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Abstract

In this paper, we first analyse the method of finding algebraic immunity of a Boolean function. Given a Boolean
function f on n-variables, we identify a reduced set of homogeneous linear equations by solving which one can
decide whether there exist annihilatorsfddit a specific degree. Moreover, we analyse how an affine transformation
on the input variables of can be exploited to achieve further reduction in the set of homogeneous linear equations.
Next, from the design point of view, we construct balanced Boolean functions with maximum possible Al with an
additional property which is necessary to resist the fast algebraic attack.

Keywords: Algebraic Attacks, Algebraic Normal Form, Annihilators, Boolean Functions, Fast Algebraic Attacks,
Homogeneous Linear Equations.

Resumen

En este articulo, analizamos primero el método que permite encontrar la inmunidad algebraica de una funcion
Booleana. Dada una funcion Booleahden variables, identificamos un conjunto reducido de ecuaciones lineales
homogéneas resolviendo cual de ellas puede ser usada para determinar si existen nulificgtideesrdgrado
especifico. Ademas analizamos como una transformacion afin de las variables de enfrpdedi ser aplicada

para alcanzar una mayor reduccion en el conjunto de ecuaciones lineales homogéneas. En seguida, y analizando
desde el punto de vista de disefio, construimos funciones Booleanas balanceadas con inmunidad algebraica maxima
y una propiedad adicional necesaria para resistir versiones rapidas de ataques algebraicos.

Palabras Claves:Ataques algebraicos, froma normal algebraica, nulificadores, funciones Booleanas, ataques alge-
bracios rapidos, ecuaciones lineales homogéneas.

Introduction

Results on algebraic and fast algebraic attacks have received a lot of attention recently in studying the security of cryp-
tosystems (Armknecht 2004; Batten 2004; Canteaut 2005; Cheon and Lee 2004; Cho and Pieprizyk 2004; Courtois

*This is a substantially revised and merged version of two conference papers. (i) “Reducing the Number of Homogeneous Linear Equations in
Finding Annihilators”, inSequences and Their Applications, SETA j@ges 376-390, volume 4086, Lecture Notes in Computer Science, Springer
Verlag, 2006. Section 3.1 and Appendix A are added over the conference version. (ii) “Balanced Boolean Functions with (more than) Maximum
Algebraic Immunity”, inInternational Workshop on Coding and Cryptography, WCC pages 99-108, INRIA, Rocquencourt, France in April
16-20, 2007. The proceedings of WCC '07 is only a workshop record and it is not printed by any publisher.
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and Pieprzyk 2002; Courtois and Meier 2003; Courtois 2003; Lee, Kim, Hong, Han, and Moon 2004; Armknecht,
Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006; Didier and Tillich 2006; Courtois, Debraize, and Garrido 2005).
Boolean functions are important primitives to be used in the cryptosystems and in view of the algebraic attacks, one
should concentrate on the annihilators (Braeken and Praneel 2005; Dalai, Gupta, and Maitra 2004; Dalai, Gupta, and
Maitra 2005; Dalai, Maitra, and Sarkar 2006; Meier, Pasalic, and Carlet 2004; Nawaz, Gong, and Gupta 2006).

Let B,, be the set of all Boolean functiog$, 1}™ — {0, 1} onn input variables. One may refer to (Dalai, Gupta,
and Maitra 2004) for detailed definitions related to Boolean functions, e.g., truth table, algebraic normal form (ANF),
weight (wt), support éupp), nonlinearity (/) and Walsh spectrum of a Boolean function. Any Boolean function can
be represented as a multivariate polynomial avét(2), called the algebraic normal form (ANF), as

[z, . 2n) = ao + E a;T; + E Qi jTiT5+ ...+ 01,2, . nT1T2...Tn,

1<i<n 1<i<j<n

where the coefficientsy, a;, a; j,...,a1,2,...» € {0,1}. The algebraic degredeg(f), is the number of variables in
the highest order term with nonzero coefficient.

Given f € B,, a nonzero functiog € B, is called an annihilator of if fg = 0. A function f should not be
used iff or1 4+ f has a low degree annihilator. In this regard, an important property of Boolean function is defined as
algebraic immunity (in short, Al) (Meier, Pasalic, and Carlet 2004) (annihilator immunity (Dalai, Maitra, and Sarkar
2006)) as follows.

Definition 1 Given f € B,, its algebraic immunity is defined as (Meier, Pasalic, and Carlet 2004) the minimum
degree of all annihilators of or 1 + f, and it is denoted by Z(f).

Itis also known (Courtois and Meier 2003; Meier, Pasalic, and Carlet 2004) that for any fufictidrt- f must have
an annihilator at the degréé | i.e., AZ(f) < [5].

The target of a good design is to use a funcifauch that neithef nor1+ f has an annihilator at a degree less than
[5]. The first construction in this direction appeared in (Dalai, Gupta, and Maitra 2005). Later symmetric functions
with this property has been presented in (Dalai, Maitra, and Sarkar 2006; Braeken and Praneel 2005). However, all
these constructions are not good in terms of other cryptographic properties.

In this situation, one needs to consider Boolean functions which are rich in terms of other cryptographic properties,
and then the Al of the functions has to be checked. One has to find out the annihilators of a given Boolean function
for this. Initially a basic algorithm in finding the annihilators has been proposed in (Meier, Pasalic, and Carlet 2004,
Algorithm 2). A modification of (Meier, Pasalic, and Carlet 2004, Algorithm 2) has been presented in (Braeken, Lano,
and Praneel 2006) to find out relationships for algebraic and fast algebraic attacks. In (Braeken and Praneel 2005),
there is an efficient algorithm to find the annihilators of symmetric Boolean functions. Algorithms using Grobner
bases are also interesting in this area (Ars and Faugére 2005), but they are not considerably consistent. Recently more
efficient algorithms have been designed in this direction (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006;
Didier and Tillich 2006; Didier 2006). The algorithm presented in (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and
Ruatta 2006) can be used efficiently to find out relationships for algebraic and fast algebraic attacks. In (Armknecht,
Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006), polynomial interpolation has been proposed to solve the annihilator
finding problem (of degreé for ann-variable function) irO(wt( f) (Z)) time complexity. In (Didier and Tillich 2006)

a probabilistic algorithm having time complexi@(n?) has been proposed where the function is divided to its sub
functions recursively and the annihilators of the sub functions are checked to study the annihilators of the original
function. Using Weidmann’s algorithm, a space efficient probabilistic algorithm hz@(n@”(g)) time complexity
andO(n2™) space complexity has been proposed in (Didier 2006).

The main idea in our effort is to reduce the size of the matrix (used to solve the system of homogeneous linear
equations) as far as possible, which has not yet been studied in a disciplined manner to the best of our knowledge. In
the process, some nice structures of the associated matrices could be discovered in this paper. efficiently to find out
relationships for algebraic and fast algebraic attacks.
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Given a Boolean functiorf on n-variables, we find a reduced set of homogeneous linear equations by solving
which one can decide whether there exist annihilators at defjpe@ot. Using our method the size of the associated
matrix becomes}%g(Zin () —u%), where,u..‘]% = {zlwt(z) > d, f(z) = 1}| an(_:iuﬁ = {zlwt(z) < d, f(z) = 1}|
and the required time to construct the matrix is same as the size of the matrix. This is a preprocessing step before the
solution to decide on the existence of the annihilators that requires to solve the set of homogeneous linear equations.

We start with an involutary matrix/,, 4(g) (see Theorem 1) and we discover certain structures that allow to com-
pute the new equations efficiently by considering the mafuX (see Theorem 3, Section 3). Moreover, each equation
associated with a low weight input point directly provides the value of an unknown coefficient of the annihilator, which
is the key point that allows to lower the number of unknowns.

Further reduction in the size of the matrix is dependent on getting a proper linear transformation on the input
variables of the Boolean function, which is discussed in Section 4. As the affine transformation on the input variables
of the Boolean function keeps the degree of the annihilators invariant, our preprocessing step can be more efficiently
applied if one can find an affine transformation oyér) to geth(x) = f(Bx + b) such thap is maximized (and in
turnv{! is minimized too). We present an efficient heuristic towards this. Our study identifies for what kind of Boolean
functions the asymptotic reduction in the size of the matrix is possible.

Our contribution here is two-fold.

1. We prove new algebraic and combinatorial results related to the matrix structure in finding annihilators.

2. For certain class of functions, our technique finds the annihilators more efficiently than (Armknecht, Carlet,
Gaborit, Kuenzli, Meier, and Ruatta 2006), the currently best known general algorithm.

We do not claim that our algorithm is better than (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006; Didier
2006; Didier and Tillich 2006) which work for any Boolean function in general. Our observation identifies a subclass
of Boolean functions for which our technique presents the currently best known results.

One should note that a Boolean function, to be used in a cryptosystem, should not have low Al. Good Al provides
certain kind of resistance against algebraic attacks done in a particular way, i.e., using linearization. Further, based on
some recent works related to fast algebraic attacks (Armknecht and Krause 2003; Courtois 2003; Braeken, Lano, and
Praneel 2005; Armknecht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006), one should concentrate more carefully
on the design parameters of Boolean functions for proper resistance. The weakness of Al against fast algebraic attack
has been demonstrated in (Courtois 2005) by mounting an attack on SFINKS (Braeken, Lano, Mentens, Praneel, and
Verbauwhede 2005).

Let us now discuss the situation with respect to fast algebraic attack. It has been shown in (Courtois 2003) that
given anyn-variable Boolean functiorf, it is always possible to get a Boolean functigmwith degree at mosits |
such thatdeg(g) + deg(h) < n. Thus, while choosing a functiofy the cryptosystem designer should be careful that
it should not happen thaleg(g) + deg() falls much belowr with a nonzero functioy whose degree is also much
below[%]. In that case the lower degreeptan be exploited to a faster attack (known as fast algebraic attack).

Take f € B, with maximum possible A['Z]. It may very well happen thatg = h, wheredeg(h) = [§],

2
but deg(g) < [2]. In that case the lower degree @fmay be exploited to mount the fast algebraic attack even if

the Al of f is tﬁe maximum possible. In fact, there are examples, where one can get aglitoear Initial study

of Boolean functions in this area has been started in (Braeken, Lano, and Praneel 2005; Armknecht, Carlet, Gaborit,
Kuenzli, Meier, and Ruatta 2006). Since Al is now understood as a necessary (but not sufficient) condition against
resisting algebraic attacks, we feel there is a need to consider the functions with full Al for their performance in terms

of fg = h relationship. That is for the functiorfswith full Al we considerdeg(h) > [%], and then after fixing the

degree ofh, we try to get the minimum degree Even after this concept, the necessary condition of using functions

with maximum possible Al stays, but one needs to check the profile of the functions forfgtheh relations before

using that in a cryptosystem. One should be aware that only checkingfthese: relationships are not sufficient in

terms of resistance to (fast) algebraic attacks as there are number of scenarios to mount algebraic and fast algebraic
attacks (Courtois and Meier 2003; Courtois 2003).
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Itis always meaningful to considgy = h only whendeg(g) < deg(h) as otherwisg'g = himplies(1+f)h = 0.
So for all the discussion we will considéeg(g) < deg(h) for a relationfg = h unless mentioned otherwise.

In this paper, we present a specific class of balanced funcfidoseven number of input variableshaving Al
% such that for anyfg = h relation ifdeg(h) = % thendeg(g) cannot be less thaf. This class of functions was not
known earlier. Further we show that existence of these functions has direct implication towards existence of resilient
functions with maximum possible algebraic immunity. A few important open questions are also raised based on our
work. The main contribution regarding the construction is presented in Subsection 5.3.

Since the functions we present are modifications of symmetric functions, we do not refer them directly to be
used in a cryptosystem. Our main motivation in the construction part is to present new theoretical results related to
construction of Boolean functions that were not known earlier. Our ideas may be exploited towards further effort in

construction of cryptographically significant Boolean functions resistant against algebraic and fast algebraic attacks.

2 Preliminaries

Consider all the:-variable Boolean functions of degree at méste., R(n, d), the Reed-Muller code of orderand
length2™. Note thatR(n, d) is a vector subspace of the vector spakg the set of all.-variable Boolean functions.
Any Boolean function can be seen as a multivariate polynomial 6\&2). Now if we consider the elements of
R(n,d) as the multivariate polynomials ovétF'(2), then the standard basis is the set of all nonzero monomials of
degree< d. That s, the standard basis is

Snyd:{a:il...xik:1§k§dand1§i1<i2<...<ik§n}u{1},

where the input variables of the Boolean functionsare . ., z,,.

The ordering among the monomials is considered in lexicographic ordetingé usual, i.e.z;, z;, ... x;, <
x5, w4, ...x;, ifeitherp < gorp = gandthereis < k < psuchthat, = j,, ip-1 = Jp-1,.--,0kt1 = Jrt1
andi, < jg. So, the sel5, 4 is a totally ordered set with respect to this lexicographical ordering. (dsing this
ordering we refer the monomials according their order, i.e.ptttemonomial asn,, 1 < p < Z?:o (7;) following
the conventionn, <; mq if p < q.

d n
Definition 2 Givenn > 0,0 < d < n, we define a mapping, 4 : {0,1}" — {0, 1}Z¢:o (i), such that,, 4(x) =
(mq(x), ma(x),... ) Mg~ (,?)(x)). Herem;(z) is theith monomial as in the lexicographical ordering {) evalu-

i=0 \?

ated at the point: = (1, 22, ..., Zy,).

To evaluate the value of theth coordinate ob,, 4(z1, z2, ..., z,) forl <t < Zf:o (7;) i.e,[vn,d(®1,. .. 20l
one requires to calculate the value of the monomial(either O or 1) at(x1, x2, ..., x,). Now we define a matrix
M,, 4 With respect to a-variable functionf. To define this we need another similar orderirg)(over the elements
of vector spacg0, 1}". We say foru,v € {0,1}", u <! v if either wt(u) < wt(v) or wt(u) = wt(v) and there is a
1 <k <nsuchthat, = v,,up_1 =vp_1,...,Ukr1 = Vg1 andug = 0, v = 1.

Definition 3 Givenn > 0,0 < d < n and ann-variable Boolean functiorf, we define avt(f) x Zf:o (") matrix

Un,a(T1)
Un,a(T2)
Mn,d(f) =
'Un.,d(xwt(f))
wheresupp(f) = {@1, 22, ..., Ty(p) } @nday <! o <" ... <"z 5); supp(f) is the set of input vectors for which

f outputsl.
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Note that the matrix(,, 4(f) is the transpose of the restricted generator matrix for Reed-Muller code of length
2" and orderd, R(d,n), to the support off (see also (Canteaut 2005, Page 7)). Any row of the matfix,(f)
corresponding to an input vecte,, . .., z,) IS

0deg 1deg ddeg
=
1 Tly vvy Ty oony T ove T1ee oLy vvey iy oo Ligy vvvy Tp_dgl - Tp -

Each column of the matrix is represented by a specific monomial and each entry of the column tells whether that
monomial is satisfied by the input vector which identifies the row, i.e., the rows of this matrix correspond to the
evaluations of the monomials having degree at mast support off. As already discussed, here we have one-to-one
correspondence from the input vecters- (zy, ..., x,) to the row vectors,, 4(z) of Iengchjl:0 (7;) So, each row

is fixed by an input vector.

2.1 Annihilator of f and rank of the matrix M, q(f)
We are interested to find out the lowest degree annihilators ef B,,. Letg € B, be an annihilator off, i.e.,
f(z) g(x) = 0forall z € {0,1}"™. That means, for each= (z1,...,z,) € {0,1}",

g(Ilvvxn):Olff(Ilavxn)zl (1)

Suppose degree of the functigris < d, then the ANF ofy is of the formg(z1,...,2,) = a0 + Y ;g ait; + -+ +
Zl<i1<i2~~~<id<n @iy ... g0, - - - T, Where the subscripteds are from{0, 1} and not all of them are zero. Following
Equation 1, we get the followingt(f) many homogeneous linear equations

n
aO"‘ZaiIi"’""" Z @iy ,yoigTiy - Ty = 0, 2
i=0

1<dy <ig---<ig<n

considering the vectorgey,...,z,) € supp(f). This is a system of homogeneous linear equationg’emwith

Zf:o (") manya’s as variables. The matrix form of this system of equation&/is,(f) A" = O, whereA =
(ap,a1,az2,...,an—d+1,...n), the row vector of coefficients of the monomials which are ordered according to the
order<;. Each nonzero solution of the system of equations formed by Equation 2 gives an annihdabegree

< d. This is basically the Algorithm 1 presented in (Meier, Pasalic, and Carlet 2004). Since the number of solutions
of this system of equations are connected to the rank of the midlyix(f), it is worth to study the rank and the set of
linear independent rows/columns of matik, 4(f). If the rank of matrixAZ, q(f) is equal tto:O (’Z) (i.e., number

of columns) then the only solution is the zero solution. So, for this ¢galsas no annihilator of degre€ d. This
implies that the number of rows number of columns, i.ewt(f) > Zf:o (') which is the Theorem 1 in (Dalai,
Gupta, and Maitra 2004). If the rank of matrix is equalﬁpfzo (7;) — k for £ > 0 then the number of linearly
independent solutions of the system of equatiorisuigich givesk many linearly independent annihilators of degree
< d and2* — 1 many number of annihilators of degreed. However, to implement algebraic attack one needs only

linearly independent annihilators. Hence, findiA@( /), one can use the following simplest algorithm.

Algorithm 1

Input: f € B, andn.

Output: AI(f).

fori=1to[5]—1){
find the rankr, of the matrixM,, ;(f);
find the rankr, of the matrixA,, (1 + f);
if min{ri, 72} < 375, (7}) then output;

}

output[ %1
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Since eitherf or 1 + f has an annihilator of degree [%], one needs to check till = [4]. This algorithm is
equivalent to Algorithm 1 in (Meier, Pasalic, and Carlet 2004).

The simplest and immediate way to find out the ranR5f 4( f) is the Gaussian elimination process. To check the
existence or to enumerate the annihilators of degreé€; | for a balanced function, the complexity is approximately
(27=2)3. Considering this time complexity, it is not encouraging to check annihilators of a functi2i\afriables
or more using the presently available computing power. However, givrdd, the matrixM, 4(f) has pretty good
structure, which we explore in this paper towards a better algorithm (that is solving the set of homogeneous linear
equations in an efficient way by decreasing the size of the matrix involved).

3 Faster strategy to construct the set of homogeneous linear equations

In this section we present an efficient strategy to reduce the set of homogeneous linear equations. First we present a
technical result.

Theorem 1 Letg € B, defined ag/(z) = 1iff wt(z) < dfor0 < d < n. ThenM,, 4(g)~* = M,, a(g), .., My a(g)
is an involution.

Proof : SupposeF = M,, 4(g9)M,,.q4(g). Then thei-th row andj-th column entry ofF (denoted byF; ;) is the scalar
product ofi-th row andj-th column ofM,, 4(g). Suppose théth row isv,, 4(z1,. .., z,) for (z1,...,z,) € {0,1}"
havingz,, ,...,z, asl and others ar@. Further consider that thgth column is the evaluation of the monomial
zr, ...x, atthe vectors belonging to the supportfIf {ri,..., 7} € {¢1,...,q} thenF;; = 0. Otherwise,
Fij = (lgk) + (7" + .4+ (2F) mod 2 = 21-F mod 2. So,F;; = 1iff {z,..., 2} = {q,,..., 74} That
implies, F; ; = 1iff i = j i.e., F is identity matrix. Hence)/,, 4(g) is its own inverse.

See the following example for the structureMf, 4(g) whenn = 4 andd = 2.

Example 1 Let us present an exampleif, 4(g) for n = 4 andd = 2. We havel, x1, x2, T3, T4, 122, 123, T2T3,
X124, Taky, T34 }, the list of4-variable monomials of degre€ 2 in ascending order<;).

Similarly,{(0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0, 1,0), (0,0,0,1), (1,1,0,0), (1,0, 1,0), (0, 1,1,0), (1,0,0, 1),
(0,1,0,1),(0,0,1,1)} present thet dimensional vectors of weigkt 2 in ascending order<!). So the matrix

1.0 00 000 0O0 0 0]
1 1.0 00 0 0 O0O0O0UO
101 00 0O0O0O0OUO0DO
10 01 00 0 0O0UO0DO
1 0 001 00 0 0 0O
Mys(g)=1]1 11 0 0 1 0 0 0 0 0
1101 0 0 1 0 0 0 O
101 100 01000
110 01 000100
1 01 01 0 0 O0O0OT1TDO0
|1 001100000 1|
One may check that/y »(g) is involution.
Lemma 1 Let A be a nonsingularm x m binary matrix where then-dimensional row vectors are,, v, . .., Uy,.
LetU be ak x m binary matrix,k < m, where the rows ar@y, us, . .., ui. LetW = UA™!, ak x m binary matrix.
Consider that a matri¥d’ is formed fromA by replacing the rows;, , v;,, . . ., v;, of A by the vectorsiy, ua, . .., uy.
Further consider that & x k& matrix W’ is formed by thé;-th, is-th, ... ix-th columns of#” (out of m columns).

ThenA’ is nonsingular iffi’’ is nonsingular.
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Proof : Without loss of generality, we can take = 1,i = 2,...,4, = k. So, the row vectors ofd’ are
Uty e ooy Uy U415+« y Umps
We first prove that if the row vectors of are not linearly independent then the row vectorBldfare not linearly
independent. As the row vectors df are not linearly independent, we have, as, ..., a,, € {0,1} (not all zero)
such thath:1 w30 g o = 0. If a; = 0foralli, 1 <4 < kthen) ™, | a;v; = 0 which impliesa; = 0
foralli, k+1 <i<masvgs1, Vg2, - - -, are linearly independent. So, all’s for 1 < i < k can not be zero.
Further, we hav&/ A= = W, i.e.,U = WA, i.e.,

U1 w1 U1 U1
U Wo Ug ] U2
= . . , e, u; = w;
Uk Wy Um Um
1 U1
& k V2 V2
Hence) ., aiu; = >, cyw; ) =r
Um Um
k
wherer = (r1,72,...,"m) = >, QW;.

If the restricted matriX¥’ were nonsingular, the vectef = (r1,ro, ..., r;) iSnonzero agay, aq, . . ., ) is not
all zero. Hencezz..:1 aiu; + o v = 0, den Y rivi + Yo i1 (re + ag)vy = 0. T_h|s contrad_|cts that
V1,02, ..., Uy, are linearly independent & = (r1,r9,...,7) is nonzero. Henc®’’ must be singular. This proves
one direction.

On the other direction if the restricted matfiX’ is singular then there ar@, 5s, . . ., 8x not all zero such that

k
Zi:o ﬁiwi = (0, ey 0, Sk+1y-- - Sm).
U1
k k b2 . % m .
Hence,zizo Biu; = Zi:l Biw; = Sk4+1Vk4+1+ ...+ SmUm, |.e.,zi:0 ﬁiui-i-zi:kJrl s;v; = 0which
U

implies matrixA’ is singular.

Following Lemma 1, one can check the nonsingularity of the larger matripy checking the nonsingularity of the
reduced matrix¥¥’. Thus checking the nonsingularity of the larger mattixwill be more efficient if the computation
of matrix producti’v’. = UA~! can be done efficiently. The involutive nature of the mafix 4(¢g) presented in
Theorem 1 helps to achieve this efficiency. In the following result we present the Lemma 1 in more general form.

Theorem 2 Let A be a nonsingularn x m binary matrix withm-dimensional row vectors, , vs, . .., v, andU be a
k x m binary matrix withm-dimensional row vectors,, . . ., u. ConsidedV = UA~!, ak x m matrix. The matrix
A’, formed fromA by removing the rows; , v;,, ..., v;, (I < m) from A and adding the rows, us, ..., u; (k > 1),
is of rankm iff the rank of restricted: x I matrix W’ including only thei;-th, i>-th, . . ., 7;-th columns of¥ is .
Proof : Here, the rank of matrixy" is [. So, there aré many rows ofW’, saywy, ,...,w,, which are linearly
independent. So, following the Lemma 1 we have the matfixformed by replacing the rows, , ..., v;, of A by
Up,, - . -, Up, IS NONSINgular, i.e., rank is.. Hence the matrixd’ where some more rows are added4t6 has rankm.
The other direction can also be shown similar to the proof of the other direction in Lemma 1.

Now using Theorem 1 and Theorem 2, we describe a faster algorithm to generate smaller system of equations of
certain degred of a Boolean functiorf. Supposeg be the Boolean function described in Theorem 1, s&pp(g) =
{z|0 < wt(x) < d}. In Theorem 1, we have already shown that ;(g) is nonsingular matrix (in fact it is involution).
Let {z|wt(z) < dandf(z) =0} = {X1, Xo,..., X;} and{z|wt(x) > dandf(z) = 1} = {Y1,Y2,...,Y%}. Then
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we considetM,, 4(f) asA4, vn,a(X1),...,vn,a(X)) @Sy, ..., v, @ando, ¢(Y1), ..., vna(Ys) @Sus, ..., ux. Then
following Theorem 2 we can ensure whetlddy, 4(f) is nonsingular. If it is nonsingular, then there is no annihilator
of degree< d, else there are annihilator(s). We may write this in a more concrete form as the following corollary.

Corollary 1 Letf € B,,. Let A" be the restricted matrix of = M, 4(g), by using the columns corresponding to the

monomialsr;, x;, . . . x;, suchthat < dand f(zy,...,z,) = 0whenz;, = 1,2;, = 1,...,2;, = 1 and rest are).
’Un,d(yl)
’Un,d(YvQ) .

FurtherU = ) , where{Y1, ..., Y} = {z|wt(z) > dandf(x) = 1}. Ifrank of UA" is | then f has
Un,d(Ys)

no annihilator of degreec d, elsef has annihilator(s) of degreg d.

Proof : As per Theorem 2, herd’ = UA~! = UA, sinceA is involution following Theorem 1 and hend&” is
basicallyU A". Thus the proof follows.

Now we can use the following technique for fast computation of the matrix multiplicafiéh. For this we first
present a technical result and its proof is similar in the line of the proof of Theorem 1.

Proposition 1 Considerg asin Theorem 1. Let € {0, 1}" such that, i, . . ., i,-th places ard and other places are
0. Consider thg-th monomialn; = x;, x;, ... z;, according the ordering<;. Then thej-th entry ofv, 4(y) M,.a(g)

isOif {j1,...,ja} Z {i1,...,ip} else the value i§ "¢ (*77) mod 2.

One can precompute the su@}f;g (P79 mod 2ford+1 < p < nand0 < ¢ < d, and store them and the total
complexity for calculating them i©(d?(n — d)). These sums will be used to fill up the mattix4” which is anl x k
matrix according to Corollary 1. Let us dengté¢ = |{z|wt(z) < d, f(z) = 1}| andv} = [{z|wt(z) > d, f(z) =
1}]. Thenwt(f) = ué + v¢ and the matrixtU A" is of dimension¢ x (3 (7) — p4). ClearlyO(d?(n — d)) can
be neglected with respect tgf x X4, () — u$). Thus we have the following result.

Theorem 3 ConsiderU and A” as in Corollary 1. The time (and also space) complexity to construct the niattix
is of the order of/{ x 4, () — u$). Further checking the rank df A” (as given in Corollary 1) one can decide
whetherf has an annihilator at degre€ or not.

In fact, to check the rank of the matriXA" using Gaussian elimination process, we need not store?tmany
rows at the same time. One can add one row (following the calculation to compute a row of the matrix given in
Proposition 1) at a time incrementally to the previously stored linearly independent rows by checking whether the
present row is linearly independent with respect to the already stored rows. If the current row is linearly independent
with the existing ones, then we do row operations and add the new row to the previously stored matrix. Otherwise we
reject the new row. Hence, our matrix size never crosses th¢size, (%) — p§) x L, (M - 1$).

If u}i. < (Z?:o (?) — uj{), then there will be nontrivial solutions and we can directly say that the annihilators
exist. Thus we always need to concentrate on the I;%S\_e (Z;—i:o (7) - u?), where the matrix sizez‘ii:0 (") -
) x (X, (7) - 14) provides a further reduction than the matrix sizex () - 44) and one can save
more space. This will be very helpful when one tries to check the annihilators of small degree

One may refer to Appendix A to get detailed description why our strategy provides asymptotic improvement
than (Meier, Pasalic, and Carlet 2004) in terms of constructing this reduced set of homogeneous linear equations. In
terms of the overall algorithm to find the annihilators, our algorithm works around eight times faster than (Meier,
Pasalic, and Carlet 2004) in general. Using our strategy to find the reduced matrix first and then using the standard
Gaussian elimination technique, we could find the annihilators of any random balanced Boolean functions on 16

variables in around 2 hours in a Pentium 4 personal computer with 1 GB RAM. Note that, the very recently known
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efficient algorithms (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006; Didier and Tillich 2006) can work

till 20 variables. Comparison of our algorithm with that of (Meier, Pasalic, and Carlet 2004) is not to demonstrate
the efficiency of our algorithm as there are more efficient general algorithms known (Armknecht, Carlet, Gaborit,
Kuenzli, Meier, and Ruatta 2006; Didier and Tillich 2006), but to explain how our strategy works efficiently to reduce
the matrix size. In fact, when the matrix size is reduced significantly, then our algorithm is currently the best known
and for such class of functions, it is better than the algorithm of (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and
Ruatta 2006). Below we describe that clearly.

3.1 Efficiency of our strategy

Our algorithm works efficiently for the functions having higher valuwﬁn‘

Proposition 2 Let f € B, with u¢ = S0 (") — (31, (7))?, for some constant > 0, and someJ > 0.

Then the time and space complexity to check the existen¢edefree annihilators ar@(v?(zfzo ("))?) and
O((Z?:o ("))%) respectively.

The proof follows from Theorem 3 and the paragraph next to Theorem 3. Hence low valireofases efficiency in
both the time and space complexities. In the following theorem we present when our strategy for checking optimal Al
will be faster than the currently best known algorithm (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006).

Theorem 4 Let f € B,, is balanced and

n—1
1. nis odd withufT =2n-l c(2"‘1)%‘€, for some constant > 0, e > 0 andw is the time complexity order

to solve a system of linear equations. Then the time complexity to check the exist@grl—:ejegree annihilator
of fisO((2"1)2~we).

2. nisevenwithu? ' = SE (") — o(E ()25, for some constant > 0, ¢ > 0. Then the time

2

complexity to check the existence §f— 1)-degree annihilator off is O(2"~%( i%:f)l (")r%).

K3

Proof : For oddn, Z:fo (") =271 = wt(f). Hence[ A" is a square matrix of dimensia2"~1)Z <. Then the

2

result follows asv is time complexity order for solving a square matrix.
Whenn is even, the matrix issfff_1 x ¢ ?:—01 ())°?~<. Hence, the time complexity to solve the system is

O (ZL, (1)) ie,0@ (T, (7)),

Now we compare the complexity of our strategy with the fastest known algorithm (Armknecht, Carlet, Gaborit,
Kuenzli, Meier, and Ruatta 2006) for the class of functions presented in Theorem 4. The algorithm in (Armknecht,
Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006) requitg$2"~1)?) and O(2"~! Z?:BI (")) time complexi-
ties forn odd and even respectively. Therefore, for this class of functions, our strategy @g®is *)«~<) and
O(( 1.%251 (’;))26) over the algorithmin (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006)ddd and
even respectively. Further, for this type of functions, our strategy gains in space complexity also. Our strategy needs
o1z andO( ?:_01 (?)1725) memory forn odd and even respectively, where as the algorithm in (Armknecht,

n_
5 —1

Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006) negtis' andO((>-2, ("))?) memory respectively.
Therefore, our technique to find the existence of annihilators of delgsamore efficient than (Armknecht, Carlet,
Gaborit, Kuenzli, Meier, and Ruatta 2006) for the functions having higher value;ofThe size of this class is

( L. )2 whenn is odd and< igl (TZ)

2 n
c(an-1)3 - (T (™) 0_5€> (f) whenn is even for eacle ande. Though the
(Zi:() 7 )

D=
[SER
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relative size of this class is very small compare1o, the size ofB,,, in absolute terms this class is quite big. Further
with the results of the next section, this class will be substantially extended.

We now present some examples to show the efficiency of our algorithm. Consider a fupciion variables
whenn is odd. To check for optimal AI“;—l, we have to check the existence of annihilators at de@gée Here we
considew = 3 as the order of time complexity for Gaussian elimination technique. Further there are better techniques
whenw = 2.8 (Strassen 1969) and = 2.4 (Coppersmith and Winograd 1990).

Consider balancedl ¢ Bs; such thatuf;” = 251-1 _ (251-1)5-04 & 950 _ 913 \wherec = 1 ande = 0.4. Then
one needg'32 = 226 memory bits an@!33 = 239 operations to check the existence dffadegree annihilator of
f. In this case, the algorithm in (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006)2ic¢€ds 2100
operations and memory bits.

Next, we present an example bif-variable function of this class. The following is the hexadecimal representation
of the truth table off € B;; balanced Boolean function having nonlinearity 796 and degree 10.

FFFFFFFDFFFFFFF7FFFBBFF7FEF7F771FFFBFEF7FFF7F773FFF7F771F7737110
FFDFFFF7FFF7F771FFF7D771F7617150FFF7D770F7717110F771711071101000
FDFFFFF7FFF7ES71FFF7FF71F7617110FFF7F751F7617110F771715031101001
FFF7F751FF517110F771711071101200F7717110711010007110108410000020
EFFFBFF7FEF7F771FFBSF771F7717110FFF7F775F7717110F761713071101000
FFF7F771E771F110F771511071101200F7713110711810847114108010200000
FFF7F771D77171107775711070111480FF717110711010047110101010000000
F773711071101008713010001800000071101000100000001000000000000000

Herep§ = 210 — 210(2 — 1) = 2! — 2%, To check whether the Al of is 6, we need to find the rank of2& x 2°
matrix. Hence we need an order»f3 = 25 operations. However, using the algorithm presented in (Armknecht,
Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006), one needs an ordét b= 220 operations.

Now we consider the cases wheiis even. In this case the complexity computation is more complex as the matrix

is not square. Since the value m}n*_l > %(Z ~ 2"~2, the time complexity is not as low as in the case of odd

n. Still we get better efficiency than (Armk2necht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006) for the class
of functions we concentrate on. Consider balangesdl Bs, such thaw}* = 57140 (%) — (32,2, (%7))%, where

¢ = 1ande = 0.4. Then one need&$ (Y12 (%?))02 ~ 23! operations andy_ 2, (*°))*2 ~ 2 memory bits to
check the existence oflal-degree annihilator of. In this case the algorithm in (Armknecht, Carlet, Gaborit, Kuenzli,
Meier, and Ruatta 2006) nee2f >"11 | (30) ~ 257 operations and>_, 2 (*’))? ~ 2°6 memory bits.

Next we present a function a variables. The following is the hexadecimal representation of the truth table of a
12-variable balanced Boolean function having nonlinearity 1586 and degree 11.

FFFFFEFFFFFFFFF7FFFF7FFFFFF7FF75FFFFFFFFFFFDFB7 3FFF7FBF7FFF17311
FFFFFFFBFFF7FD73FBF7F7F3FB71F510FFF7F5F1F7F37570F7F5771071503000
FFFFFFFFFFF7FFF3FF7FFF7BFFF57714FF77DFFSFF73F710F773D550F3315010
FFF7F775F7737750FFF7777173711010FFF77351735011007370510031301280
FFFFFFFFFFF7FF73EFF7F7FS5FFF7F310FFFEF7F1FFELIF170F7757710B1317110
FFF7FF73F7F17710F7F1F77173105010F771777071101110F511511058401080
FFFFEF75FFE27170FE717371F5315010FF757130731131007358100030808000
FFF5F531715070107111101031140020F3101880501010003010000000000020
FFFBFFF7FFFFFFF1FFFFEFF3FF77DD78FFF7FF75F7F67330FF757370F1D01100
FFF6F7F5FF75F570FF77F77175711000F777F55071711110F731111070101000
F7FFF774B7F1F371F7F7751173515100F7757370F57151107511100038101000
F777F311E7113010F131511010001000F3517110301030005110000010000400
FFF7FFF3F7F1F510FF75F370F1315110B777F711F7311100F118311450101000
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FFF77F1177305000777051107000000071517110501000003110000000000000
F777733175121011F711300070001000F3701110301000001010300010020000
7171511071101100110010000000000055121000000000000000000000000000

Herey = 1554 = 1586 — 32 = S22 (12) — 25, To verify the optimal Al i.e. AT = 6 we have to find the rank

of 211 — 1554 x 25 i.e.,494 x 2° matrix. Hence, we need an order4$f4 x 225 ~ 219 gperations an@® x 2° = 210
memory bits. But using the algorithm presented in (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006),

one needs an order 0f! x 1586 ~ 22!% operations and586 x 1586 ~ 22! memory bits.

4 Further reduction in matrix size applying linear transformation over the input variables
of the function

In this section we will demonstrate a more general class of Boolean functions than what presented in Section 3.1 for
which our strategy works efficiently.

To check for the annihilators, we need to compute the rank of the miatiik Following Theorem 3, it is clear
that the size of the matritd A" will decrease ifu‘]% increases and? decreases. LdB be ann x n nonsingular binary
matrix andb be ann-bit vector. The functiory(x) has an annihilator at degrdeff f(Bx + b) has an annihilator at
degreed. Thus one will try to get the affine transformation on the input variable8(oj to geth(x) = f(Bxz + b)
such that{z|h(z) = 1,wt(z) < d}| is maximized. This is because in this cagewill be maximized and/{ will

be minimized and hence the dimension of the maitfi&”, i.e.,v4 x (30 (") — u4) will be minimized. This will
indeed decrease the complexity at the construction step (discussed in the previous section). More importantly, it will
decrease the complexity to solve the system of homogeneous linear equations.

See the following example that explains the efficiency for a 5-variable function.

Example 2 Consider theés-variable Boolean functiorf constructed using the method presented in (Dalai, Gupta, and
Maitra 2005) such thatdZ () = 3. The standard truth table representation of the functidili®10110010101100101
011001101001, i.e., the outputs are corresponding to the inputs which are of increasing value. One can check that
Hz € {0,1}5 | f(z) = 1 & wt(z) < 3}| = 6. Now if we consider the functiol(z) = f(Bx + b) such that

1

1
1
B = 1 ,andb = {1,1,0,0,1}, then|{z € {0,1}® | h(z) = 1 & wt(z) < 3}| = 16 and one
0
0

— == =
O = O ==
OO OO
SO OO

can immediately conclude (from the results in (Dalai, Maitra, and Sarkar 2006))4@4h) = 3. This is an example
where after finding the affine transformation there is even no need for the solution step at all. For the ffirotien
h(z) = f(Bx + b) such that{x|h(x) = 1, wt(x) < d}|is maximized.

101 00
110 00
We also present an example for a sub optimal case. InthiscasewecoBsidgr 1 1 1 0 1 [,andban
000 11
01 1 10

all zero vector, them{z € {0,1}° | h(z) = 1 & wt(z) < 3}| = 14. Thus the dimension of the matfiXxA” becomes
2 x2asvf =2 andzfzo () — u9 = 2. Thus one needs to check the rank af:a 2 matrix only.

Now the question is how to find such an affine transformation (for the optimal or even for sub optimal cases) efficiently.
For exhaustive search to get the optimal affine transform one needs to fffeckt- b) for all n x n nonsingular
binary matrices3 andn bit vectorsb. Since there arﬂ?;ol(2” — 2%) many nonsingular binary matrices azitl many
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n bit vectors, one needs to chegk H?;01(2” — 2%) many cases for an exhaustive search. As weight of the input
vectors are invariant under permutation of the arguments, checking for only one nonsingular matrix from the set of
all nonsingular matrices whose rows are equivalent under certain permutation will suffice. Hence the exact number of
search options i% 2m ]_[;:01(2" — 2%). One can check for x n nonsingular binary matrice8 whererow; < row;
fori < j (row; is the decimal value of binary patternah row). It is clear that the search is infeasible fop 8.

Now we present a heuristic towards this. Our aim is to find out an affine transformigtionof f(x), i.e.,
h(z) = f(Bz + b), which maximizes the value @f!. This means the weight of the most of the input vectors having
weight< d should be inrsupp(h). So we attempt to get an affine transformation for a Boolean fungtiuch that the
transformation increases the probability that an input vector, having output 1, will be translated to a low weight input
vector.

Considerh(Vz + v) = f(x), whereV is ann x n binary matrix ancd = (v1,va,...,v,) € {0,1}". Suppose
1,72, ..., € {0,1}™ are the row vectors of the transformatibn By Vx + v = y we meanVz!" + v = ",
wherex = (x1,22,...,2,),y = (y1,¥2,-..,yn) € {0,1}". Given anz, we find ay by this transformation and
thenh(y) is assigned to the value ¢f(z). If f(z) = 1, we like that the corresponding= Vz + v should be of
low weight. The chance dfy:,y2, ..., y») getting low weight increases if the probability of = 0,1 < i < nis

increased. That means the probabilityrof (z1,z2,...,2,) +v; = 0for 1 < i < n needs to be increased. Hence
we will like to choose a linearly independent setc {0,1}",1 < i < nandv € {0,1}" such that the probability
ri - (X1,22,...,2,) + b; = 0,1 < i < nis high when(z1,22,...,2,) € supp(f). Since we use the relations

h(Vz +v) = f(x),andh(z) = f(Bz +b), thatmeand3 = V! andb = V1.
The heuristic is presented below. Bin[i] we denote the-bit binary representation of the integer

Heuristic 1
1. loop = 0; maz = |{z|f(z) = 1, wt(z) < d};
2. For(i=1;i <2%i++){
@) t=[{z = (z1,22,...,20) € supp(f)|bin[i] - = = 0}|
(b) ift > 28U yalfi] = t anda; = 0 elsevalli] = wi(f) — t anda; = 1.
}

3. Arrange the tripletgbin|[i], a;, val[i]) in descending order afal|i].

4. Choose suitable many triplets(r;, v;, k;) for 1 < j < n such that-;s are linearly independent arig’s are
high.

5. Construct the nonsingular matriX takingr;, 1 < j < n asj-th row andv = (v1,va, ..., vp).
6. Incrementoop by 1; while (loop < maxval)

@ B=V~1'b=V"1o.

(b) if mazx < |{z|f(Bz+0b) = 1,wt(x) < d}| replacef(z) by f(Bz + b) and updatenaz by |{z|f(Bz +
b) = 1, wt(zx) < d}.

(c) Gotostep 2.
The time complexity of this heuristic (8nazval x n22"). See the following example, where we trace Heuristic 1

for the 5-variable functionf given in Example 2.
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Example 3 We havef = 01010110010101100101011001101001 and check that{x € {0,1}° | f(z) = 1 & wt(x)

< 2}| = 6. In step 2, we getvalli],a;) for 1 <i < 3lasl: (11,1),2:(8,1),3:(11,1),4: (8,1) : (11,1),
6:(8,1),7:(9,0),8:(81),9:(9,1),10: (8,1), 11 : (9,1),12: (8,1), 13 : (9,1), 14 : (8,1), 15 : (11,0),
16 : (8,1), 17 : (9,1), 18 = (8,1), 19 : (9,1), 20 : (8,1), 21 : (9,1), 22 : (8,1), 23 : (11,0), 24 : (8,1),
25:(9,0),26 : (8,1),27:(9,0), 28 : (8,1),29 : (9,0), 30 : (8,1), 31 : (11,1). Then after ordermg accordlng
the value ofval[i], we choose the row of matriX as the5-bit binary expansion of, 3, 5,15 and 7 with frequency
values of0’s as 11, 11,11, 11, 9 respectively and = (a1, as, as,a15,a7) = (1,1,1,1,0). Here the matrixV is a
nonsingular matrix. The new function is= f(Bxz + b), whereB = V1, b = V~1v and one can check that
Hz € {0,1}° | g(z) = 1 & wt(z) < 2}| = 16.

Experiments with this heuristic on different Boolean functions provide encouraging results. First of all we have
considered the functions which are random affine transformationsof the function (Dalai, Maitra, and Sarkar
2006), fs( ) = 1forwt(z) < [251] and fy(z) = 0 for wt(z) > |24 ], which has no annihilator having degree
< |51 ]. This experimentation has been doneror 5 to 16. For all the cases running Heuristic 1 gfx) we could
go back tof,(z). Then we have randomly changgd' bits on the upper half of,(x) (0.5 < ¢ < 0.8 at steps 0f).1)
to getf!(x) and then put random transformationsgiiz) to getg(z). Running Heuristic 1, we could also go back to
fi(x) easily. For experiments we have takenzval = 20.

The important issue is exactly when this matrix size is asymptotically reduced than the trivial matrix Sfzex
Zf o ( ) if one writes down the equations by looking at the truth table of the function only. This happens only when
u$ is very close ", (") (see Proposition 2 and Theorem 4). Bef’_ ( — p¢ < 2¢", where( is a constant
such thad < ¢ < 1. Note that2¢” is the approximation o&(z o (7 ))5 in Proposition 2. In that case the matrix

size will be less than or equal fat(f) +2¢* — 3¢ (7)) x 2¢*. Whend = | 2] andn odd, ¢ (%) = 2" .
Thus for a balanced function, the size of the matrix becomes as lefiras2¢". We summarize the result as follows

Theorem 5 Predetermine a constagt such thatd < ¢ < 1. Consider any Boolean functigf{z) € B, for which
there exist a nonsingular binary matri2 and ann-bit vectorb such thatzl o (") = {z|f(Bz +b) = 1,wt(z) <
d}| < 2¢". If B andb are known, then the size of the matéixA” will be less than or equal tdwt(f) + 25" —
D (")) x 2¢™ which is asymptotically reduced in size than( f) x x Y0 (™).

That matrices3, b may be available as output of Heuristic 1.

Next we have run our heuristics on randomly chosen balanced functions. The number of inputs up talweight
for a Boolean function |§:Z o ( ) Thus for a randomly chosen balanced function, it is expected that there will
be 1 Zl 0 ( ) many inputs up to weight for which the outputs aré. Below we present the improvement (on an
average of 100 experiments in each case) we got after running Heuristic tnwithal = 20 for n = 12 to 16.

Table 1. Efficiency of Heuristic 1 on random balanced functions

n 12 13 14 15 16
d 3 4 5 4 5 6 4 5 6 5 6 7 5 6 7
Zj o (7;) 299 | 794 | 1586 || 1093 | 2380 | 4096 || 1471 | 3473 | 6476 || 4944 | 9949 | 16384 || 6885 | 14893 | 26333

3 Zio (f)] 149 | 397 | 793 541 | 1190 | 2048 735 | 1736 | 3238 || 2472 | 4974 | 8192 3442 | 7446 | 13166
Heuristic Value 228 | 535 | 964 717 | 1438 | 2322 957 | 2051 | 3648 || 2917 | 5525 | 8811 3995 | 8194 | 14114

It should be noted that after running our heuristic on random balanced functions, the improvementis not significant.
There are improvements as we find that the the values are significantly mor?ﬂjérb (maklng our algorithm
efficient), but the value is not very close‘zl 0 ( ) This is not a problem with the eff|C|ency of the heuristic, but
with the inherent property of a random Boolean function that there may not be an affine transformation gt ajl on
such that{z|f(Bx +b) = 1,wt(x) < d}|is very high. In fact we can show that for highly nonlinear functigis),
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the increment from{z|f(z) = 1, wt(x) < d}|to |{z|f(Bx + b) = 1,wt(x) < d}| may not be high for any choice
of B,b. The reason for this is as follows.

Proposition 3 Let f € B,, be a balanced functiom(odd) having nonllnearltml(f) — 25 . Then for any
nonsingulam x n matrix B and anyn-bit vectorb, 2"~ — |{z| f (Bz+b) = 1, wt(z) < }| > 2 (n 1) 2% 1,

Proof : Let f € B, be a balanced functiom(odd) having nonlinearity.l(f) = 271 — 277 Letg € B, be
the function such thag(z) = 1 for wt(z) < 251. By (Dalai, Maitra, and Sarkar 2006, Theorem 8J(g) =
gn—1 _ ("j) Now we like to find out a functio(z) = f(Bx + b) such that{x|h(z) = 1, wt(x) < %51}|is
high. Consider the valu& = |supp(g) N supp(h)], i.e., T = [{z : h(z) = 1 & wt(z) < 251}|. Without loss of
generality considef’ > 2"~2. Henced(h, g) = 22"~ 1 —T) = 2" —2T. Now,nl(f) = nl(h) < nl(g) +d(h,g) =
(2"*1—(2 }))+2" 9T, Thus2"—! — 27" < (2%1—(2 }))+2" oT,ie. 2" —T > 1 ( )—2" -1

—1
Thusif one predeterminegathen for a large: we may not satisfy the condition th@ijo (") —{z|f(Bz+b) =
Lwt(z) < d}| <20,
In this direction we present the following general result where the constraint of nonlinearity is removed.

Theorem 6 Supposef € B,, be a randomly chosen balanced function. Then the probability to get an affine transfor-
mation such that
L252)

Y>3 (1) - ks

|{z|f(Bz +b) = 1, wt(z) < | °

=0
1. less thar‘(nH)Qn (Z;n”)(zni 1) for n odd.
gn-1
o (B () (7 EE ()
2. less than Hi(%) for n even.

(=)

Proof : First we prove it forn odd. The number of balanced functiolise B,, such that{z|h(z) = 1, wt(z) <
n—1 2
iy > 27l — ks Zf;ol (2 i ) (consider the upper and lower half in the truth table of the function). So,

no1\ 2 . . . .
there will be at mos@k’l (2 i 1) many affinely invariant classes of such functions. Further the total num-
ber of balanced function |€2n 1) Hence the total number of affinely invariant classes of balanced function is

(=) ()
on—1 on—1
>

= 2n(2n—1)(27—21)...(2" —27- 1) (n+1)2"

(nt1)2n Y4 (27:1
function typeh is bounded by ( ;;
on—1 )

If one takesk < 217, then it can be checked easily that the probability decreases fast towards zera-as
creases. Thus for a random balanced funcfipthe probability of getting an affine transformation (which generates

the functionh from f) such that{z| f(Bz + b) = 1, wt(z) < [ 251 |}| > ZL ( ) — 23" is almost improbable.

Hence the probability of a randomly chosen balanced function will be

2
) . Similarly, the case for. even can be proved.
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Thus when one randomly chosen balanced function is considered, using the strategy of considering the function
after affine transformation, one can indeed reduce the matrix size by constant factor, but the reduction may not be
significant in asymptotic terms when the annihilators at the degr@@gdﬂ are considered for large.

5 Additional constraint over maximum Al

In this section we consider the functiofiss B,, with maximum possible Al valu¢Z | with the following additional
constraint: giverfg = h, whendeg(h) = [5 | thendeg(g) must be greater than or equallty].

These functions are indeed better than any functions with only maximum Al with respect to fast algebraic attacks
since one can not get@havingdeg(g) < %] whendeg(h) is fixed at[#]. This is the best possible case when
deg(h) is fixed at[ %] as from (Courtois 2003, Theorem 7.2.1), there always exist such thatfg = h, with
deg(g) + deg(h) < n.

5.1 Some Basic results

First concentrate on functions having full Al as presented in (Dalai, Gupta, and Maitra 2005; Dalai, Maitra, and
Sarkar 2006). For such a functighe By, the lowest degree annihilators are at dedgresd for its complement

1 + f, the lowest degree annihilators are at dedreel and hence it can be shown that these functions cannot have
fg = hrelation such thateg(h) = k anddeg(g) < k. Now one can also check that tf& + 1)-variable function

F = x9p41 + fis of Al k + 1; further F' is balanced. One can also check that the functign o + x2x+1 + f has
algebraic immunityt + 1 and it is also arl-resilient function. We summarize these results below.

Theorem 7

1. For any evem, it is possible to get unbalancetl € B,, with maximum possible A} such that given any
fg = hrelation havingdeg(h) = 5, deg(g) £ 5.

2. For any evem it is possible to get-resilient function having full Al.

With respect to Theorem 7(1), it is open to get such balanced funcfiomisenn is even. We solve this problem in
Subsection 5.2 for all evemexcept whem is an exact power df and then considering,,1 + f» the corresponding
case for Theorem 7(2) will be solved far+ 1 (odd) variable functions. Note that experimental evidences of resilient
functions with full Al are available in (Dalai, Gupta, and Maitra 2004), but no theoretical result is available in the
literature.

Note that the results in Theorem 7 are proved using the functions available in (Dalai, Gupta, and Maitra 2005;
Dalai, Maitra, and Sarkar 2006) which are of the property that only orfeaofl1 + f has minimum degree annihilators
at AZ(f) and the other one has minimum degree annihilators at ddgreedZ(f). For such functions (Dalai,

Gupta, and Maitra 2006, Proposition 5)¢(f) = 221 — (2’“,;1) (i.e., these functions are not balanced) and
nl(f) < 221 — (),

5.2 Annihilators of f and 1 4+ f at the same degree

Now we will concentrate on the functions such that the minimum degree annihilators of the function and its comple-
ment are at the same degree but they never cancel out when added. We formally define this as below.

Definition 4 Suppose’ € By, be such thatdZ(f) = k, the maximum possible; the lowest degree annihilators of
both f and1 + f are at degreé:. Further there is no two nonzere-degree annihilatorgy and h of f and1 + f
respectively, such thaleg(g + ~) < k. We denote such functions By;, functions.
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Theorem 8 Supposef be aPs;, function. Then
1. AZ(zok+1 + f) = k + 1, which is the maximum possible;

2. iffor f1, f2 € Bag, ff1 = f2 wheredeg(f1) < deg(f2) = k thendeg(f1) = F;
3. nl(f) > 92k—1 _ (2]5_—11).

Proof : Let us denoté” = xa11 + f. Any annihilator ofF is of the formg; + way+1(g1 + g2), Wwhereg; € AN(f)
andg., € AN(1 + f) and bothgy, go are not0 at the same time. Similarly any annihilator bft F' is of the form
92 + xap+1(g1 + g2). As g1 # go and their highest degree terms can not cancel oyt i g, their degree of the
annihilators can not b€ k. ThusAZ(F) =k + 1.

Now we prove item 2. Consider we have soifief. such thatf f1 = f2 with deg(f1) < k, deg(f2) = k. Note
thatff, = f» iff f(fi + f2) = 0and(1 + f)f. = 0 (Braeken, Lano, and Praneel 2005). $0= (f1 + f2) + f2
is the sum of the twé& degree annihilatorg, + f» andf, of f andl + f respectively. As their highest degree terms
never cancel out we havkeg(f1) = k.

Next we prove the last item. Sineg,,1 + f is of full Al k + 1, following (Lobanov 2005, Corollary 1), one

getsnl (o1 + f) > 220 — (Q,f). As for every2k-variable functionf, we havenl(zar+1 + f) = 2nl(f), we get
nl(f) > 21— (%1,
This kind of function provides the best possible relationship when we use fungtienB8,, and considelfg = h
relationship withdeg(h) = % as in that caseleg(g) can not be less thaf. This is the optimum situation when
deg(h) = 3.
Now consider the following construction from (Dalai, Maitra, and Sarkar 2006; Dalai, Gupta, and Maitra 2006).

Construction 1 Consider(sx, € Bog, k > 0, as follows:

0 for wi(z) < k,
Cox () = { ay for wt(z) =k, a, € {0,1},
1 for wi(x) > k.
We will specifically consider the case where the outpytsorresponding to weighit inputs take both the distinct
values0, 1 i.e., the function is nonsymmetric. One can get a balarggg@r) if the outputs corresponding to half of
the weightt inputs are0 and the outputs corresponding to half of the weiglmputs arel.

(%)
Note that there ar l;k
2\ k&

construction is attempted (Dalai, Maitra, and Sarkar 2006; Dalai, Gupta, and Maitra 2006) to get balanced functions.

many balanced functions of the forgyy, in Construction 1. Frone (), the following

Construction 2

G(z1,...,2e,) = O0forwt(ay,...,za) <k,
= 1forwt(xy,...,xor) >k,
= b(x1,...,zon) fOrwt(aq, ..., xor) =k,
whereb(z, . .., zor) is a Maiorana-McFarland type bent function.

1. Ifwt(G) < 226~ then we choosg?*~! — wt(G) points randomly from the inputs having weighand output
0 of G and toggle those outputs foto get(ay.

2. Ifwt(G) > 2%~1, then we chooset(G) — 22¢~1 points randomly from the inputs having weighand output
1 of G and toggle those outputs to get(oy.
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Thus one gets balanc&g .

Now we like to point out the problems with the Constructions 1, 2 where the annihilatgraodi1 + f are at the
same degree.

1. The constructions are randomized and hence the exact nonlinearity of the functions cannot be calculated. In

fact, the experimental results show that the nonlinearity of the functions are slightly le3than- (2}5_—11 )
2. Experimental results (Dalai, Gupta, and Maitra 2006, Table 3) show that theregeh@stmgdeg(g) < k such
that(arg = h, wheredeg(h) = k.

We solve these problems in the construction presented in the following subsection where the functions will have

nonlinearity not less tha2?*—! — (2:__11) (see Corollary 2 later) and there cannot be dy(g) < k (see Theorem 9

later).

5.3 The exact construction

We present the following construction that has been considered in (Armknecht and Krause 2006, Theorem 1) in terms
of algebraic immunity. However, the additional property over algebraic immunity that we are considering here was
not studied in (Armknecht and Krause 2006).

Construction 3 Considen)s, € Bag, as follows:
nek(z) = {1 forwt(z) < k,
a, for wt(z) = k, a, € {0,1}, with the constraint,,, = az,
0 for wt(z) > k,
whereZ is the bitwise complement of the vectorFurther all thea,'s are not same, i.ensy, is non-symmetric.

Theorem 9 The functiongj., (x) as in Construction 3 aré,, functions.

Proof : Using the similar proof technique used in (Dalai, Maitra, and Sarkar 2006, Theorem 1), one gets that both
and1 + 72, has no annihilators at degree less thaﬁurther,ZfZO (’;) is greater than bothvt(nox ) andwi(1 + 7o)
and hence from (Dalai, Gupta, and Maitra 2004, Theorem 1), hgtland1 + 72, must have annihilator at degree
less than or equal th. Hence bothyy, (x) and1 + nqx(x) have minimum degree annihilators exactly at dedgree

Any k degree functioy € By, can be written as

n
ag + E a;T; + ...+ E Q.. i, Lig - Ty
i=0

1<<ii<...<ig<n

where the coefficients’s are either 0 or 1. Ify is an annihilator ofye;, theng(z) = 0 whenna,(z) = 1. Since
ok (z) = 1 for wt(x) < k, we can eliminate all the coefficients'§y associated to monomials of degreek — 1

of g. Then we havej,(z) = 1 for some input vectors: of weight k. For such arw = (by,...,b,), where
bi, =...=b;, = 1andresh, one can eliminate the coefficiem{, ., . Thus thek degree independent annihilators
of i, formthe setSy = {z;, ...z, : 2x(b1,...,b,) = 0andb;, = ... =0b;, =1, restare)}. Here anyk-degree
annihilator ofr,;, does not contain any monomial of degree.

Define f’(x) = 1 + 19 (Z). Following the similar proof foms(x), one can prove that the spacefotiegree
annihilators off’ is generated by the basis 4at;, ...xj, : f'(b1,...,b,) =0andb;, =... =0b;, =1, restare}.
Hence, the: degree annihilator space $f(z) = 1 + n2x(z) is generated by the basis ¢t + z;,) ... (1 + xj,) :
ffA+0bi,...,14+by) =1+n2(b1,...,b,) =0anddb;, = ... =0b;, =0, restarel}. So, the subspace bfdegree
monomials ofk degree annihilators df + 725 is generated by the basis s&t = {z;, ...z, : 72k (b1,...,bn) =
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landb;, =...=1b,, =0, restarel}. One can check that these two s&{sand.S; are disjoint iff ok (z) = 125 (%)
forwt(z) = k.

Since the basis sefs , S, are disjoint, the: degree terms of any annihilator gf,, and thek degree terms of any
annihilator ofl + 79 cannot be the same. Thus the proof.

Corollary 2 nl(ng) > 221 — (2::11)-

Proof : Consider the(2k + 1)-variable functionzog i1 + max (@1, ..., 22x). AS n2i(z) is a Py, function, from
item 1 of Theorem 8g2,11 + m2 is of full Al £ + 1 and hence following (Lobanov 2005, Corollary 1), one gets
nl(zops1 + nox) > 22k — (gk’“). As for every2k-variable functionf, we havenl(xort1 + f) = 2nl(f), we get the
proof.

Note that the above proof is similar to the proof of (Carlet, Dalai, Gupta, and Maitra 2006, Theorem 6). Now we
concentrate on balanced functions.

Corollary 3 One can get a balanceqh;, iff 2k is not a power of2 and the count of such balanced functions is
(%)
+(%)

Proof : For a2k-variable function, there arézk’“) many input vectors of weighit and there ar% (2,5) many (z, T)
distinct pairs of weighk. One can construct a balanceg if and only if % (2,5) is even, i.e.(%f) is divisible by4.

Since(gk’“) =2 (215:11 ) , we need to test Whethéﬁk’:l) is even.
Suppose the = |log, 2k | + 1 bit binary representations @k, k, 2k — 1 andk — 1 are as follows (most significant

bit at the left most position):

% = b by ... ba =1 0 0 0,
Eo= 0 b ... bus b =1 0 0,
2k—1 = b b1 ... b1 14+b6=0 1 1 1,
k—1 = 0 by coe bigo bi11 1+6,=0 1 1,

wherel < [ < t, b; € {0,1} andb, = b, = 1. Now following Lucas’ theorem (Comtet 1974, Page 79) with the
prime 2, we have(r"k’:l) = (lg) (bfbj) . (blil)(é)(}) ...(7) mod 2. If 2k is a power of2, thent = I. So,

(2,5__11) =()(5)---(}) mod 2,ie., (2,5__11) =1 mod 2. Hence(gk’“__ll) is odd.

If 2k is not a power of, then(gk’“__ll) = (b;;l) ... (gii;) (bzil) mod 2. At some place we will geff, = 0 and
2k—1

bsy1 = 1forl < s < tbecausé;, = 1. Hence( A

) is even if2k is not a power of.
Thus (2,5) is divisible by 4, wherRk is not exactly a power of 2. In such a case, there Wi||%t<ékk) many
distinct pairs of(z, T), wherez is a2k bit binary pattern of weight. One can choosg(if) many distinct pairs and

in such inputs ofjx, output 1 is assigned and for the rest}lcé‘Qkk) many distinct pairs of inputs, output 0 is assigned.

[ 2k
This provides a balanceg;. Note that the number of such distinct balangegdis ’ (:k)

1\ k
Now an important question is whether there exist balanégdfunctions wher2k is a power of2. We have
checked that foRk = 4 = 22, there is no balanceg, function by running exhaustive computer program.
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For2k = 6, we have exhaustively checked all thefunctions. There arg!'® — 2 such functions (including15°)
many balanced functions). All of them are of nonlinearity 22 and algebraic degree either 4 or 5. The algebraic degree
of all 252 balanced functions & If we consider the)sg = h kind of relations, then we findeg(g) = 1, when
deg(h) = 4 for each of theys functions.

For2k = 10, it is not possible to experimentally study all the) functions. We have checked randomly chosen
100 many balanceg, functions. Always we achieved the nonlinearity 386 and algebraic degree 8. If we consider
theni0g = h kind of relations, then we findeg(g) > 2, whendeg(h) = 6 for each of the 100 many balancsd,
functions we have randomly chosen.

Similarly, for 2k = 12, we have checked randomly chosen 100 many balangefinctions. Always we achieved
the nonlinearity 1586 and algebraic degree 8. If we consideythe= h kind of relations, then we findeg(g) > 3,
whendeg(h) = 7 for each of the 100 many balanceg functions we have randomly chosen.

Theoretically proving the algebraic degree and nonlinearity of balangetlinctions and finding the degrees of
g, whenna,g = h anddeg(h) > k are interesting open questions.

5.4 Functions on odd number of input variables

Now let us study the functiong on odd number of input variables: + 1 having maximum possible At + 1.

That is the functions must be balanced (Dalai, Gupta, and Maitra 2004). Consider the following balanced symmetric
functions (Dalai, Maitra, and Sarkar 2006; Braeken and Praneel 2005; Braeken, Lano, and Praneel 2865) on
variables having full algebraic immunity+ 1.

Construction 4 Considerry;11 € Bogy1, as follows:
(z) = 1 for wt(z) < k,
TR = 0 for wi(z) > k + 1,

We list a few experimental values of minimum degregyafhenrs;19 = h anddeg(h) = k + 1. In the format

< 2k + 1,deg(g), deg(h) > these values are 5,1,3 >, < 7,1,4 >, < 9,1,5 >, < 11,2,6 >. Note that the
minimum degree of is substantially less thanand hence the functions,; are not interesting in resistance against
fast algebraic attacks.

To get a better resistance against fast algebraic attack, we are interested about the balanced functions with the
following additional property. Given anflg = h relation havingleg(h) = k + 1, we require thatleg(g) > k.

We run exhaustive search ok + 1 = 5 variable functions and found such functions. One example is the truth
table 00000001000101110001101111011111 which is of nonlinearity 10 and algebraic degree 4. Note that there is no
nonlinearity 12 function on 5 variables with such property. Existence of such functiofissésrables onwards is an
open question.

6 Conclusion

In this paper, first we study how to reduce the matrix size which is involved in finding the annihilators of a Boolean
function. Our results show that considerable reduction in the size of the matrix is achievable. We identify the classes
where it provides asymptotic improvement. We also note that for randomly chosen balanced functions, the improve-
ment is rather constant than asymptotic. The reduction in matrix size helps in running the actual annihilator finding
steps by Gaussian elimination method. Though our method is less efficient in general than the recently known efficient
algorithms (Armknecht, Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006; Didier and Tillich 2006) to find the anni-
hilators, our main motivation is to theoretically understand the structure of the matrix involved. Further, for certain
classes of functions, our technique provides better effciency than the currently best known algorithm (Armknecht,
Carlet, Gaborit, Kuenzli, Meier, and Ruatta 2006).

Next we present theoretical results on balanced Boolean functions having some additional properties over max-
imum possible Al. Our construction providesvariable ( even) balanced functiong with maximum possible Al
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% such that given twan-variable Boolean functiong, i with fg = h, if deg(h) = %, thendeg(g) will be greater

than or equal td;. This is the first time such a result is demonstrated. Following this result, one can get theoretical
construction of resilient Boolean functions having maximum possible Al. Though the nonlinearity of the functions we
construct are not encouraging to use them as building blocks in cryptosystem, our results provide theoretical insights
in the area of constructing Boolean functions that are resistant to certain kinds of algebraic attacks.
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Appendix A: Comparison with Meier et. al. Algorithm

Here we compare the time and space complexity of our strategy with (Meier, Pasalic, and Carlet 2004, Algorithm 2).
In paper (Meier, Pasalic, and Carlet 2004), Algorithm 2 is probabilistic. In this section we study the time and space
complexity of the algorithm along with it's deterministic version. Using these algorithms we check whether there exist
annihilators of degree less than or equad tof ann-variable functionf. As we have already described, ANF of any
n-variable functiory of degreed is of the form

n
9(x1, ..., 2n) = ag + E aiTi + -+ E Qi ,.igTiy = Tig
=0 1<i1 <iz--<ig<n

where subscripted's are from{0, 1}. First we present the exact probabilistic algorithm (Meier, Pasalic, and Carlet
2004, Algorithm 2).

Algorithm 2
Input: f € B, andn.
Output: AI(f).

1. Initialize weightw = 0.

2. For all z's of weightw with f(z) = 1, substitute each: in g(z) = 0 to derive a linear equation on the
coefficients of;, with a single coefficient air degree monomial. Use this equation to express this coefficient
iteratively by coefficients of lower degree monomials.

3. Ifw < d, incrementw by 1 and go to step 2.

4. Choose random argumentf arbitrary weight such thaf (x) = 1 and substitute iy(z) = 0, until there are
same number of equations as unknowns.

5. Solve the linear system. If there is no solution, output no annihilator of ddgtmé if there is a solution then
it is not clear whether there is an annihilator of degi&er not.

Next we present the deterministic version of the original probabilistic algorithm (Meier, Pasalic, and Carlet 2004,
Algorithm 2).

Algorithm 3
Input: f € B, andn.
Output: AI(f).

1. Initialize weightw = 0.

2. Forallz’s of weightw with f(z) = 1, substitute each in g(«) = 0 to derive a linear equation in the coefficients
of g, with a single coefficient ab degree monomials. Use this equation to express this coefficient iteratively by
coefficients of lower degree monomials.

3. Ifw < d, incrementw by 1 and go to step 2.
4. Substitute: such thatwt(xz) > d and f(z) = 1in g(z) = 0 to get linear equation in the coefficient @f

5. Solve the linear system. Output no annihilator of degré&there is no nonzero solution.
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Since first three steps of both algorithms are same, we initially study the time and space complexity of both the
agorithms for first three steps for a randomly chosen balanced fungtitmstep 2, we apply;, such thatwt(z) < d
andf(z) = 1, in g(z) and hence we get a linear equation in the coefficient sdich that a single coefficient of that
weight is expressed as linear combination of its lower weight coefficients. Here we consider a partifori@ach
iteration. Asf is random and balanced, one can expect that theré (alé many input vectors of weight) in set
supp(f). Foreache = (x1,...,2,) € supp(f) wherez;,, ..., x;, arel and others aré of weightw, we will get
linear equation of the form

iy, i :ao—i-zaij +...+ Z Aley .. k—1 - (3)

Jj=1 {k1, o kw—-1}C{in, . dw}

To store one equation we ne&d;’ (7;) many memory bits (some places will be 0, some will be 1). There are
Z;”:—Ol (7;”) many coefficients in the right hand side of the Equation 3. fAis random, one can expect that half
of them can be eliminated using the equations obtained by lower weight input support vectol’s,;’Sd.," ) +

% Z;“:_Ol((lj) Z;;}J (?)) order of computation is required to establish an equation. kevaries fromo0 to d and

there are approximatelé/ZZlU:0 (;‘J) many support vectors of weight less than or equal tblence at the starting of
step 4 the space complexity is

and time complexity is
d w—l -

n=1S (OO 0+ X ()

w=0 =0 i=0 7=0
Now we study the time and space complexity for steps 4 and 5 in both probabilistic and deterministic version. To
represent each equation for the system of equation one @%Q@ (Z‘U) memory bits.

First we consider the probabilistic one. For probabilistic case one has to choose approx%niejﬁegé (Z) many
support input vectors of weight greater thanHence each linear equation obtained from these vectors has at least

Zf:o (djl) many coefficients of and half of them can be eliminated using the equations obtained in previous steps.

2

complexity during 4th step iSP2 > 1(3¢ _ ())? and time complexity ig'P2 > 1 57 _ (") (X0 _, (") +
3 Zi O((dﬂ) Z; B (“))) Finally, to generate system of homogeneous linear equations one requires

So, to get each equation one needs at Igaét (")+3 ZZ 0((‘1’?1) Z;*t (")) computations. Hence the space

K3

SP=S1+SP2>— Z Z(”)H—%(Z(Z))Qmemorybitsand
w=0 =0

TP res LS (045 X (X (145 X (O 0+ () ()

computations. In step 5, we have to solé@j ( ) many linear equations with same number of variables. To

solve this system one need$3 = (% qu —0 ( )) computations using the Gaussian elimination technique.

Now we study space and time complexity for deterministic one. Sfhiebalanced, there are approximately
2"*1_— %Zizp (Z‘U) = %Z_Z;:d-H (Z) many sgpport vectprs having weight greater thiaand these many are
considered to find out equations. Hence each linear equation obtained from these vectors ofyweightontains
Zf o ( ) many coefficients of and half of them can be eliminated using the equations obtained in steps 1, 2 and 3.
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To get this equation one neeﬁy

during 4thstepisD2 = 15" _ (") 2¢

1 Zi:o(( i ) Zz‘:lo

d w n d
SD =81+ SD2 = % S>> Z »)> " (%)) memory bits and
w=0 1=0 w=d+ w=0
d w i—1 n d
TD:T1+TD2:%Z((Z)(Z(?H%Z<?>Z(’;)>)+§ IEODHIBE
w=0 i=0 i=0 =0 w=d+1

computations. Further, in step 5, we have to s@@:
of variables. To solve this system one ne@ds3 = (3 >

n d w 1—1
o (7)+12i=0((7) Xjco
(™)) and time complexity i D2 = 1 5" _ (") (X5,
(’;) ). Finally, to generate homogeneous linear equations one needs

() many linear equatlons
())? computations.

w=d+1
w=d+1

(’?) ) computations. Hence the total space complexity

() +

XEING

with 7 (™) number

The system of equations generated by our strategy as well as Meier et al (Meier, Pasalic, and Carlet 2004) algo-
rithms are same. So, it takes same complexities to solve them. Only difference is during generation of the system of
equations. In the following table we show the complexities for both algorithms for generating the system of equations.

Table 2. Time and Space complexity comparison of Probabilistic algorithms to generate equations.

Space Time
Meiers || 2520 o((5) Xito (1) | 3 X0oo((0) (S0 (1) + 3205 (9) 252 (5))+
algorithm +12d ()2 L o () () + 33 o((dtl) ZE;B (?)))
Our algorithm L (1))? i(Zi:o (w))?

Table 3. Time and Space complexity comparison of Deterministic algorithms to generate equations.

Space Time
Meiers [ 3320_5((2) Xito ()4 | 3 20o((0) (S8 () + 530 (1) X0z (3 )+
algorithm | $3°0 4y (3) Xaco (1)) | 30 ans (3 ><2 0 (D+HIZL(N S (5)

ol(%

Our algorithm

% ZZ:dJrl (Z) qu:()

()

4 Zw:dJrl (w) Zi:()

(i)
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