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Abstract
Modular arithmetic with prime moduli has been crucial in present day cryptography. The primes of Mersenne,
Solinas, Crandall and the so called IKE-MODP primes have been widely used in efficient implementations. In
this paper we study the density of primes with binary signed representation involving a small number of non-zero
±1-digits, and its repercussion in the generation of those primes.
Keywords: Pairing cryptography, prime numbers, signed representation.

Resumen
La aritmética de residuos con números primos es crucial en la criptografı́a actual. Los números primos de Mersenne,
Solinas, Crandall y los llamados IKE-MODP han sido extensamente utilizados en diversas implementaciones. Es-
tudiamos aquı́ la densidad de los primos con representaciones signadas que involucran sólo un número pequeño de
dı́gitos no-nulos ±1, ası́ como su impacto en la generación de tales primos.
Palabras Claves: Criptografı́a de emparejamientos, números primos, representaciones signadas.

1 Introduction

Although the prime numbers have been studied along the whole history of science, just after the invention of public
key cryptography, prime numbers became essential objects in applied science and they have been the object of intense
research. One of the most important tasks concerning prime numbers is modular arithmetic. Prime numbers with few
non-zero digits are crucial in Tate pairing calculation for recent implementations of Pairing Based Cryptography.

Some basic problems of modular arithmetic are involved in practical computations, e.g. the problem of reducing
modulo n a 2m-bit number, where m is the bit length of n. This problem can initially be approached by integer
division at very high costs (Knuth 1997). Whenever n = 2m − 1 is a Mersenne prime, the division is changed by an
addition modulo n (Solinas 1999).

Another kind of primes are those of the form n = 2m + 1. It is not difficult to prove that if n is a prime then the
exponent has the form m = 2k, i.e. n is a Fermat prime. Nevertheless there are quite few known Fermat primes. A
natural way to generalize Mersenne and Fermat primes, was given by Solinas, who proved that for primes whose binary
representations involve few signed binary digits, division can be replaced by modular additions and subtractions. The
most popular Solinas primes are given in FIPS-186-2 ((FIPS) 2000):

p192 = 2192 − 264 − 1 p256 = 2256 − 2224 + 2192 + 296 − 1
p224 = 2224 − 296 + 1 p384 = 2384 − 2128 − 296 + 232 − 1

Solinas prime p224 changes a division by three modular additions, for instance. Also, Crandall (Crandall 1994) pro-
posed a new form of primes, namely n = 2d − C, where C is a relatively small odd number, e.g. no longer than the
length of a computer word (16-32 bits). When a modulus n has this form, modular arithmetic can be accomplished
using only shifts and additions, eliminating expensive divisions. Another kind of prime numbers are the so called
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IKE-MODP primes (for Internet key exchange based on modular exponentiation), which are used in the IKE scheme
part of the IPsec protocol. They have the special form p = 2n − 2m + r2k − 1, k < m < n, r an integer with
0 ≤ r < 2m−k. The number of such primes is estimated using Dirichlet’s Theorem (Yie, Lim, Kim, and Kim 2003).

In this paper we study the density of prime numbers with binary signed representation involving a small number
of non-zero ±1-digits, 2n +

∑k
j=0 εj2mj , with εj ∈ {−1,+1}, and m0 = 0. This prime numbers generalize the

Mersenne, Fermat, Crandall and Solinas primes, as well as the primes considered in (Wagstaff 2000).
In section 2, we introduce some notation for binary signed representations of odd integers and we give simple

results of this kind of integers. In section 3 we count in a heuristic way the number of primes of the form 2n +∑k
j=0 εj2mj , with 1 ≤ k ≤ 7. In section 4 we present some conjectures about the stated heuristic. In section 5 we

present the generation and advantages of these primes. Finally in section 6 we recall some of their characteristics.

2 Binary signed expressions

Let n > 1 be an integer and let k be another integer such that 1 ≤ k < n. A formal (n, k)-binary signed expression
has the form:

αnk(ε,m) = 2n + εk2mk + · · ·+ ε12m1 + ε0 (1)

where 1 ≤ m1 < m2 < · · · < mk < n and ε = (ε0, ε1, . . . , εk) ∈ {−1, 1}k+1.

Remark 1 There are 2k+1
(
n−1

k

)
different formal (n, k)-binary signed expressions.

Namely, in eq. (1), there are 2k+1 possibilities to choose the sign vector ε and
(
n−1

k

)
possibilities to choose the vector

m of exponents. Naturally, when interpreted in Z, two different formal (n, k)-binary signed expressions may be equal.
Let Ank be the set of positive integers that can be written as (n, k)-binary signed expressions:

Ank = {x ∈ N|∃ε,m : x = αnk(ε,m)}. (2)

Remark 2 Ank consists just of odd numbers.

Remark 3 For each n, k, with 1 ≤ k < n:

1. The minimum value of Ank is mnk = 2n −
∑k

i=1 2n−i − 1 = 2n−k − 1.

2. The maximum value of Ank is Mnk = 2n +
∑k

i=1 2n−i + 1 = 2n+1 − 2n−k + 1.

3. The mean value of Ank is µn = 1
2 (Mnk + mnk) = 2n

4. Ank is symmetric with respect to µn:

x ∈ Ank & |y − µn| = |x− µn| =⇒ y ∈ Ank.

5. For any ε0, ε1, . . . , εk−1 ∈ {−1, 1}

2n − 2mk +
k−1∑
i=0

εi2mi < µn < 2n + 2mk +
k−1∑
i=0

εi2mi

(m0 = 0).
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A Mersenne prime is any prime of the form µ = 2n−1, with n ∈ N. If we denote by ni the exponent corresponding
to the i-th Mersenne prime µi then some examples of Mersenne primes are the following:

i 12 13 14 15 16 17 18

µi 2127 − 1 2521 − 1 2607 − 1 21279 − 1 22203 − 1 22281 − 1 23217 − 1

Up today, only 46 Mersenne primes are known, the last one was found on September, 2008, and it is 232582657 − 1.
The usual 160-bit modular arithmetic in today’s Elliptic Curve Cryptography is within the size of the 13-th Mersenne
prime. The Lenstra-Pomerance-Wagstaff conjecture states that for any n ∈ N the number of Mersenne primes with
exponent less than n is asymptotically approximated by the map n 7→ eγ log2(n), where γ is the Euler-Mascheroni

constant γ = limk→+∞

(∑k
κ=1

1
κ − ln(k)

)
.

Solinas primes are generalizations of Mersenne primes (Chung and Hasan 2003), (Solinas 1999). They are of the
form 2n + ε32m3 + ε22m2 + ε12m1 + ε0, where εi ∈ {−1,+1} and mi ≡ 0 mod s with s being the length of the
computer word, e.g. s = 32, 0 ≤ i ≤ 3 and also n ≡ 0 mod s. In FIPS-186-2 ((FIPS) 2000) there are introduced the
Solinas primes p192, p224, p256 and p384 as well as the Mersenne prime p521 = 2521 − 1.

The Crandall primes are of the form p = 2n−C, where C is an odd number and it is relatively small, for example,
no longer than the length of a computer word (16-32 bits).

Our main question is: how many primes possess a formal (n, k)-binary signed expression of the form (1)?

3 Counting primes

Let ank be the cardinality of Ank, ank = |Ank|. Let Pnk be the set of primes appearing in Ank,

Pnk = {x ∈ Ank|x is a prime}.
We look toward an estimation of the cardinality pnk = |Pnk|. A first approach is to calculate ankPr(Pnk|Ank)
where Pr(Pnk|Ank) is “the probability that an element in Ank is a prime”. According to the Prime Number Theorem,
π(Mnk) ∼ Mnk

ln(Mnk) and π(mnk) ∼ mnk

ln(mnk) , where π is Euler’s function. We have

ln [Mnk] ≥ ln
[
2n+1 − 2n−k

]
= ln

[
2n−k

(
2k+1 − 1

)]
= (n− k) ln 2 + ln

[
2k+1 − 1

]
≥ (n− k) ln 2 and

ln [mnk] ≤ ln
[
2n−k

]
= (n− k) ln 2.

Consequently,

pnk ∼
Mnk

ln(Mnk)
− mnk

ln(mnk)
≤ 2

ln 2
2n − 2n−k + 1

n− k
=

2
ln 2

Mnk − 2n

n− k
.

Thus, as a rough estimation,

Pr(Pnk|Ank) =
pnk

ank
≈ 2

ln 2
1

n− k

Mnk − 2n

Mnk−mnk

2

≈ 2
(n− k) ln 2

≈ 2
n ln 2

.

From here,

pnk ≈
2

n ln 2
ank. (3)

Let us observe also that:

1. ank < 2k+1
(
n−1

k

)
.

2. 2
n ln 2 < Pr(Pnk|Ank).

3. As k grows up to n− 1, then the interval [mnk,Mnk] is growing to [1, 2n+1].

4. And as k grows up to n− 1, the values pnk should approach π(2n+1).

Now, let us check some particular cases.
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Fig 1. The histogram of values (pn1)n≤5000

3.1 Case k = 1

First, let us calculate the number an1 of integers with an expression 2n + ε12m1 + ε0, where n ≥ 3 and 1 ≤ m1 < n.
There are 4 = 22 ways to combine the two signs ε1, ε0. Hence, the number of (n, 1)-formal expressions is 22(n−1) =
4n− 4. But 2n + 2 + 1 = 2n + 22− 1 and 2n − 22 + 1 = 2n − 2− 1, thus there are 22(n− 1)− 2 = 4n− 6 different
numbers with a (n, 1)-formal expression. Consequently an1 = 4n− 6

The greatest number in An1 is Mn1 = 2n + 2n−1 + 1, and the least number is mn1 = 2n − 2n−1 − 1. From the
estimation (3), the expectation of pn1 shall be

lim
n→+∞

4n− 6
n

2
ln 2

=
8

ln 2
≈ 11.541560327111 . . .

Using Mathematica, which in turn uses Miller-Rabin algorithm to test primality, we calculate the number pn1 of
primes in An1 for n ≤ 5000. The histogram of the value sequence P1 = (pn1)n≤5000 is shown in figure 1. For each
value p appearing in P1, it is counted the number cp of times in which it appears, then the pairs (p, cp) are joined by
straight lines. The most frequent value in P1, namely the mode of P1, is 12, the average is e1 = 24080/1667 ≈ 14.445

and the standard deviation is σ1 = 1
50

√
94854953

1667 ≈ 4.770. Thus values outside the interval [e1 − σ1, e1 + σ1] are
scarce. The least value in the examined interval is p1805 = 2. As an elementary conjecture we may assert: There exists
an increasing sequence of integers (ns)s such that pns1 = 2, ∀s ∈ N.

For k = 1, the horizontal straight line R1 : p = e1 is the best least-squares approximation for ((n, pn1))n≤5000.

3.2 Case k = 2

Let us calculate the number an2 of integers having a (n, 2)-formal expression 2n + ε22m2 + ε12m1 + ε0, for n ≥ 4,
1 ≤ m1 < m2 < n and ε2, ε1, ε0 ∈ {−1, +1}. The number of these formal expressions is 23

(
n−1

2

)
= 4(n−1)(n−2).

The following equations hold for any n ≥ 4:

2n + 2k−2 − 2 + 1 = 2n + 2k−1 − 2k−2 − 1
2n + 2k−2 + 2− 1 = 2n + 2k−1 − 2k−2 + 1
2n + 2k−2 + 2 + 1 = 2n + 2k−2 + 22 − 1
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(a) (b)
Fig 2. (a) The “ListPlot” of sequence P2 = ((n, pn2))3≤n≤600. (b) The differences among P2 and the values

given by the straight line R2

2n + 2k−2 − 2− 1 = 2n + 2k−2 − 22 + 1
2n + 2k−2 + 2k−3 − 1 = 2n + 2k−1 − 2k−3 − 1
2n + 2k−2 + 2k−3 + 1 = 2n + 2k−1 − 2k−3 + 1

for any integer k such that the exponents fall in the interval [1, n − 1], and the corresponding symmetric formulas
(according to µn) are also valid. Thus, there are 12 numbers repeated in An2, hence an2 = 4n2 − 24n + 46.

Figure 2-(a) plots the points ((n, pn2))3≤n≤600, calculated with Miller-Rabin algorithm and Mathematica.
Indeed, by least-squares approximation, they fit to the straight line R2 : p = 10.7924n − 61.164. According to our
estimate (3) we would expect

pn2 ≈
2

n ln 2
an2 =

8
ln 2

n− 48
ln 2

+
92
ln 2

1
n

= 11.54n− 69.24 + O(n−1).

Figure 2-(b) plots the differences among P2 and the values given by the least square straight line R2. In this sense, the
expected value of pn2 behaves as a polynomial of degree 1.

It is not known whether there is an integer n such that An2 contains no primes.

3.3 Cases k = 3, 4, 5, 6, 7.
For k = 3, 4, 5, 6, 7 we have found experimentally that ank grows as a polynomial of degree k, ank = O(nk). Namely,
we compute exhaustively the values (aνk)2k+2

ν=k+2 and we interpolate them by a k-degree polynomial αk(X) ∈ Q[X],
through canonical Lagrangian procedures. Any further values ank can be tested to fall as images of the interpolating
polynomial, ank = αk(n), for each n ≥ k + 2. Indeed,

α3(n) =
8
3
n3 − 36n2 +

544
3

n− 310

α4(n) =
4
3
n4 − 32n3 +

920
3

n2 − 1336n + 2222

α5(n) =
8
15

n5 − 20n4 + 312n3 − 2480n2 + 149752n− 16198

α6(n) =
8
45

n6 − 48
5

n5 +
1996

9
n4 − 8320

3
n3 +

886592
45

n2 − 1126936
15

n + 119870
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(a) (b)

Fig 3. (a) The “ListPlot” of sequence P3 = ((n, pn3))4≤n≤69. (b) The differences among P3 and the values given
by the polynomial η3(n)

α7(n) =
16
315

n7 − 56
15

n6 +
5392
45

n5 − 6484
3

n4 +
1060912

45
n3 − 2326784

15
n2 +

59745032
105

n− 896406

It is worth to remark at this point that the leading coefficient of polynomial αk(X) is αkk = 2k+1

k! .
In fact, if we write αk(X) =

∑k
i=0 αkiX

i, according to our estimate (3), we expect a number of primes in Ank:

pnk ≈ ρk(n) + O(n−1) =
k−1∑
i=0

2αk,i+1

ln 2
ni + O(n−1). (4)

The leading coefficient of the (k − 1)-degree polynomial ρk(X) is thus ρk,k−1 = 2k+2

k! ln 2 .
For instance, for k = 3, in figure 3-(a) there is plotted the sequence P3 = ((n, pn3))4≤n≤69 calculated exhaustively

with Miller-Rabin algorithm. The least square quadratic polynomial that fits these values is

η3(n) = 7.9163n2 − 101.511n + 379.246

while
ρ3(n) = 7.6943n2 − 103.874n + 523.217

In figure 3-(b) appear the differences, pointwise, among sequence P3 and the fitting polynomial η3.
For k = 4, in figure 4-(a) there is plotted the sequence P4 = ((n, pn4))5≤n≤30 calculated exhaustively with

Miller-Rabin algorithm. The least square cubic polynomial that fits these values is

η4(n) = 3.5997n3 − 78.9429n2 + 620.01n− 1648.94

while
ρ4(n) = 3.8471n3 − 92.3325n2 + 884.853n− 3854.88

In figure 4-(b) appear the differences, pointwise, among sequence P4 and the fitting polynomial η4.
For fixed k the exhaustive calculation of pnk requires ank evaluations of the Miller-Rabin algorithm for numbers

of size n + 1. Thus, our calculation of pnk has a time complexity O(nk+4).
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(a) (b)
Fig 4. (a) The “ListPlot” of sequence P4 = ((n, pn4))5≤n≤30. (b) The differences among P4 and the values given

by the polynomial η4(n)

4 Remarks and related questions

In spite of the above mentioned “regular behavior” of prime numbers in the sets Ank, i.e.

pnk ∼
1

ln(2)
2k+2

k!
nk−1, (5)

no conclusive statements can be posed. However, here we dare to pose some intriguing questions about this point.

1. For an increasing sequence of integers (ns)s one has pns,1 = 2 for all s.

2. For each k ≥ 2, there exists an integer nk ∈ N such that pnk,k = 0.

3. There exists an infinity quantity of Solinas’ primes.

4. There exists an infinity quantity of Crandall’s primes.

5 Generating Prime Numbers with Short Binary Signed Representation

From the estimation at relation (5), a direct algorithm for finding a prime in Pnk, given the parameters n and k,
appears plausible: Consecutively choose randomly an odd integer in Ank and stop the first time a prime, witnessed by
a primality test, is chosen.

Since, according to (3), pnk

ank
∼ 2

ln(2)
1
n , the parameter k is mostly irrelevant: In order to find a prime within Ank,

the number of attempts tends to coincide with the number of attempts to pick a prime number by random uniform
selection within the odd integers of size n, as predicted by the Prime Number Theorem.

In order to obtain primes with short signed binary representations, it is natural to proceed as follows:
Input. n: size of the pretending prime; k: number of signed non-zero digits
Output. p: a prime number of size n with k signed non-zero digits

1. lead = 2n ; flag = False ;

2. While NOT flg do
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(a) choose randomly a k-set {mj}k
j=1 within the set {1, . . . , n− 1}. Let m0 = 0 ;

(b) choose randomly a (k + 1)-vector of signs (εj)
k
j=0 ;

(c) let p = lead+
∑k

j=0 εj 2mj ;

(d) flag = MillerRabinPrimalityTest(p).

3. Return p.

An experiment of the above algorithm for n = 163 in which for each value of k there are generated 50 primes and
the number of attempts are averaged to obtain the value µnk, gives the following results:

k 3 6 9 12 15 18
µnk 55.58 59.28 52.24 58.54 62.72 54.84

These values are around the expected value 1/(2/(163 ln 2)) ≈ 56.4915.
Remark. The expected number of attempts in order to find a prime number of size n, and a given number of non-zero
signed digits, is dn ln(2)

2 e.

6 Advantages in using primes in the sets Pnk

With primes in Pnk, modular arithmetic is performed more efficiently. In general the primes involving few non-zero
digits are used in Miller’s method for Tate’s pairing evaluation. Also, it is not difficult to find this kind of primes. The
most popular search methods for probable primes have exponential time complexity O(gm), where m is the probable
prime and g > 1 is a witness. In the worst case for modular exponentiation, they are required O(t(m)) squarings and
wt(m) − 1 products, where t(m) is the bitlength of m, and wt(m) is the number of 1′s in its binary representation.
For a search method for probable primes, it is possible to precalculate g−1, rendering the same benefits for the signed
binary case.

7 Conclusions

In this report we have studied the density of prime numbers involving few non-zero digits in their binary signed
expressions. For practical purposes it is not difficult to find such primes and a polynomial estimation can be given of
how many such primes are there.
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