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Abstract

In many cases, a cryptographic algorithm can be viewed as a one-way function, which is easy to compute in forward
direction but hard to invert. Inverting such one-way function amounts to breaking the algorithm. Time-Memory
Trade-Off (TMTO) is a twenty five years old generic technique for inverting one-way functions. The most feasible
implementation of TMTO is in special purpose hardware. In this paper, we describe a systematic architecture for
implementing TMTO. We break down the offline and online phases into simpler tasks and identify opportunities for
pipelining and parallelism. This results in a detailed top-level architecture. Many of our design choices are based
on intuition. We develop a cost model for our architecture. Analysis of the cost model shows that 128-bit keys seem
safe for the present. However, key sizes less than 96 bits do not provide comfortable security assurances.
Keywords: One-way function, generic method, time/meomry trade-off cryptanalysis.

Resumen

En muchos casos, un algoritmo criptografico puede ser visto como una funcién de solo ida, la cual es facil de
calcular pero dificil de invertir. Invertir una funcion de soélo ida es equivalente a romper el algoritmo criptografico.
Compromisos de tiempo-memoria (TMTO por sus siglas en inglés) es una vieja técnica genérica concebida mas
de veinticinco afios atras para invertir funciones de s6lo ida. La implementacion mas factible de TMTO es la de
arquitecturas de hardware de proposito especial, y es asi que en este articulo, describimos una arquitectura de ese
tipo capaz de implementar dicho método. Subdividimos las fases fuera de linea y en linea del algoritmo en tareas
simples e identificamos oportunidades para paralelizar y/o utilizar técnicas de tuberia. Este proceso nos condujo
a proponer una arquitectura de alto nivel muy detallada, en la cual muchas de las elecciones de disefio estuvieron
basadas en la intuicion. Asimismo, desarrollamos un modelo de costos para nuestra arquitectura. El analisis del
modelo de costo sugiere que las llaves de 128 bits pueden ser consideradas seguras en la actualidad. Sin embargo,
las llaves con longitudes menores de 96 hits no brindan garantias de seguridad suficientes.

Palabras Claves: Funciones de solo ida, método genérico, cripto-analisis de compromiso tiempo memoria.

1 Introduction

Cryptographic algorithms such as block and stream ciphers require the use of a secret key to ensure confidentiality of
transmitted messages. The basic goal of a cryptanalytic attack is to recover the secret key from publicly available in-
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formation. Very often a successful attack exploits weaknesses in the design of the specific algorithm being considered.
Two of the most popular attacks are: linear cryptanalysis (Matsui 1993; Matsui 1994; Borst, Preneel, and Vandewalle
1999; Shimoyama, Takenaka, and Koshiba 2002) and differential cryptanalysis (Biham and Shamir 1993; Lai 1994).
There are several variants of differential attacks namely, truncated and higher order differential attack, impossible dif-
ferential attack (Biham, Biryukov, and Shamir 1999a), boomerang attack (Wagner 1999). Related key attack (Biham
1994), miss in the middle attacks (Biham, Biryukov, and Shamir 1999b), slide attack (Biryukov and Wagner 1999),
correlation attack (Shimoyama, Takeuchi, and Hayakawa 2002), statistical attacks (Gilbert, Handschuh, Joux, and
Vaudenay 2000; Handschuh and Gilbert 1997) are examples of some other attacks on symmetric ciphers.

A generic approach for cryptanalysis views the encryption function as a black box, i.e., it does not utilize infor-
mation about how the function is constructed. A simplest generic attack is to try every possible key until the correct
one is found. This is called an exhaustive search attack. The importance of such an approach arises from the fact
that if a cryptographic algorithm is not secure against exhaustive search, then it cannot be considered secure at all.
Implementation of exhaustive search is most feasible in special purpose hardware. In 1998, a remarkable achievement
was made (EFF 1998) when the Electronics Frontier Foundation built a mdakiBeCrakerfor cracking DES at a
cost of US $200,000 and which cracked a DES problemin 3 and 1/2 days. Recently, Kumar et at. (Kumar, Paar, Pelzl,
Pfeiffer, and Schimmler 2006) build the COPACOBANA (COPACOPANA 2006) machine to break DES. The cost of
one machine is approximately US $10,000 and which cracked DES in less than a week.

The main disadvantage of using exhaustive search is that it has to be repeated separately for each target. To address
this problem, Hellman (Hellman 1980) introducéde/memory trade-ofTMTO) attack that enables one to perform
an exhaustive searancein an offline precomputation phase. The actual attack,fireling the key corresponding
to a targetis done in an online phase with table lookup and is significantly faster than exhaustive search. Also, one
can repeat the attack on different targets without going through the pre-computation each time. A TMTO attack is a
generic attack which can be carried out against any one-way fungtidhe online target consists of an imagand
the goal of the attack is to find/g such thatf (k) = y, k being the secret key (pre-image) from a key space of§ize
corresponding to the targgt

Since the publication of Hellman’s result, there has been a lot of research on TMTO. Hellman’s method can recover
a key in timeT" using M memory with the trade-off curv&M? = N2 for 1 < T < N, N being the number of all
possible keys. Rivest (Denning 1982) introduced the distinguished point (DP) property in TMTO attack to reduce
the number of table lookups. Later, Biryukov and Shamir (BS) (Biryukov and Shamir 2000) showed how to modify
Hellman'’s technique to take advantage of available multiple datB. rifanyy’s are available, and the goal is to find
a pre-image of any one of them, then BS obtain a trade-off clid€ D? = N2. Later, Oechslin (Oechslin 2003)
proposed the rainbow method to reduce runtime cost to one-half of Hellman’s method with the same trade-off curve
as Hellman’s method. The problem has been investigated in a more theoretical setting by Fiat and Naor (Fiat and Naor
1991).

In 1988, Amirazizi and Hellman (Amirazizi and Hellman 1988) propas®é/memory/processor trade-afhere
several processors execute in parallel, sharing a large memory thravgltching/sortingnetwork. They assumed
that the cost of the wires is less thatog n and left this as an open problem for further study. Wiener (Wiener 2004)
investigated the problem and proved that if an algorithm has a very high memory access rate then the wiring cost
is the dominating cost for angwitching/sortingnetwork and showed this cost to @r{n%) to connectn processors
with n memory blocks. Quisquater and Standaert (Quisquater and Standaert 2005) provided a sketch of a generic
architecture based on their two previous works (Quisquater and Delescaille 1989; Quisquater, Standaert, Rouvroy,
David, and Legat 2002). They suggest a pipelined architecture for implementing a multi-round fuhetitoh
is based on Wiener’s design (Wiener 1996) of implementing DES in his exhaustive search attack on DES. Mentens
et al. (Mentens, Batina, Preneel, and Verbauwhede 2005) propose a hardware architecture for key search based on
rainbow method.

Following Wiener's (Wiener 2004) work, it is currently believed that the dominant cost of the hardware will be the
interconnection cost of connecting a set of processors to a set of memory locations. However, this assumes a particular
architecture, i.e., all the processors will actually be connected to all the memory locations. This is not the only possible
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architecture.

In this paper, we provide a pipelined architecture of the Hellman’s algorithm with distinguished point (Hell-
man+DP) method. We systematically break down the offline and online phases into smaller computation tasks. For
each task, we identify suitable opportunities for parallelism and pipelining. A fairly detailed register level architecture
is provided for each individual component. Since TMTO is a generic algorithm, the top-level architecture is also quite
generic. The hardware implementation of the particular one-way function to be inverted occurs at a lower level. We
believe that the architecture presented in this paper can form a good starting point for a concrete implementation of
TMTO method to invert a specific one-way function. There are several issues, such as power consumption, mean time
between failures, which are not considered in this paper. These are important issues but can be judged effectively after
efforts are made for actual implementation. We hope that our design will stimulate further work on this topic.

Based on our architecture, we develop a cost/time/data trade-off model. This is important, since it allows us
to quantify statements like “with: many dollars, one can break the algorithnyimmany days”. Previously such
statements have been discussed informally at several forums (such as the ecrypt forum on stream cipher primitives).
To the best of our knowledge, no concrete trade-off cost model has appeared in the literature. Using the new cost
model we analyze the effectiveness of exhaustive search and TMTO pre-computatienitfteys withs < 128.

This analysis shows that < 96 does not afford comfortable security while= 128 appears to be secure in the
foreseeable future. We apply our trade-off model to stream ciphers and find that the 80-bit stream ciphers does not
provide adequate protection against TMTO attacks.

2 Préiminaries

Let Vi, = {0,1}’ be the set of all possible bit strings of lengthWe takeV,, andV;, to be the plaintext space and
ciphertext space respectively. LEt= V; be the key space (set of all possible keys).

An s;1-bit block cipher is a functior® : V;, x K — V;, wherecpr = Ej(msg) denotes the ciphertexpr for msg
underk. LetR : V,, — V;, be a function from ciphertexts to keys.df > s (DES hass; = so = 64 ands = 56),
then we remove the firgs, — s) bits. If so < s (AES hass; = so = 128 and there are three allowable key lengths,
s = 128,192 and256 bits), then we appen@ — s3) constant bits.

For a fixed messagasg, we define a functiorf : V; — V; as,

f(k) = R(Ex(msg)).

To gety = f(k) from k we need to apply the encryption function under the known kégllowed by a reduction
function R, which is easy to compute. But to gefrom f(k) one has to decrypt the known plaintextg under the
unknown keyk, which is equivalent to the chosen plaintext attack to the cipher. That is hard. Hence this fyhction
can be viewed as a one-way function.

Other cryptographic primitives like stream cipher, hash function, modes of operation can also be viewed as a one-way
function. See (Biryukov 2005; Hong and Sarkar 2005) for more details.

Problem Definition:Let f : {0,1}* — {0, 1}* be the one-way function to be inverted. This function maybe obtained
from a block cipher by considering the map from the keyspace to the cipherspace for a fixed message or from other
crypto primitives like, stream cipher, hash function, modes of operation etc. Thus, our problem will be that given a
stringy, we will have to find a string: (pre-image or key) such thg{z) = y.

3 TMTO Methodology

In 1980, Hellman (Hellman 1980) presented a cryptanalytic time/memory trade-off attack which can viewed as a
generic one-way functionf(: {0,1}" — {0, 1}") inverter. Hellman’s attack consists of two steps: precomputing the
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tables and searching (table lookups) in the tables. In a precomputed table, we generate a chain:df tengtistart
pointk, as,

kOLlekQ_)..._)kt72i>kt71.

For anm x t table,m chains of length are generated. We store start and end points in the table, sorted in the increasing
order of end points. Using matrix stopping rule, we choasandt such thatnt?> = N, whereN = 2°. So one table
can cover only a fractior%t = % of N. Hence, we needdifferent (unrelated) tables to cover &l keys. For the
it" table, we choose a functiofi(k) = ¢;(f(k)), which is a simple output modification gf(k). The functionsf;,
i=1,2,...,tare unrelatedg;’s are also called masking functions. In tiié table, we randomly seleet distinct
keys from the key space, generatechains taking each key as a start point with the same fungtion

Given a targey = f(k), we need to find its pre-image Supposek is in one of the constructed tables. For all
i=1,2,...,t, we repeatedly apply; to y’ = ¢;(y) at mostt times, each time we check whether it reaches an end
point of i*" table. The number of table lookups for this is at modf it reaches an end point, we have the position of
k. Then we come to the corresponding start point and repeatedly apply the function until it readtmesprevious
value it visited isk. Hence, the total number gf invocations= t? + ¢t ~ t2. The total number of table lookups
required ist?. The Hellman method can recover a key in tifigtotal number off invocations) usingl/ memory
suchthafl’' M? = N2

Rivest introduced the distinguished point (DP) property in time/memory trade-off attack. We can define a DP
property on the key spadg€ as follows: a key: satisfies the DP property if its firgtbits are zero. In the Hellman +
DP method, we generatetables with maximum chain lengthin the precomputation phase as follows. We choose
different functionsf1, . . ., f.., where eacly; is a simple output modification of the functighi.e. f;(z) = ¥;(f(x)),
wherey; is thei” output modification function. For each table, we choesstart points uniformly at random from
the key space. In thé" table, for each start point we generate a chain by repeatedly apglyintl we reach a DP or
until length of the chain is. If a DP is encountered in the chain, then we store the tuple (start point, DP point, length
of the chain) in the table, otherwise the chain will be discarded. We sort the tuple in the increasing order of the end
points (DP). If the same DP occurs in two different tuples, then the tuple with maximum chain length will be stored.
Sort the tuples in the increasing order of the end points. Given a cipher text, in the search phase we generate a chain,
until we reach a DP. After reaching a DP, we perform a table lookup, and so the number of table lookups reduces
from ¢2 (for ¢t Hellman tables) t@. As mentioned earlier, Biryukov-Shamir showed how to exploit the availability of
multiple data to obtain a new trade-off cur¥é/2D? = N2.

4 Notational Convention and Abbreviation

We provide below the notations used in the architecture.
— SCC: a two-bit register used in the table preparation stage
—sgcl andsgc? are the completion signals of the chain computation and sorting unit respectively.
— start signal indicates that the assembly line movement is complete in the Table Preparation stage.
—P;:i=1,2,... narethe processors used to generates start point, end point pairs for the table.
—PMS,;i=1,2,...,n are the processor memory space Rr
— R is n-bit register used to store the completion signal of all the processors.
— SC is sequential circuit wit-bit input to check whether all the input bits are 1.

— L is s-bit LFSR corresponding to a primitive polynomial whose internal stage are used for output modifications.
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— CT: aone bit tag to control write blocks and movement of the assembly line.

—T': one bit tag to control the execution of the processor untt, # 0 then the unit will be idle until” = 1.
— SPG: the start point generator.

— (1 andCj are bothr, (= log t) bits counterCs is ro (= log %) bits counter.

—SC7 andSC5 are sequential circuits withy -bit input to check whether all the input bits are 1.
—R;:1=1,2,3,4,5 ares-bit registers.

— RF; is thei*" round function.

-SPR;:i=1,2,...qares-bit registers used to store the start points.

— CQR is rq-bit counter to count the number of start point generated By-.

— DB: data block

—Ry;: j =1,2,...qares-bitintermediate registers to store the output values for different rounds.
-SPC;,:j=1,2,...q— 1 arer;-bit counters.

— W B: write block; RB: read block and) B: data block.

—CQ: k-bitregister.

— SCQ is sequential circuit withk-bit input to check whether all the input bits are 1.

—y : data point

— DP : distinguished point

— SP : start point

—OM B : output memory block

— MR andDR are boths-bit register.

— PC1 isrs-bits (rs = log z) counter.

— BUF1 andBU F2 are buffer queues.

5 Precomputing Stage

The precomputing stage consists of two phashain computatiomndsorting Figure 1 describes architecture of the
precomputing stage and the tables are computed one by one. To generate a table, a high speed memory is used as an
input of the chain computation phase. In the chain computation phase, chains are generated until it reaches to a DP
and then storing the start point and end point pairs into the memory. After stanimgber of pairs into the table, the

chain computation unit sends completion sigsgt1 (1 bit value) to the registe8CC and terminates execution until

thestart signal received.
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Fresh Unsorted Sorted Completed =
Memory Table Table Table
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Sorting

sgc2

Fig. 1. Table Preparation

At the sorting phase, the previous table (unsorted) is to be sorted into increasing order of end points. Both the chain
computation unit and the sorting unit run in parallel, i.e., while the chain computation unit computtsttilge, the
sorting unit performs sorting on thg — 1)th table. After completion of sorting phase, a completion siggaP is
sent toSCC and the execution is stopped untistart signal is received. The assembly line will shift (i.e., the fresh
memory, unsorted table and sorted table will be copied into unsorted memory unit, sorted memory unit and completed
table unit respectively) whe8CC receives both the signasgicl andsgc2 (i.e., when both the chain computation
unit and sorting unit will report completion). After completion of assembly line movenstant, signal will be sent
to both the chain computation unit and sorting unit andSB& is set to zero.

There are several issues to be considered.

e Parallel sorting: Chain computation and sorting hardware are to be designed so that they complete simultane-
ously. Depending on the design and speed of the chain computation stage it is required to determine whether
parallel in-place sorting is required. The other issue is the type of table memory being used and whether random
access is supported. In case parallel sorting is to be used, one can use mesh sort which requires a 2-d table
structure. Then the chain computation phase will be required to access a 2-d memory.

e Both chain computation and sorting phase will require memory writes. For the chain computation stage, batch-
ing can be used to reduce number of memory accesses. Also chain computation and memory access can be
pipelined to some extent.

e We are using four blocks of high speed memory while keeping the actual tables into DVDs. The completed
table in a high speed memory will be written to a DVD and then the high speed memory will be cycled back.
The time to copy from high speed memory to DVD will be overlapped with the chain computation and sorting
phases.

5.1 Chain Computation Phase

Suppose there areprocessor unit®;, P, . .., P, available at the chain computation phase. In Figure 2, we describe
the architecture of the chain computation unit. The given memory block (fresh memory) is partitioneceparate
Processor Memory Space (PMS) umitd/.S,, PM S, ..., PMS,,. Each processap; will store% (start point, end
point) pairs intoPM S; through a write block (WB) unit¥ B;. EachPM S; has% memory locations to store the
pairs and its starting addresdd; (address of the first memory location) is storediifi3;. Hence to accesg”
memory location ofP M S;, the offsetj is to be added witludd; to get the exact address. Processors execute the
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Fig. 2. Architecture of chain computation phaggp : start signal;o/p : sgcl

chains with different start points which are coming fratart point generatgrwith each processor having its own
start point generator. L&2; (offset) be the next free location of the corresponding PMS. After encountering a DP, the
processor enables theite blockunit by the signakg, and passes the addre&3g. Then the corresponding WB unit
goes to the exact address of the free location by adding the offset with the starting address of the PMS and storing the
pair (O1, O) into the location. Processors run in parallel and after generé{tingﬂber of DPs, the corresponding
processor passes completion signal (1-bit value) to:thé registerk and stops the execution until it receives a start
signalsg, from the CT (see Figure 1)L is ans-bit LFSR which is used as function generator and its internal state
value passes to each of the processors to do the output modification of the fuhc&ihis a sequential circuit to
check whether all the values R are 1. If yes, then the table has completed and SC sendssg stgrethablel to
generate the next state (for the next table) spdto set CT to 1. Then CT will send a signal sgcl to SCC (see Figure
1) requesting to move the table, a sigeg to disable write block, a signal, to the processor and clear the contents

of R. After the movement of the assembly line, gtart signal (see Figure 1) sets the value of CT to zero and the write
blocks will be enabled to write the pairs for the next table.

The following are some of the rationales for our design decisions:
e Utility of having separate memory spacésach processaP; uses separate processor memory sp&gdss; to

store the (start point, end point) pairs. This avoitdtiple access of same memory space and it is possible to
use this idea since sorting is done separately.

e Each processor generatefls DPs: Since DPs are generated at different time points and a processor may have
to consider different number of chains, the time taken by processor will be different (though the expected time
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Fig. 3. Architecture of a process@?;. i/p : sgo, function maskp/p : sg1, 01,02, O3

will be same for all processor). Consequently, it may happen that one processor may complete ahead of others
and hence will be idle for some time. On the other hand allowing each processor to generate the same number
of DPs considerably simplifies the design and the expected delay is zero.

e No overlap of processing between tabl&sno point of time, two processors will be handling chains of different
tables. This again simplifies design.

Description of a Processorfigure 3 describes the architecture of a processor. Each processor takes two inputs, a
signalsg, ands-bit output modification value fronk. The 1-bit registefl” is the control unit of the whole processor
unit; the processor will stop i is set to be zero and start running if the valu€/ois 1. Cs is the counter to count
the number of DPs encountered and it is incremented after encountering®’BRhecks whether number of DPs
encountered reache%s If yes, then the value df will be set to zero and the whole processor unit will stop until
the signalsg, resetsCs to zero. A start point is generated by thtart point generator (SPQ)nit and passes to the
PUnit as the inputfn;. ThenPUnit takes other inpufns from L, which is the internal state df (i.e., function
masking) and starts executing the chain with the start point until it reaches a DP or the chain lengthtrébgbss
then it outputs a sign&@uts to S PG to generate a new start point, loaded into the regBieand passes tBUnit as
an input (n,) for the next chain. If a DP is encountered, thetinit outputs a signabut, to increase the counték,
by 1 and enables (the signa};) the WB unit to load the (start point, end point) pair,( O2) and the offset address
Os.

A suggestion forS PG to be implemented using an LFSR where ed¢hhas its ownSPG as opposed to a
global SPG for all the P;’'s. See (Mukhopadhyay and Sarkar 2006) for parallel start points generation using LFSRs
sequences. This simplifies the design considerably while retaining the pseudo-random characteristic of start points.

Description of PUnit: Figure 4 describes thBUnit where inputs/n; is a new start point which is loaded into the
registerR; andIn. is stored intoR, for function masking. The countér; is set to zero through the multiplexers
when a new start point is loaded infy. The functionf is applied onR, and the output is loaded into the regisigy
followed by function masking (xorin@®s and R4). The result is stored into the registgs to check for DP. If DP is
encountered, then the multiplexers select the second line so that a new start point is loaftgdimddhe countef’s
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. 9
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Fig. 4. Architecture ofPUnit. i/p : In1, Ing; o/p : Outy, Outs, Outs, Outy

will set to zero. Otherwis®; andC; will be copied (in a synchronized operation) ifg andC'3 respectively for the
next iteration in the chain. The increment@f and copying ta”; will be synchronized with the application gfon
R, and output taRs. The result of one operation will not be used until the other one is completed.

Note that in our design we use chain length counter (€g),which adds complexity to the circuit. Removing
the chain length counter gives rise to the possibility that a DP in some chain occurs after a very long time or does not
occur at all. This will stall the operation. While this will be rare event, it cannot be ignored. Counter chain length is
one way of handling this. There may be other ways. Also note that we do not store chain length in the table. This
reduces memory requirement but will increase online search time for false alarms.

Description of a processor whefiis a multi-round function: Let us consider the case when the functjpis a
multi-round function, i.e.,

f=RF,0oRF,; 10---0RFy0RF;

whereq is the number of rounds. For example DES and AES are multi-round block ciphers and A5/3 (ETSI/SAGE
2002) is an example of a stream cipher whose design is based on the 8-round block cipher KASUMI (3GPP ). We
apply ¢-stage pipeline strategies to deal witkifferent chains in parallel within a processor as follows (this idea

has been earlier used in (Quisquater and Standaert 2005) and (Wiener 1996)). In the architecture of a processor unit
(Figure 3), thePUnit is replaced byPUnit Round (the description of PUnitRound is given below). For each table,
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Fig. 5. Architecture of PunitRound,/p : Iny, Ing; o/p : Outy, Outs, Outs, Outy

the SPG unit generatgamany start points initially.

Figure 5 describes thBUnit Round. We useg + 1 countersSPCy, SPCy,...,SPC,, C; of ri-bit each. Ini-
tially, the SPG generateg many start points. At each time, the start point in regist&R; will be copied into
the next registeS PR, to keep track of it, since after getting a DP, we need to get the corresponding start point
to return. Pipelining strategy is applied in the execution of round function and whenever a DP is encountered, the
processor outputs the DP and the corresponding start point which is available at the f2giBter; . The following
are synchronized operations:

e CopyingSPC;to SPC;y1, SPR;t0 SPR;;1 andRy; to Ro; 41 fori=1,2,...,q— 1.
e CopyingSPC,toCy, SPR,t0 SPRy 1 andRy, to Rs.
e CopyingC1/"0"to SPC1, SPRy11 t0 SPRy andRs to Ro;.

5.2 Sorting Phase

We do not describe details of sorting hardware but discuss the various issues that need to be considered. The sorting
hardware so that the sorting and chain computation should complete simultaneously. In the chain computation phase,
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for a table with sizen x t, the total number of invocations required is:»t whereas the sorting phase could be done

in mlogm comparison using a single processor and the sorting shouilt-place If we havet many processors
available at the chain computation phase, then total numbgnwafcations will be reduced fromut to m by running

the processors in parallel. But for significantly largé-many processors may be expensive. Also, fiievocation

takes more time than one comparison operation for sorting. So sorting with a single processor will not take more
time than chain computation. But the chain computation requires memaory write which is done in parallel and sorting
requires both memory read and write. Hence depending on the memory speed one may have to perform parallel sorting
(including memory read and write) so that the sorting and chain computation phase complete simultaneously.

Note that, at the sorting phase if there is a collision (i.e., common DP in different chains), then we randomly select one
chain to store and remove others, but it is desirable to select the maximum length chain for getting more coverage. In
our design we are not storing the individual chain length in the table, so we cannot take the maximum length chain for
the collision. Also since the sorting phase starts after completion of chain computation phase for a table, we may need
to remove some of the chains at the sorting phase due to the collision. Thus to get a constant coverage, more chains
need to be computed in the chain precomputation phase. On the whole, our design is simpler and requires less amount
of memory since we do not take the extra overhead of storing individual chain length.

(mask, y’, SP)

s new table
oBL T
SCHEDULER)

|

(mask, y’, SP|

ImMmrrCcoOmIOon

DBn

Output memory blocK
(OMB)

Fig. 6. Architecture for the matching phase for a single table whes large.i/p : Data pointsp/p : OMB

6 Online Search

The online stage consists of two phasestchingandfind key. In the matching phase, table lookup is performed when

a DP is encountered during an iteration (execution of the chain starting with the given/yalihe encountered DP

is not in the table, then we will not be able to find the key by iterating further and can skip the current search in the
rest of this table for that given valuge To search the key in th&" table, we need to execute the following chain.

Yy ﬁ* kivo —f>i> ki1 L’ﬂ’ kiyo— ... — kiyi 1 —f>i> kiye.

After each iteration { application + maskingg;)) DP is checked and if found we stop the chain.
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SupposeD pointsyy, ...,yp are available at the online stage and we have to find the pre-image of any one of
these points wherg;, i = 1,2,..., D is viewed as unrelated random points. This enables us to perform independent
search for different data points. Suppose we have proce$s0rf%, ..., P, which are dedicated to perform thfe
invocation andlq, Qo, . . . Q. are /O processors to perform the table lookup. We now describe the matching phase
architecture for the following cases depending on the value.of

Input from L

mask MR

!
DR Oug Outy Y
Input ni
frcrv)m DB ~ | Ouy

, | out, ——— DP
psig
signal to RB @ new table
r3
| Output to R

Fig. 7. Architecture of gp-processor in the matching phase architecture wiiés large.i/p : new table signaly,
function maskp/p : mask,y’, DP, psig, load signal to RB, completion signalRo

6.1 For Many Data Points

Let there be sufficient amount of data available to the attacker. We partition the data pointsémarate data blocks

DB1,DBs,..., DB, with z data points in each. Thehh = > x n. We apply the search technique for all the data

within a single table and after completion of the search for all data points we move to the nextSatde.table

load is expensive, we complete the search on one table before moving onto the nexFiginie 6 illustrates the

architecture to perform the parallel searching for a single table and for all data points. The prd¢estsoes a

data point fromD B; into its internal registeD R and the mask value corresponding to the table (coming from L) in

the register MR (see Figure 7 that describeB-processor). The countef3C; keeps track of the number of data

points already covered. The-processors an@-processors are connected through a common buffer gBeared a

scheduleSCHEDULER;. To search in a table, the processbis P, . .. P, are assigned to perform the DP search

technique for different data in parallel where the data are coming from its data block through the read block unit. So

these processors are essentially executimifferent chains corresponding todifferent data in parallel. The table

lookup is needed whenever a DP is encountered during the execution of the chain while searching the key in a table.
After encountered a DP during the execution of the chain, the corresponding processor generate & gignal

It then passes the tuplenask, y’, DP) to B and a load signal where “mask” is generated by LFSR L @ne-

masking(y). The processor also passes a signak® to read the next data point from data block. After this, the
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processor starts executing the chain for the next data. In this way/pabcessors keeps on executing until it finishes

the search for alt data points. After completion it sends a completion signal to the register R. Processor waits until it
receives the new table signal. JobSEHEDULER; is to check the buffer queue. If there is any tuple in the buffer
gueue then it searches for a free /O processor and if there is any free I/O processor, it assigns the DP into the (the
ordering is@1, Q2, . . ., Q circularly) free 1/O processor for table lookup. The queue size is to be chosen such that it
will not be full until there is a free 1/0 processor. During the table lookup, if a match occurs, then the corresponding
Q-processor passes the tugteask,y’, SP) (SP is the start point for the datg to theSCHEDULER;, to store the

tuple intoOM B to get the key. After receiving completion signal from BHprocessors thECHEDULER; checks
whetherB is empty and all th&)-processors have finished the table lookup. After completion of all table lookup, a
new table will be loaded and continue.

(mask, y’, SP)
3s Y e
P - _ @ Table|1
3
- -Table|k
OMB
Pn
BUF1 BUF2

Fig. 8. Architecture for matching phase whéh= 1

Analysis: Let 277 be the probability of a point being a DP. Hence, we can expect one DP in a random collection of
2P points. In our parallel execution,processors are executing in parallel and generatingny random points each
time. Assumingn < 2P, after eacﬂ%J = t1 (say) iterations we can expect one DP. At each of tithe= it; for
1 =1,2,..., we can expect a DP. The encountered DP will be assigned to the I/O processors for table lookups. Thus
at timeT = ity, the corresponding DP will be assigned to the proceQsdor i = 1,2, ..., k. The next DP will be
encountered (expected) at tiffle= (k + 1)¢1, but at that time the 1/O process@r may not be free, since the table
lookup time €) is quite significant. Let us consider the following cases.
Case 1: Whenkt; = v, i.e.,k2P = yn, then at timel’ = (k + 1)¢1, the I/O processaR; will be free (since the time
difference between the present time and the time when the prod@sseas assigned the DP {& + 1)t — t1 =
kt; = =, the table lookup time). So the corresponding DP will be assign&g tfor table lookup. In this way the
next DP will be assigned t@Q)» and so on. So in this case all the processors will remain busy at all the time. For a
table with sizem x ¢, the total number of invocations will be reduced frorD to [ 2 |. Then the total runtime for a
single table is%D + v. Hence in this case the total numberbinvocations is reduced by a factorofind theeffective
number of table lookup required is only one for a single table.
Case 2: Whenkt, < v, then we need to use the buffer queue. Note that the DPs are coming at the following expected
times:

T =t1,2t1,3ty,..., kty, (k+ Dty ...
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So up to timekt;, we keep on assigning the DP’s into the I/O processors. But after that the next (circular ordering)
I/O processor, i.e(); will be free at timet; + +. Thus the next generated DP’s need to store into the waiting queue
upto timeT" = (k + j)t1, wherey is the integer such thatk + 5 — 1)t; < v < (k + )t1. Hence theoptimalsize of

the buffer queue ig so that all the processors will remain busy at all the time. Hence in this case also the total number
of f invocations is reduced by a factor efandeffectivenumber of table lookups requiredjsHence, total runtime

for a single table iS2 + 5v.

Case 3: Whenkt; > +, this case is similar to the case 1, except that in this case not al lfli@eprocessors will be

busy, some of the I/O processors will always be idle which is not desirable. In this case, one can use fewer number of
I/O processor if some of them are busy.

In Figure 6,k many I/O processors are randomly accessing the table (memory block). Hence the memory block need
to have multiple data and address bus to support this multiple access. The table lookypimeg m whered is

the memory access time. Note that in the above analysis, we have assumed @wurtoessors will have finished

their table lookups in the same ordering which may not be true. More than one match can occur at the same time for
the Q-processors and that is the reason we need to B&HEDULER,.

false alarm
) RBy|— || P
) IS 1
(mask, y’, SR) o Key
H
E
D
U
Ié Key
R RBy P
false alarm
OMB

Fig. 9. Architecture for parallel key find strategy

6.2 For aSingle Data Point
Suppose the attacker has a single data point at the online stag®, el,. We perform the parallel search strategy
by grouping tablessT) = {Table;, Tables, ..., Table,}; GTo = {Tableyi1,Table, o, ..., Tables,};. .. such
that each group containsmany tables. In Figure 8, we describe the architecture wRgseare the processor units
running in parallel to search fdp P for n tables from the same group in the increasing order of the table number. After
encountering a DP, the processor passes the quadruple:, y’, DP) to BU F; and waits until the other processors
finish their DP search for the same group. After completion of DP search for all the tables in thegtokipwill be
stored intoBU F5 in increasing order of table numbers and thgrocessors start searching the DP for the next group
of tables. The processét is similar to the processor which is used in the many data points case (see Figure 7) expect
for the following. (1) registetD R will always contains the given data point. (2) For each group of tables, the LFSR
(L) will clock n times to get the corresponding mask value for the tables and store it to the régBtr each table.

For table lookup/ many@-processors are connected to the firgtosition of BU F». Parallel table lookup is
performed for first: tables in the group and after completion of all thisable lookup, we pop the firdt tuples and
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push the nexk tuple in the firstk places ofBU F,. Then we load next tables from the same group for table lookup.
This technique can also be used wheiis small.

Analysis: We can expect one DP in a random collectior2dfpoints. In our parallel executiom, processors are
executing in parallel and generatingnany random points each time. Hence affétime, expected number of DPs
is n which completes th¢ invocation for a group of tables. L& = 2P. The time required to complete table lookups
for a group =%+, sincek many(Q-processor are running in parallel. LBt = 2. Let us consider the following cases.
Case 1. WhenT; = T, i.e., the total expected time required to complétmvocations is same as the total time
required to complete table lookups for a group. Then the following will be done simultaneousl* @rpup of
tables, i.e.GT; completes thef invocation stage and (2} — 1)“‘ group of tables, i.e.GT;_1 has completed the
table lookups stage. There are total numbejr/of group of tables. Hence the expected runtime required to complete
the matching phase in this case = total time required to compflateocation stage fot = | group of tables + time
required to complete the table lookup step for the last grétip ¢ |) of table =| - | x 2P + 2 = (L] +1)2r.
Case2: WhenT; < Ty, i.e., table lookup time dominates the total time. The total table Iookuptirﬁec%” = %t
which is independent of.

7 Finding the Key

After a match is found in table lookup step, we come to the corresponding start point and repeatedly apply the function
(f + masking) until it reacheswasking(y). The previous value it visited is. Hence, to get the key from the given

(mask,y’, SP), the following chain is executeds P Fmasking gk Ly e S
ki1 "M pp, (1)
Figure 9 describes the architecture for parallel key find strategy whe@mcessord’;, P, ..., P, are running in

parallel taking input tuples from OMB.
Finding a matching endpoint when searching the key in a table does not necessarily imply that the key is in the
table, since the key may be a part of a chain that has the same end point but is not in the table. It iSalaledam.

7.1 Description of a Processor

Figure 10 describes the-processor in the parallel key find architecture. Each processor takes théinpit, y, SP)

from the OMB and storeswask, y’, SP respectively into the registefg, B¢ and R;. Then the processor executes
chain (1). Every time it checks for equality with and stops if it finds the match and returns the previous point as the
key. If it finds no match after executing complete chain (lengtht returns a false alarm.

7.2 Analyss

Finding the key can require “substantial” time compared to finding a table match due to false alarms. The number of
false alarms can be as large as half the total numbérrefjuired for online phase. However, table match requires
memory access, whereas finding key does not.

8 Cost Analysis

We would like to perform a cost-time analysis of TMTO and exhaustive search attacks. To do this, we need to identify
the dominant components of both the attack time and the costs. This is relatively easy to do for exhaustive search.
The functionf has to be applied on every possible input in the domain. Hence, the dominant component of the time
is the time required to apply a total of V times; for parallel implementation, this time is scaled down by the number
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(mask, y, SP) 3s
input from RB yJ( s
Rg

S

signal to RB

key

false alarm
Fig. 10. P-processor in the parallel key find architecture

of processors used. The dominant cost component is the cost of implementing the gairaltatation units (or
processors). The cost should also include the manpower cost, but this is harder to estimate.

A TMTO algorithm is more complex than exhaustive search and deriving an appropriate cost model is more
difficult. The precomputation phase of the TMTO algorithm has several time components — time required to obtain
the (start-point, end-point) pairs; memory access time required to store these pairs into the table; and the time required
to sort the tables. The online time has two major components — time to obtain the end-points; and the time for table
look-up. Similarly, the cost has several components — the cost of the pdratiebcation units; and the cost of storage
media. In the online stage, the wiring cost of connecting processors to memory can also be substantially high (Wiener
2004).

To a large extent, the appropriate choice of the cost model depends on the underlying architecture used for the
implementation. Below we provide a top level description of our proposed architecture. This top level view makes
understanding of the cost analysis easier.

Pre-Computation Phasd:et us consider the tasks performed in the pre-computation phase. At a top level this consists
of the following two separate tasks for each table.
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1. Compute the chains and write the (start-point, end-point) pairs to the table.
2. Sortthe table.
3. Write the table into a DVD

Let us call the first taskghain-computation, the second taskorting, and third taskDVDwrite. In the Hellman+DP
method, a total of tables are to be prepared. Let us denote the tabléBdby, ..., T'ab,. Consider the following
algorithm.

1. Performchain-computation for T'ab ;

2. doin parallel
performchain-computation for T'abs;
performsorting for T'abq;

3.fori =3 tor doin parallel
performchain-computation for T'ab;;
performsorting for T'ab;_1;
initiate DVDwrite for T'ab;_s ;

4. end do;

5. doin parallel
performsorting for T'ab,;
performDVDwrite for T'ab,_1;

6. performDVDwrite for T'ab,..

This algorithm pipelines the chain computation foib; with the sorting ofT’'ab;_; and DVD writing for T'ab; .
Under the reasonable assumption that the sorting time is at most the chain computation time, the major time component
is at most the time required fohain-computation of r tables plus the time required to sort a table and write to DVD.
The chain-computation itself has two tasks — parallgtinvocations and writing to high speed memory. These two
tasks can also be pipelined as we discuss below.

Suppose: many f-invocation units are available. Each table has a totahohany (s-p, e-p) pairs. These are
divided intom/n blocks By, . .., B, ,, Where each block contaimspairs. Then many f-invocation units will be
operating in parallel to produce one block.

1. Generate blocBy;
2.fori = 2tom/n doin parallel
Generate bloclB;;
Write block B;_ to the table;
3. end do;
4. Write blockB,,, /,, to the table;

Producing each blocB; requiresn x ¢ many f-invocations. We may assume that the timexfomany f-invocations
is more than the time to write a block afpairs to the table. Hence, the dominant time is the time required to compute
all the chains in a table, which is time required farx ¢ many f invocations.
Let us consider the time required to prepare all the tables. Using the above two algorithms, the total time will essen-
tially be mrt many f-invocations done in parallel bymany f-invocation units. The cost has several components—cost
of the f-invocation units; cost of input/output (I/0O) units to write the blodkss to the table; cost of storingtables;
and cost of the sorting unit. The dominant cost components are the cost ffitliecation units and the cost of
storage (memory).
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On-Line Phase:We would like to avoid the lower bound on the wiring cost obtained by Wiener (Wiener 2004). Our
architecture can be described as follows. There is a setodiny f-invocation units, which produce DPs and write
them to a buffer. There is another setiafany I/O processors, which read from this buffer and perform look-up into
the tables.

At a time, thek 1/0 processors are connecteditdables. Once look-up ok tables are completed, the tables are
moved out and a new set fmany tables are moved into place. Thus, the system operates as follows: Look-up on
Taby,...Taby are completed, then look-up @fubgy1, . . ., Taby are completed, and so on. Once atable is replaced,
it is never loaded again for this data set. Thus, if we hBveargets, then the look-up into taklésb; for all these
targets are completed befdrab; is replaced.

In the above scenario, the following two tasks are performed in parallel.

e Apply f-invocations to theD targets and write the final DPs to the buffer.
o Read from the buffer; perform look-up in tihetables; and then replace the tables.

With a suitable design and choice of the parameteasndn, we can make the assumption that the above two tasks
require approximately the same time. Under this assumption, the total time required in the online phase can be taken
to be the total time for all thg-invocations. Further, in this architecture, the wiring cost is minimal and the dominant
cost is the cost of implementing thfeinvocation units. The task of an I/O processor is relatively simple and also we
will have k to be much less tham. Hence, the cost of implementirkgl/O processors can be ignored with respect to
the cost of implementing the many f-invocation units.

We summarize the above discussion with respect to the cost and time measures.

Pre-computation phase;

e Time: time required formt many f-invocations;
e Cost: cost of implementing many parallelf-invocation units and cost of storingmany tables.

Online phase:

e Time: time required fortD many f-invocations;
e Cost: cost of implementing many parallelf-invocation units.

8.1 ApproximateCost Analysis
In CHES 2005, Good and Benaissa (Good and Benaissa 2005) proposed a nhew FPGA design for AES using Xilink
Spartan-111 (XC3S2000). The cost of a Xilinx Spartan-Ill FPGA device whose cost is around 12 USD (see (Quisquater
and Standaert 2005)). The speed of encryption of the design in (Good and Benaissa 2005) is 22GHPE-AES-
128 encryption/sec. Under the assumption that the cost and time scale linearly as we move from one pracessor to
processors, the total processor cost/f@rocessor units i$/, = 12n USD and the speed is x 0.2 x 232 AES-128
encryptions/sec. L€l be the pre-computation time in seconds.7l. time, the number of encryptions will be,
Toee X1 % 0.2 x 232,

For a generas-bit (s < 128) cipher, attackingD = 2¢ online data points, the number of encryptions required at
the pre-computation stage 26~¢. We assume that for astbit cipher withs < 128, the throughput and chip area
will remain same as for the best AES-128 implementatldance, inT.. time, the number of encryptions will be,
Tsee x 1 x 0.2 x 232 and we get,

Tyee X % 0.2 x 232 = 2574, (1)
Using H, = 12n, we getTs..H, = 60 x 25-4732 or
2% Ty H,D = 60N. 2)
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Table 1. Trade-off for different values of with D =1
S T m t Tsec n Hp Hm k Hw Tsec

56 219 219 219 216.5 210 215.() 219 28.5 215 0.31
64 221 221 221 216.5 218 221.6 221 212 218.5 0.03
80 227 227 227 225 225 228.6 227 28 214.5 0.62
86 229 229 229 225 231 234.6 229 210 216.5 0.61
96 2.52 252 2.52 258.3 228 252 2-52 1 2()45 80
128 232 264 232 270.3 228 232 232 1 26.5 80

This gives a new type of trade-off involving pre-computation tifig., processor costl,, and dataD whereas usual
trade-off curve involves online time (number pinvocations), data and memory.

Memory Cost: We assume that one table will fit into one memory block. This simplifies the table management and
in particular the design of the sorting algorithm. The latest cheap high density stofl@2gP iwith storage capacity
between 4 and 20 Gbhyte. In the near future, SONY will launchpidyeer disk with capacity of 100 Gbytes. At
present, we consider 4Gbyte @ x 232 bytes) DVD with cost around 1 USD. Since, for a table we né?él bytes
storage, s < 4 x 2%2, or,

sm < 236, 3)

DVD writetime: At present, we consider the writing time for a 4GB DVD is 1f{r: 2°sec). The total number

of f-invocations required for a single tablesist and the time required for this is = #2’;232. LetWy,... Wy

be the DVD writers which are running in parallel. At each of tiffie= it; for i = 2,...r 4+ 1, one table will be
ready for DVD write. At timeT" = (i + 1)¢;, the tableT; will be assigned tdV; fori = 1,2,..., k. The next table
Ty+1 Will be ready for DVD write at timel’ = (k + 2)t;. If we choosekt; > 26, then at timeTl’ = (k + 2)t,

W1 will be free (since the time difference between the present time and the timelhearas assigned the table is
(k + 2)t; — 2t; = kt; > 25 = DVD write time). So the tabld}; will be assigned td; for DVD write. In this

way the next table will be assigned ¥, and so on. So in this case all the processors and DVD writers will remain
busy at all the time. Hence from the above discuss we have 25, or,

mt

k _— > 26. 4
K x02x 22 “)
or,
n236
k> ©)

Note the there are table to be written into DVDs and each DVD write take2® seconds. The total time required
for DVD write is % while £ many DVD writers are running in parallel. This time must be less than or equal to the
r28

pre-computation time, i.er~ < T, OF,

726
o TSEC '

k (6)

We takek = max %‘T, }fi , 1). Thenk satisfies both the inequalities 5 and 6. At present, we consider the DVD

writer cost is 100 USD each. The total DVD writer costg, = 100k USD. Forr tables, memory cost i&,,, = r
USD and total hardware coét= H, + H,,, + H,, = (12n + r 4+ 100k) USD. Let us consider the following cases.

3Forexample writing speed of Samsung SH-W162 is 21.6MB/sec (16X).
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Table 2. Trade-off for different values of and d = I

S T m=t Tsec n Hp Hm k H’LL) Tsec

80 2(:).7 226.7 21().5 214 217.6 2().7 20.5 845
86 26.7 22846 21645 218 22146 2647 26.5 776
96 28 232 21645 226 22946 28 26.5 320

96 28 232 225 217 220.6 28 26.5 217.3
128 211 243 225 241 24446 211
128 252 252 225 241 244.6 252 2
128 232 232 238 228 232 232 1 26.5 23843

26.5 21543

T

o]

219.5 225.5

Casel: D = 1(d = 0). We choose the Hellman table parametersras:m =t = N'/% = 2%/3. The total number

of f invocations required at the online stager x ¢t and the time required for this i§.. = #;i}% runningn

processors in parallel with the speedo? x 232 encryptions/sec. Suppose we want to finish the pre-computation
within a day, therT,.. = 265 (the number of seconds in one day). From Equation 1, wenget,5 x 25485, For

1 year pre-computation time, i.,.. = 22° (the number of seconds in one year) we need the number of processors,
n =15 x 257%7, In Table 1, we summarize some of the trade-offs with different valuas of

Case2: D > 1. The memory cost increases with the number of tables. We consider the following table parameters as

in (Biryukov and Shamir 2000): = N;/S =2i"%amdm =t = N'/3 = 2%/3, The total number of invocations

required for online searck rtD and the time required for this is.. = #XXDQSQ, runningn processors in parallel
with speed of0.2 x 232 encryption/sec. From Equation 1 we get,—= %ﬁ Table 2 summarizes some of
the trade-offs with different values afandd = 7. The rows of the tables were calculated by fixing some of the

parameters as mentioned below.

e Table 1 (d =0)

—rows 1 and 2 Fix T, to be one day.
—tows 3 and 4 Fix T, to be one year.
—rows 5 and 6 Fix H, = H,, = 232

e Table 2 (d = s/4)
—rows 1, 2 and 3Fix T to be one day.
—tows 4 and 5 Fix T.. to be one year.
—row 6: Fix 7. to be one year anfl,,, = 23.
—row 7: Fix H, = H,, = 2%.
Discussion: From Tables 1 and 2, we conclude the following.

e 56-bit and 64-bitf's are completely insecure.

e Ford = 0, with one year pre-computation time and around 500M USD investment it is possible to crack 80-bit
f in online time less than one second. For multiple targets (data)dwths /4, attacking 80-bit becomes easier.

e Fors = 96, and with a single data point, pre-computation time is more than 4000 years. This is at a cost of
around 1 billion USD. It is possible to bring down the pre-computation time to a few years by increasing the
cost to around 1 trillion dollar. Another problem is that the size of single table becomes large and barely fits in
a single storage unit (see the bound 3). In the presence of multiple data of the aéfe(dt= s/4), the attack
becomes reasonable. Hence, 96#bdtiso does not provide comfortable security
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e Fors = 128, and with a single data poind (= 0), at least one of the parameters améhg.., H,, H,,,) become
infeasible. Also even witld = s/4 = 32, one of the above parameters continue to remain infeasible. Increasing
d beyond 32 is not practical. Hence, 128-bit can be considered to provide adequate security margin, at least until
a new technological revolution invalidates the analysis performed here.

8.1.1 General Case For the general case, let us assume thatndC, are the costs of one search unit and one
storage unit respectively and ¢ are the rate of encryption and size of one storage unit in Gbyte respectively. Then
Equation 1 becomes,

Tsee XN X p= 9s—d (7

and,H, = Cin andH,, = Cyr. Using H, = Cinin Equation 7, we gef.. x H, x p = 25=dCy, or pTsecHpyD =
C1N. Since for a table we need™ bytes storage, s8¥ < § x 23, or,

sm < 6234, (8)
This constraint is required because we are fitting one table into one storage uritbd.gie DVD (storage) writing
time. Then equation 4 becomésx nLti > € or k > "2L2< and equation 6 becomes, > <. Thus we take

k = max (M re 1). Let C5 be the cost of one DVD writer, theH,, = kC5USD.

mxt ? Tsee’

8.2 Cost of Exhaustive Search

Cost analysis of exhaustive search is same as the cost analysis for TMTO pre-computation except the memory cost and
DVD writer cost. Note that the processor césf is required for both exhaustive search and TMTO pre-computation.

The factorH,, is additionally required for TMTO. Hence, the trade-off for exhaustive search is same as Equation 2,
ie.,

22THD = 60N 9

whereT" denotes the time in seconds required for exhaustive seHréhthe total processor cost afitlis the number
of data points. The general equation is the following.

pTHD = C1N (10)

8.3 Rainbow Method

The rainbow method replacesHellman table of sizen x t into a single rainbow table with size’ x ¢, where

m/ = mt. Let us consider the case when= 56 (DES). ThenN = 256, takingm = ¢t = N'/3, we getm’ = 236,

i.e. sm’ = 56 x 236 > 236, This violates the constraint 370’ < 23¢). Hence a single large rainbow table need

to stored into more than one memory block (the number of memory block will increase with the valueTdfen

the sorting algorithm becomes much more complicated since it has now to sort the table which is split into different
memory blocks. On the other hand, if we break the large single rainbow table into several number of small mutually
disjoint rainbow tables the online time increases by a facter afherer is the number of rainbow tables. In view of

this, rainbow method is not a good choice for hardware implementation.

9 Application to Stream Cipherswith IV

Application of TMTO to stream ciphers with IV was analysed in (Hong and Sarkar 2005). &bitastream cipher
using an-bit IV, consider the following k + [)-bit one-way functiony:

(k-bit key, I-bit IV) — (k + [)-bit keystream prefix (12)
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Table 3. Trade-off of GSM for different values dp
D T m=t Tsec n Hp Hm k Hw Tsec
1 229 229 225 251 254.() 229 210 216.5 061
28 221 229 225 223 226.6 221 22 2845 32
216 213 229 216‘5 224 227.6 213 23 2945 16
222 27 229 216.5 218 221.6 27 1 26.5 210

As pointed out in (Hong and Sarkar 2005), inverting this one-way fungtiasll provide the secret key. Since many

IVs are used with the same key, and since IVs are public, one can apply multiple data TMTQgimg D many

publicly available 1Vs. It has been shown in (Hong and Sarkar 2005), that if IV length is less than key length, then
this the online time of TMTO is less than exhaustive key search. (This has resulted in the recent Ecrypt call for stream
ciphers, to mandate IV length to be at least equal to the key length.) However, the pre-computation time Betomes
which is more than exhaustive key search. On the other hand, the importance of IV in a TMTO attack matters more
than its length. The effective length of 1V is also crucial and has been pointed out in (Hong and Sarkar 2005). Let us
consider this pointin more details.

The usual requirement on IV is that it should be a nonce, i.e., no value should be repeated. Thus, for example, one
can fix a key and use the numbér2, . . ., as IVs for different messages. Suppose at rRdshessages are encrypted
before a key change. The above appears to be a valid protocol for using stream cipher. The problem is that in this
approach, only the last bits of the IV ever change. If we put the (arbitrary) restriction that at most 1000 messages
are encrypted before a key change, thea 10.

Suppose, for a particular key we have access to the keystream segment foszaboaf messages. This gives
D = 2°. Since we know all the 1Vs, we can apply TMTO to a search space off§ize 210 with D = 2°. The
precomputation time i&//D = 2++10/25 — 2k+5 and the online time then comes to arowtF+°)/3, If k = 80,
then the precomputation can be completed in one year at a c2$t ofSD and the online time is around a minute.
While the cost is quite high, it is not out of reach of powerful organizations.

We interpret this situation as indicating that to resist TMTO, itassufficient to have IV length to be equal to key
length. The protocol must ensure that the entire IV length is actually used. One simple way of doing this can be to
choose a random nonce as IV for the firefg encrypted using a particular key and then use nonce + 1, nonce + 2,
as Vs for subsequemtsg.

9.1 GSM

For the GSM mobile phones (3GPP 2003), A5/3 stream cipher is used which is based on the iterated block cipher
KASUMI. The cipher A5/3 uses 64-bit key and 22-bit effective 1V size (others bits of IV are fixed). The following
one-way functiory from 86-bit to 86-bit has been considered in (Hong and Sarkar 2005):

(64-bit key, 22-bit effective I1V) — 86-bit keystream prefix (12)

The size of the search space for exhaustive search attaék iSrom Table 1 (see row 2), we have the time for exhaus-
tive search attack which is same as the pre-computation time for TMTO2& Besec with a22! USD investment.

This is certainly doable and hence GSM mobile phone communications cannot be considered secure for more
than a day. However, can we consider such communications to be secure for a shorter duration such as an hour. For
example, a stock order is placed over a phone and the order is executed within an hour. Once the order is executed,
there is no need for secrecy. Thus, it is enough to ensure secrecy from the point of the order being placed and it being
executed, which is at most an hour. If we consider only exhaustive search attacks, then such communication over GSM
phones appears to be secure. However, if we apply TMTO to the search space of the fetfored in (12), then
this might not be true.
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The size of the search spagés N = 286, From Equation 1 we get, = w where2? is the number of
data points available to the attacker. Table 3 summarizes some of the trade-offs with different valusherke the

table parameters are taken as= Ngs =2i"%amdm =t = N'/3 = 2%/3, From Table 3, we conclude that the

A5/3 algorithm of GSM provides inadequate security.

10 Conclusion

In this paper, we have provided a detailed top-level description of an architecture for inverting a one-way function
using TMTO. Based on our architecture, we have developed a new cost/time/data trade-off model and have used it to
analyse the security of different key sizes. Our future work is to validate the different hardware architectures through
a hardware synthesis tool. Such a simulation will provide estimates of the number of gates, the clock frequency, rout-
ing costs, power consumption, mean time between failures and other relevant parameters. This may lead to possible
alterations of the design as well as provide a better understanding of different implementation issues.
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