...,iw
= a0 +

w∑

j=1

aij
+ . . . +

∑

{k1,...,kw−1}⊂{i1,...iw}

ak1,...,kw−1
. (3)

To store one equation we need
∑w

i=0

(
n
i

)
many memory bits (some places will be 0, some will be 1). There are

∑w−1
i=0

(
w
i

)
many coefficients in the right hand side of the Equation 3. Asf is random, one can expect that half

of them can be eliminated using the equations obtained by lower weight input support vectors. So,
∑w

i=0

(
n
i

)
+

1
2

∑w−1
i=0 (

(
w
i

)∑i−1
j=0

(
n
j

)

) order of computation is required to establish an equation. Herew varies from0 to d and

there are approximately12
∑d

w=0

(
n
w

)
many support vectors of weight less than or equal tod. Hence at the starting of

step 4 the space complexity is

S1 =
1

2

d∑

w=0

(
(

n
w

)
w∑

i=0

(
n
i

)
)

and time complexity is

T 1 =
1

2

d∑

w=0

(
(

n
w

)
(

w∑

i=0

(
n
i

)
+

1

2

w−1∑

i=0

(
w
i

)
i−1∑

j=0

(
n
j

)

)).

Now we study the time and space complexity for steps 4 and 5 in both probabilistic and deterministic version. To
represent each equation for the system of equation one needs

∑d

w=0

(
n
w

)
memory bits.

First we consider the probabilistic one. For probabilistic case one has to choose approximately1
2

∑d

w=0

(
n
w

)
many

support input vectors of weight greater thand. Hence each linear equation obtained from these vectors has at least
∑d

i=0

(
d+1

i

)

many coefficients ofg and half of them can be eliminated using the equations obtained in previous steps.

So, to get each equation one needs at least
∑d

w=0

(
n
w

)
+ 1

2

∑d

i=0(
(

d+1
i

)
∑i−1

j=0

(
n
j

)

) computations. Hence the space

complexity during 4th step isSP2 ≥ 1
2 (
∑d

w=0

(
n
w

)
)2 and time complexity isTP2 ≥ 1

2

∑d

w=0

(
n
w

)
(
∑d

w=0

(
n
w

)
+

1
2

∑d

i=0(
(

d+1
i

)
∑i−1

j=0

(
n
j

)

)). Finally, to generate system of homogeneous linear equations one requires

SP = S1 + SP2 ≥
1

2

d∑

w=0

(
(

n
w

)
w∑

i=0

(
n
i

)
) +

1

2
(

d∑

w=0

(
n
w

)
)2 memory bits and

TP = T 1+TP2 ≥
1

2

d∑

w=0

(
(

n
w

)
(

w∑

i=0

(
n
i

)
+

1

2

w−1∑

i=0

(
w
i

)
i−1∑

j=0

(
n
j

)

))+
1

2

d∑

w=0

(
n
w

)
(

d∑

w=0

(
n
w

)
+

1

2

d∑

i=0

(
(

d+1
i

) i−1∑

j=0

(
n
j

)

))

computations. In step 5, we have to solve1
2

∑d

w=0

(
n
w

)
many linear equations with same number of variables. To

solve this system one needsTP3 = (1
2

∑d

w=0

(
n
w

)
)3 computations using the Gaussian elimination technique.

Now we study space and time complexity for deterministic one. Sincef is balanced, there are approximately
2n−1 − 1

2

∑d

w=0

(
n
w

)
= 1

2

∑n

w=d+1

(
n
w

)
many support vectors having weight greater thand and these many are

considered to find out equations. Hence each linear equation obtained from these vectors of weightw > d contains
∑d

i=0

(
w
i

)
many coefficients ofg and half of them can be eliminated using the equations obtained in steps 1, 2 and 3.
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To get this equation one needs
∑d

i=0

(
n
i

)
+ 1

4

∑d

i=0(
(

w
i

)∑i−1
j=0

(
n
j

)

) computations. Hence the total space complexity

during 4th step isSD2 = 1
4

∑n

w=d+1

(
n
w

)∑d

w=0

(
n
d

)
) and time complexity isTD2 = 1

2

∑n

w=d+1

(
n
w

)
(
∑d

i=0

(
n
i

)
+

1
4

∑d

i=0(
(

w
i

)∑i−1
j=0

(
n
j

)

). Finally, to generate homogeneous linear equations one needs

SD = S1 + SD2 =
1

2

d∑

w=0

(
(

n
w

)
w∑

i=0

(
n
i

)
) +

1

4

n∑

w=d+1

(
n
w

)
d∑

w=0

(
n
d

)
) memory bits and

TD = T 1+TD2 =
1

2

d∑

w=0

(
(

n
w

)
(

w∑

i=0

(
n
i

)
+

1

2

w−1∑

i=0

(
w
i

)
i−1∑

j=0

(
n
j

)

)) +
1

2

n∑

w=d+1

(
n
w

)
(

d∑

i=0

(
n
i

)
+

1

4

d∑

i=0

(
(

w
i

)
i−1∑

j=0

(
n
j

)

)

computations. Further, in step 5, we have to solve1
2

∑n

w=d+1

(
n
w

)
many linear equations with12

∑d

w=0

(
n
w

)
number

of variables. To solve this system one needsTD3 = (1
2

∑n

w=d+1

(
n
w

)
)3 computations.

The system of equations generated by our strategy as well as Meier et al (Meier, Pasalic, and Carlet 2004) algo-
rithms are same. So, it takes same complexities to solve them. Only difference is during generation of the system of
equations. In the following table we show the complexities for both algorithms for generating the system of equations.

Table 2.Time and Space complexity comparison of Probabilistic algorithms to generate equations.
Space Time

Meier’s 1
2

∑d

w=0(
(

n
w

)∑w

i=0

(
n
i

)
) 1

2

∑d

w=0(
(

n
w

)
(
∑w

i=0

(
n
i

)
+ 1

2

∑w−1
i=0

(
w
i

)∑i−1
j=0

(
n
j

)

))+

algorithm + 1
2 (
∑d

w=0

(
n
w

)
)2 1

2

∑d

w=0

(
n
w

)
(
∑d

w=0

(
n
w

)
+ 1

2

∑d

i=0(
(

d+1
i

)
∑i−1

j=0

(
n
j

)

))

Our algorithm 1
4 (
∑d

w=0

(
n
w

)
)2 1

4 (
∑d

w=0

(
n
w

)
)2

Table 3.Time and Space complexity comparison of Deterministic algorithms to generate equations.
Space Time

Meier’s 1
2

∑d
w=0(

(
n
w

)∑w
i=0

(
n
i

)
)+ 1

2

∑d
w=0(

(
n
w

)
(
∑w

i=0

(
n
i

)
+ 1

2

∑w−1
i=0

(
w
i

)∑i−1
j=0

(
n
j

)

))+

algorithm 1
4

∑n

w=d+1

(
n
w

)∑d

w=0

(
n
d

)
) 1

2

∑n

w=d+1

(
n
w

)
(
∑d

i=0

(
n
i

)
+ 1

4

∑d

i=0(
(

w
i

)∑i−1
j=0

(
n
j

)

)

Our algorithm 1
4

∑n
w=d+1

(
n
w

)∑d
w=0

(
n
w

)
1
4

∑n
w=d+1

(
n
w

)∑d
w=0

(
n
w

)

Deepak Kumar Dalaireceived his Master of Science in Mathematics degree in the year 2001 from Utkal University,
Bhubaneswar, India and Master of Technology in Computer Science in the year 2003 from Indian Statistical Institute,
Kolkata. He obtained Ph.D. degree in Computer Science from Indian Statistical Institute, Kolkata in 2006. Currently
he is with the Mathematics Department of National Institute of Science Education and Research, Bhubaneswar, India.

320   Deepak Kumar Dalai and Subhamoy Maitra

Computación y Sistemas Vol. 12 No. 3, 2009, pp 297-321 
ISSN 1405-5546 



Subhamoy Maitrareceived his Bachelor of Electronics and Telecommunication Engineering degree in the year 1992
from Jadavpur University, Kolkata and Master of Technology in Computer Science in the year 1996 from Indian
Statistical Institute, Kolkata. He has completed Ph.D. from Indian Statistical Institute in 2001. Currently he is an
Associate Professor at Indian Statistical Institute. His research interest is in Cryptology.

Algebraic Immunity of Boolean Functions – Analysis and Construction   321

Computación y Sistemas Vol. 12 No. 3, 2009, pp 297-321 
                                                                 ISSN 1405-5546 




