
Hardware Architecture and Cost/time/data Trade-off for Generic Inversion
of One-Way Function

Arquitectura en Hardware y Compromiso de Costo, Tiempo y Datos para Inversiones
Geńericas de Funciones Unidireccionales

Sourav Mukhopadhyay1 and Palash Sarkar2

1 Electronic Engineering Department
Dublin City University

Glasnevin, Dublin 9
Ireland

msourav@eeng.dcu.ie
2 Applied Statistics Unit
Indian Statistical Institute
203 B.T. Road, Kolkata

India-700108
palash@isical.ac.in

Article received on March 1, 2008, accepted on October 3, 2008

Abstract
In many cases, a cryptographic algorithm can be viewed as a one-way function, which is easy to compute in forward
direction but hard to invert. Inverting such one-way function amounts to breaking the algorithm. Time-Memory
Trade-Off (TMTO) is a twenty five years old generic technique for inverting one-way functions. The most feasible
implementation of TMTO is in special purpose hardware. In this paper, we describe a systematic architecture for
implementing TMTO. We break down the offline and online phases into simpler tasks and identify opportunities for
pipelining and parallelism. This results in a detailed top-level architecture. Many of our design choices are based
on intuition. We develop a cost model for our architecture. Analysis of the cost model shows that 128-bit keys seem
safe for the present. However, key sizes less than 96 bits do not provide comfortable security assurances.
Keywords: One-way function, generic method, time/meomry trade-off cryptanalysis.

Resumen
En muchos casos, un algoritmo criptográfico puede ser visto como una función de solo ida, la cual es fácil de
calcular pero difı́cil de invertir. Invertir una función de sólo ida es equivalente a romper el algoritmo criptográfico.
Compromisos de tiempo-memoria (TMTO por sus siglas en inglés) es una vieja técnica genérica concebida más
de veinticinco años atrás para invertir funciones de sólo ida. La implementación más factible de TMTO es la de
arquitecturas de hardware de propósito especial, y es ası́ que en este artı́culo, describimos una arquitectura de ese
tipo capaz de implementar dicho método. Subdividimos las fases fuera de lı́nea y en lı́nea del algoritmo en tareas
simples e identificamos oportunidades para paralelizar y/o utilizar técnicas de tuberı́a. Este proceso nos condujo
a proponer una arquitectura de alto nivel muy detallada, en la cual muchas de las elecciones de diseño estuvieron
basadas en la intuición. Asimismo, desarrollamos un modelo de costos para nuestra arquitectura. El análisis del
modelo de costo sugiere que las llaves de 128 bits pueden ser consideradas seguras en la actualidad. Sin embargo,
las llaves con longitudes menores de 96 bits no brindan garantı́as de seguridad suficientes.
Palabras Claves: Funciones de sólo ida, método genérico, cripto-análisis de compromiso tiempo memoria.

1 Introduction

Cryptographic algorithms such as block and stream ciphers require the use of a secret key to ensure confidentiality of
transmitted messages. The basic goal of a cryptanalytic attack is to recover the secret key from publicly available in-

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
 ISSN 1405-5546

formation. Very often a successful attack exploits weaknesses in the design of the specific algorithm being considered.
Two of the most popular attacks are: linear cryptanalysis (Matsui 1993; Matsui 1994; Borst, Preneel, and Vandewalle
1999; Shimoyama, Takenaka, and Koshiba 2002) and differential cryptanalysis (Biham and Shamir 1993; Lai 1994).
There are several variants of differential attacks namely, truncated and higher order differential attack, impossible dif-
ferential attack (Biham, Biryukov, and Shamir 1999a), boomerang attack (Wagner 1999). Related key attack (Biham
1994), miss in the middle attacks (Biham, Biryukov, and Shamir 1999b), slide attack (Biryukov and Wagner 1999),
correlation attack (Shimoyama, Takeuchi, and Hayakawa 2002), statistical attacks (Gilbert, Handschuh, Joux, and
Vaudenay 2000; Handschuh and Gilbert 1997) are examples of some other attacks on symmetric ciphers.

A generic approach for cryptanalysis views the encryption function as a black box, i.e., it does not utilize infor-
mation about how the function is constructed. A simplest generic attack is to try every possible key until the correct
one is found. This is called an exhaustive search attack. The importance of such an approach arises from the fact
that if a cryptographic algorithm is not secure against exhaustive search, then it cannot be considered secure at all.
Implementation of exhaustive search is most feasible in special purpose hardware. In 1998, a remarkable achievement
was made (EFF 1998) when the Electronics Frontier Foundation built a machineDES Crakerfor cracking DES at a
cost of US $200,000 and which cracked a DES problem in 3 and 1/2 days. Recently, Kumar et at. (Kumar, Paar, Pelzl,
Pfeiffer, and Schimmler 2006) build the COPACOBANA (COPACOPANA 2006) machine to break DES. The cost of
one machine is approximately US $10,000 and which cracked DES in less than a week.

The main disadvantage of using exhaustive search is that it has to be repeated separately for each target. To address
this problem, Hellman (Hellman 1980) introducedtime/memory trade-off(TMTO) attack that enables one to perform
an exhaustive searchoncein an offline precomputation phase. The actual attack, i.e.,finding the key corresponding
to a targetis done in an online phase with table lookup and is significantly faster than exhaustive search. Also, one
can repeat the attack on different targets without going through the pre-computation each time. A TMTO attack is a
generic attack which can be carried out against any one-way functionf . The online target consists of an imagey and
the goal of the attack is to find ak, such thatf(k) = y, k being the secret key (pre-image) from a key space of sizeN
corresponding to the targety.

Since the publication of Hellman’s result, there has been a lot of research on TMTO. Hellman’s method can recover
a key in timeT usingM memory with the trade-off curveTM2 = N2 for 1 ≤ T ≤ N , N being the number of all
possible keys. Rivest (Denning 1982) introduced the distinguished point (DP) property in TMTO attack to reduce
the number of table lookups. Later, Biryukov and Shamir (BS) (Biryukov and Shamir 2000) showed how to modify
Hellman’s technique to take advantage of available multiple data. IfD manyy’s are available, and the goal is to find
a pre-image of any one of them, then BS obtain a trade-off curveTM2D2 = N2. Later, Oechslin (Oechslin 2003)
proposed the rainbow method to reduce runtime cost to one-half of Hellman’s method with the same trade-off curve
as Hellman’s method. The problem has been investigated in a more theoretical setting by Fiat and Naor (Fiat and Naor
1991).

In 1988, Amirazizi and Hellman (Amirazizi and Hellman 1988) proposedtime/memory/processor trade-offwhere
several processors execute in parallel, sharing a large memory through aswitching/sortingnetwork. They assumed
that the cost of the wires is less thann logn and left this as an open problem for further study. Wiener (Wiener 2004)
investigated the problem and proved that if an algorithm has a very high memory access rate then the wiring cost
is the dominating cost for anyswitching/sortingnetwork and showed this cost to beΘ(n

3

2) to connectn processors
with n memory blocks. Quisquater and Standaert (Quisquater and Standaert 2005) provided a sketch of a generic
architecture based on their two previous works (Quisquater and Delescaille 1989; Quisquater, Standaert, Rouvroy,
David, and Legat 2002). They suggest a pipelined architecture for implementing a multi-round functionf which
is based on Wiener’s design (Wiener 1996) of implementing DES in his exhaustive search attack on DES. Mentens
et al. (Mentens, Batina, Preneel, and Verbauwhede 2005) propose a hardware architecture for key search based on
rainbow method.

Following Wiener’s (Wiener 2004) work, it is currently believed that the dominant cost of the hardware will be the
interconnection cost of connecting a set of processors to a set of memory locations. However, this assumes a particular
architecture, i.e., all the processors will actually be connected to all the memory locations. This is not the only possible

332 Sourav Mukhopadhyay and Palash Sarkar

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
ISSN 1405-5546

architecture.
In this paper, we provide a pipelined architecture of the Hellman’s algorithm with distinguished point (Hell-

man+DP) method. We systematically break down the offline and online phases into smaller computation tasks. For
each task, we identify suitable opportunities for parallelism and pipelining. A fairly detailed register level architecture
is provided for each individual component. Since TMTO is a generic algorithm, the top-level architecture is also quite
generic. The hardware implementation of the particular one-way function to be inverted occurs at a lower level. We
believe that the architecture presented in this paper can form a good starting point for a concrete implementation of
TMTO method to invert a specific one-way function. There are several issues, such as power consumption, mean time
between failures, which are not considered in this paper. These are important issues but can be judged effectively after
efforts are made for actual implementation. We hope that our design will stimulate further work on this topic.

Based on our architecture, we develop a cost/time/data trade-off model. This is important, since it allows us
to quantify statements like “withx many dollars, one can break the algorithm iny many days”. Previously such
statements have been discussed informally at several forums (such as the ecrypt forum on stream cipher primitives).
To the best of our knowledge, no concrete trade-off cost model has appeared in the literature. Using the new cost
model we analyze the effectiveness of exhaustive search and TMTO pre-computation fors-bit keys withs ≤ 128.
This analysis shows thats ≤ 96 does not afford comfortable security whiles = 128 appears to be secure in the
foreseeable future. We apply our trade-off model to stream ciphers and find that the 80-bit stream ciphers does not
provide adequate protection against TMTO attacks.

2 Preliminaries

Let Vs = {0, 1}
s be the set of all possible bit strings of lengths. We takeVs1

andVs2
to be the plaintext space and

ciphertext space respectively. LetK = Vs be the key space (set of all possible keys).
An s1-bit block cipher is a functionE : Vs1

× K → Vs2
wherecpr = Ek(msg) denotes the ciphertextcpr for msg

underk. LetR : Vs2
→ Vs be a function from ciphertexts to keys. Ifs2 > s (DES hass1 = s2 = 64 ands = 56),

then we remove the first(s2 − s) bits. If s2 ≤ s (AES hass1 = s2 = 128 and there are three allowable key lengths,
s = 128, 192 and256 bits), then we append(s− s2) constant bits.
For a fixed messagemsg, we define a functionf : Vs → Vs as,

f(k) = R(Ek(msg)).

To gety = f(k) from k we need to apply the encryption function under the known keyk followed by a reduction
functionR, which is easy to compute. But to getk from f(k) one has to decrypt the known plaintextmsg under the
unknown keyk, which is equivalent to the chosen plaintext attack to the cipher. That is hard. Hence this functionf
can be viewed as a one-way function.
Other cryptographic primitives like stream cipher, hash function, modes of operation can also be viewed as a one-way
function. See (Biryukov 2005; Hong and Sarkar 2005) for more details.
Problem Definition:Let f : {0, 1}s → {0, 1}s be the one-way function to be inverted. This function maybe obtained
from a block cipher by considering the map from the keyspace to the cipherspace for a fixed message or from other
crypto primitives like, stream cipher, hash function, modes of operation etc. Thus, our problem will be that given a
stringy, we will have to find a stringx (pre-image or key) such thatf(x) = y.

3 TMTO Methodology

In 1980, Hellman (Hellman 1980) presented a cryptanalytic time/memory trade-off attack which can viewed as a
generic one-way function (f : {0, 1}

s
→ {0, 1}

s) inverter. Hellman’s attack consists of two steps: precomputing the

Hardware Architecture and Cost/time/data Trade-off for Generic Inversion... 333

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
 ISSN 1405-5546

tables and searching (table lookups) in the tables. In a precomputed table, we generate a chain of lengtht from a start
pointk0 as,

k0
f

−→ k1
f

−→ k2 → . . .→ kt−2
f

−→ kt−1.

For anm×t table,m chains of lengtht are generated. We store start and end points in the table, sorted in the increasing
order of end points. Using matrix stopping rule, we choosem andt such thatmt2 = N , whereN = 2s. So one table
can cover only a fractionmt

N = 1
t of N . Hence, we needt different (unrelated) tables to cover allN keys. For the

ith table, we choose a functionfi(k) = φi(f(k)), which is a simple output modification off(k). The functionsfi,
i = 1, 2, . . . , t are unrelated.φi’s are also called masking functions. In theith table, we randomly selectm distinct
keys from the key space, generatem chains taking each key as a start point with the same functionfi.

Given a targety = f(k), we need to find its pre-imagek. Supposek is in one of the constructed tables. For all
i = 1, 2, . . . , t, we repeatedly applyfi to y′ = φi(y) at mostt times, each time we check whether it reaches an end
point of ith table. The number of table lookups for this is at mostt. If it reaches an end point, we have the position of
k. Then we come to the corresponding start point and repeatedly apply the function until it reachesy. The previous
value it visited isk. Hence, the total number off invocations= t2 + t ≈ t2. The total number of table lookups
required ist2. The Hellman method can recover a key in timeT (total number off invocations) usingM memory
such thatTM2 = N2.

Rivest introduced the distinguished point (DP) property in time/memory trade-off attack. We can define a DP
property on the key spaceK as follows: a keyk satisfies the DP property if its firstp bits are zero. In the Hellman +
DP method, we generater tables with maximum chain lengtht in the precomputation phase as follows. We chooser
different functionsf1, . . . , fr, where eachfi is a simple output modification of the functionf , i.e. fi(x) = ψi(f(x)),
whereψi is theith output modification function. For each table, we choosem start points uniformly at random from
the key space. In theith table, for each start point we generate a chain by repeatedly applyingf until we reach a DP or
until length of the chain ist. If a DP is encountered in the chain, then we store the tuple (start point, DP point, length
of the chain) in the table, otherwise the chain will be discarded. We sort the tuple in the increasing order of the end
points (DP). If the same DP occurs in two different tuples, then the tuple with maximum chain length will be stored.
Sort the tuples in the increasing order of the end points. Given a cipher text, in the search phase we generate a chain,
until we reach a DP. After reaching a DP, we perform a table lookup, and so the number of table lookups reduces
from t2 (for t Hellman tables) tot. As mentioned earlier, Biryukov-Shamir showed how to exploit the availability of
multiple data to obtain a new trade-off curveTM2D2 = N2.

4 Notational Convention and Abbreviation

We provide below the notations used in the architecture.

– SCC: a two-bit register used in the table preparation stage

– sgc1 andsgc2 are the completion signals of the chain computation and sorting unit respectively.

– start signal indicates that the assembly line movement is complete in the Table Preparation stage.

–Pi: i = 1, 2, . . . , n are the processors used to generates start point, end point pairs for the table.

–PMSi:i = 1, 2, . . . , n are the processor memory space forPi.

–R is n-bit register used to store the completion signal of all the processors.

– SC is sequential circuit withn-bit input to check whether all the input bits are 1.

–L is s-bit LFSR corresponding to a primitive polynomial whose internal stage are used for output modifications.

334 Sourav Mukhopadhyay and Palash Sarkar

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
ISSN 1405-5546

–CT : a one bit tag to control write blocks and movement of the assembly line.

– T : one bit tag to control the execution of the processor unit, ifT = 0 then the unit will be idle untilT = 1.

– SPG: the start point generator.

–C1 andC3 are bothr1(= log t) bits counter.C2 is r2(= log t
n) bits counter.

– SC1 andSC2 are sequential circuits withr1-bit input to check whether all the input bits are 1.

–Ri: i = 1, 2, 3, 4, 5 ares-bit registers.

–RF i is theith round function.

– SPRi: i = 1, 2, . . . q ares-bit registers used to store the start points.

–CQR is r1-bit counter to count the number of start point generated bySPG.

–DB: data block

–R2j : j = 1, 2, . . . q ares-bit intermediate registers to store the output values for different rounds.

– SPCi,: j = 1, 2, . . . q − 1 arer1-bit counters.

–WB: write block;RB: read block andDB: data block.

–CQ: k-bit register.

– SCQ is sequential circuit withk-bit input to check whether all the input bits are 1.

– y : data point

–DP : distinguished point

– SP : start point

–OMB : output memory block

–MR andDR are boths-bit register.

–PC1 is r3-bits (r3 = log z) counter.

–BUF1 andBUF2 are buffer queues.

5 Precomputing Stage

The precomputing stage consists of two phases:chain computationandsorting. Figure 1 describes architecture of the
precomputing stage and the tables are computed one by one. To generate a table, a high speed memory is used as an
input of the chain computation phase. In the chain computation phase, chains are generated until it reaches to a DP
and then storing the start point and end point pairs into the memory. After storingt number of pairs into the table, the
chain computation unit sends completion signalsgc1 (1 bit value) to the registerSCC and terminates execution until
thestart signal received.

Hardware Architecture and Cost/time/data Trade-off for Generic Inversion... 335

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
 ISSN 1405-5546

Memory
Completed
 Table

SCC

sgc2

And

Unsorted
Table

 Sorted
 Table

Chain
Computation

sgc1

 Sorting

start
signal

Fresh

Fig. 1. Table Preparation

At the sorting phase, the previous table (unsorted) is to be sorted into increasing order of end points. Both the chain
computation unit and the sorting unit run in parallel, i.e., while the chain computation unit computes theith table, the
sorting unit performs sorting on the(i − 1)th table. After completion of sorting phase, a completion signalsgc2 is
sent toSCC and the execution is stopped until astart signal is received. The assembly line will shift (i.e., the fresh
memory, unsorted table and sorted table will be copied into unsorted memory unit, sorted memory unit and completed
table unit respectively) whenSCC receives both the signalssgc1 andsgc2 (i.e., when both the chain computation
unit and sorting unit will report completion). After completion of assembly line movement,start signal will be sent
to both the chain computation unit and sorting unit and theSCC is set to zero.

There are several issues to be considered.

• Parallel sorting: Chain computation and sorting hardware are to be designed so that they complete simultane-
ously. Depending on the design and speed of the chain computation stage it is required to determine whether
parallel in-place sorting is required. The other issue is the type of table memory being used and whether random
access is supported. In case parallel sorting is to be used, one can use mesh sort which requires a 2-d table
structure. Then the chain computation phase will be required to access a 2-d memory.

• Both chain computation and sorting phase will require memory writes. For the chain computation stage, batch-
ing can be used to reduce number of memory accesses. Also chain computation and memory access can be
pipelined to some extent.

• We are using four blocks of high speed memory while keeping the actual tables into DVDs. The completed
table in a high speed memory will be written to a DVD and then the high speed memory will be cycled back.
The time to copy from high speed memory to DVD will be overlapped with the chain computation and sorting
phases.

5.1 Chain Computation Phase

Suppose there aren processor unitsP1, P2, . . . , Pn available at the chain computation phase. In Figure 2, we describe
the architecture of the chain computation unit. The given memory block (fresh memory) is partitioned inton separate
Processor Memory Space (PMS) unitsPMS1, PMS2, . . . , PMSn. Each processorPi will store t

n (start point, end
point) pairs intoPMSi through a write block (WB) unitWBi. EachPMSi has t

n memory locations to store the
pairs and its starting addressaddi (address of the first memory location) is stored inWBi. Hence to accessjth

memory location ofPMSi, the offsetj is to be added withaddi to get the exact address. Processors execute the

336 Sourav Mukhopadhyay and Palash Sarkar

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
ISSN 1405-5546

.

.

.PMS
1

PMSn

WB1
WBn

 P
1

Pn

L
R

SC

CT
tag

2s 2sr
1

2
2s r2

s

r
1

r2s

.

(O , O)1 sg
1O3

sg
2

sg
3

sg
4

5
sg

 2

start
signal

sgc1

Memory

Fig. 2. Architecture of chain computation phase.i/p : start signal;o/p : sgc1

chains with different start points which are coming fromstart point generator, with each processor having its own
start point generator. LetO3 (offset) be the next free location of the corresponding PMS. After encountering a DP, the
processor enables thewrite blockunit by the signalsg1 and passes the addressO3. Then the corresponding WB unit
goes to the exact address of the free location by adding the offset with the starting address of the PMS and storing the
pair (O1, O2) into the location. Processors run in parallel and after generatingt

n number of DPs, the corresponding
processor passes completion signal (1-bit value) to then-bit registerR and stops the execution until it receives a start
signalsg2 from the CT (see Figure 1).L is ans-bit LFSR which is used as function generator and its internal state
value passes to each of the processors to do the output modification of the functionf . SC is a sequential circuit to
check whether all the values R are 1. If yes, then the table has completed and SC sends a signalsg4 to enableL to
generate the next state (for the next table) andsg3 to set CT to 1. Then CT will send a signal sgc1 to SCC (see Figure
1) requesting to move the table, a signalsg5 to disable write block, a signalsg2 to the processor and clear the contents
of R. After the movement of the assembly line, thestart signal (see Figure 1) sets the value of CT to zero and the write
blocks will be enabled to write the pairs for the next table.

The following are some of the rationales for our design decisions:

• Utility of having separate memory spaces:Each processorPi uses separate processor memory spacesPMSi to
store the (start point, end point) pairs. This avoidsmultiple access of same memory space and it is possible to
use this idea since sorting is done separately.

• Each processor generatestn DPs: Since DPs are generated at different time points and a processor may have
to consider different number of chains, the time taken by processor will be different (though the expected time

Hardware Architecture and Cost/time/data Trade-off for Generic Inversion... 337

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
 ISSN 1405-5546

O3

SPG

s

 PUnit

Out2

Out3

In2In1

 C2

 T
SC2

r2

sg1

sg2

Output to R

Input from L

Out4
O1Out1
O2

Fig. 3. Architecture of a processorPi. i/p : sg2, function mask;o/p : sg1, O1, O2, O3

will be same for all processor). Consequently, it may happen that one processor may complete ahead of others
and hence will be idle for some time. On the other hand allowing each processor to generate the same number
of DPs considerably simplifies the design and the expected delay is zero.

• No overlap of processing between tables:At no point of time, two processors will be handling chains of different
tables. This again simplifies design.

Description of a Processor:Figure 3 describes the architecture of a processor. Each processor takes two inputs, a
signalsg2 ands-bit output modification value fromL. The 1-bit registerT is the control unit of the whole processor
unit; the processor will stop ifT is set to be zero and start running if the value ofT is 1. C2 is the counter to count
the number of DPs encountered and it is incremented after encountering a DP.SC2 checks whether number of DPs
encountered reachestn . If yes, then the value ofT will be set to zero and the whole processor unit will stop until
the signalsg2 resetsC2 to zero. A start point is generated by thestart point generator (SPG)unit and passes to the
PUnit as the inputIn1. ThenPUnit takes other inputIn2 from L, which is the internal state ofL (i.e., function
masking) and starts executing the chain with the start point until it reaches a DP or the chain length reachest; if yes
then it outputs a signalOut3 toSPG to generate a new start point, loaded into the registerR1 and passes toPUnit as
an input (In1) for the next chain. If a DP is encountered, thenPUnit outputs a signalOut2 to increase the counterC2

by 1 and enables (the signalsg1) the WB unit to load the (start point, end point) pair (O1, O2) and the offset address
O3.

A suggestion forSPG to be implemented using an LFSR where eachPi has its ownSPG as opposed to a
globalSPG for all thePi’s. See (Mukhopadhyay and Sarkar 2006) for parallel start points generation using LFSRs
sequences. This simplifies the design considerably while retaining the pseudo-random characteristic of start points.

Description ofPUnit: Figure 4 describes thePUnit where inputsIn1 is a new start point which is loaded into the
registerR1 andIn2 is stored intoR4 for function masking. The counterC3 is set to zero through the multiplexers
when a new start point is loaded intoR2. The functionf is applied onR2 and the output is loaded into the registerR3

followed by function masking (xoringR3 andR4). The result is stored into the registerR5 to check for DP. If DP is
encountered, then the multiplexers select the second line so that a new start point is loaded intoR2 and the counterC2

338 Sourav Mukhopadhyay and Palash Sarkar

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
ISSN 1405-5546

R2

R3 R4

f

MUX MUX

R5

DP?

s

s

s s

s

p s

.

. . .

SC1

MUX MUX

0 0

. .

r1

C1

+1

r
1

1
r

. . . C3

Out1

.
Out4

s

sR1

s s

Out3

Out2

In1
 In 2

Fig. 4. Architecture ofPUnit. i/p : In1, In2; o/p : Out1, Out2, Out3, Out4

will set to zero. OtherwiseR5 andC1 will be copied (in a synchronized operation) intoR2 andC3 respectively for the
next iteration in the chain. The increment ofC3 and copying toC1 will be synchronized with the application off on
R2 and output toR3. The result of one operation will not be used until the other one is completed.

Note that in our design we use chain length counter (i.e.,C1) which adds complexity to the circuit. Removing
the chain length counter gives rise to the possibility that a DP in some chain occurs after a very long time or does not
occur at all. This will stall the operation. While this will be rare event, it cannot be ignored. Counter chain length is
one way of handling this. There may be other ways. Also note that we do not store chain length in the table. This
reduces memory requirement but will increase online search time for false alarms.

Description of a processor whenf is a multi-round function: Let us consider the case when the functionf is a
multi-round function, i.e.,

f = RF q ◦RF q−1 ◦ · · · ◦RF 2 ◦RF 1

whereq is the number of rounds. For example DES and AES are multi-round block ciphers and A5/3 (ETSI/SAGE
2002) is an example of a stream cipher whose design is based on the 8-round block cipher KASUMI (3GPP). We
apply q-stage pipeline strategies to deal withq-different chains in parallel within a processor as follows (this idea
has been earlier used in (Quisquater and Standaert 2005) and (Wiener 1996)). In the architecture of a processor unit
(Figure 3), thePUnit is replaced byPUnitRound (the description of PUnitRound is given below). For each table,

Hardware Architecture and Cost/time/data Trade-off for Generic Inversion... 339

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
 ISSN 1405-5546

MUXMUX MUXMUXMUXMUX

0 0

RF1

SPC1
s

SPR
 1

R21
s

r
1

DP?

p s

R3 R4

R5

s s

s

SPRq

s
SPR2

RF

s

RF

s

RFq
s

R

R
s

22 s

s

...
s

2

q−1

2q

SPC2

r

s

s

. .
 .

. .
 .

.

.

C1

r
1

SC1

SPC

+1

1

r
1

r1

r
1

. .
 .

. .
 .

. .
 .

.

q

Out1

Out4

Out

Out2

3

s

In1 In2

SPRq+1

ss

Fig. 5. Architecture of PunitRound.i/p : In1, In2; o/p : Out1, Out2, Out3,Out4

the SPG unit generatesq many start points initially.
Figure 5 describes thePUnitRound. We useq + 1 countersSPC1, SPC2, . . . , SPCq, C1 of r1-bit each. Ini-

tially, the SPG generatesq many start points. At each time, the start point in registerSPRi will be copied into
the next registerSPRi+1 to keep track of it, since after getting a DP, we need to get the corresponding start point
to return. Pipelining strategy is applied in the execution of round function and whenever a DP is encountered, the
processor outputs the DP and the corresponding start point which is available at the registerSPRq+1. The following
are synchronized operations:

• CopyingSPCi to SPCi+1, SPRi to SPRi+1 andR2i toR2i+1 for i = 1, 2, . . . , q − 1.

• CopyingSPCq toC1, SPRq to SPRq+1 andR2q toR3.

• CopyingC1/”0” to SPC1, SPRq+1 to SPR1 andR5 toR21.

5.2 Sorting Phase

We do not describe details of sorting hardware but discuss the various issues that need to be considered. The sorting
hardware so that the sorting and chain computation should complete simultaneously. In the chain computation phase,

340 Sourav Mukhopadhyay and Palash Sarkar

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
ISSN 1405-5546

for a table with sizem× t, the total number off invocations required ismt whereas the sorting phase could be done
in m logm comparison using a single processor and the sorting should bein-place. If we havet many processors
available at the chain computation phase, then total number off invocations will be reduced frommt tom by running
the processors in parallel. But for significantly larget, t-many processors may be expensive. Also, onef invocation
takes more time than one comparison operation for sorting. So sorting with a single processor will not take more
time than chain computation. But the chain computation requires memory write which is done in parallel and sorting
requires both memory read and write. Hence depending on the memory speed one may have to perform parallel sorting
(including memory read and write) so that the sorting and chain computation phase complete simultaneously.
Note that, at the sorting phase if there is a collision (i.e., common DP in different chains), then we randomly select one
chain to store and remove others, but it is desirable to select the maximum length chain for getting more coverage. In
our design we are not storing the individual chain length in the table, so we cannot take the maximum length chain for
the collision. Also since the sorting phase starts after completion of chain computation phase for a table, we may need
to remove some of the chains at the sorting phase due to the collision. Thus to get a constant coverage, more chains
need to be computed in the chain precomputation phase. On the whole, our design is simpler and requires less amount
of memory since we do not take the extra overhead of storing individual chain length.

SC

S
C
H
E
D
U
L
E
R

DB1

DBn

RB1

 RBn

P1

Pn

R

. .
 .

. .

. .
 .

. .

. .
 .

. .

. .
 .

. .

. .
 .

. .

L

s

s

s

s

new table

Table. .
 .

. .

3s 3s

.

. .
 .

. .
 .

. .

B

move
 table

n

Q 1

1(mask, y’ , DP)

 (mask, y’, SP)

(mask, y’, SP)

Q k

SCHEDULER 2

Output memory block
 (OMB)

Fig. 6. Architecture for the matching phase for a single table whenD is large.i/p : Data points;o/p : OMB

6 Online Search

The online stage consists of two phases–matchingandfind key. In the matching phase, table lookup is performed when
a DP is encountered during an iteration (execution of the chain starting with the given valuey). If the encountered DP
is not in the table, then we will not be able to find the key by iterating further and can skip the current search in the
rest of this table for that given valuey. To search the key in theith table, we need to execute the following chain.

y
φi
−→ ki+0

f
−→

φi
−→ ki+1

f
−→

φi
−→ ki+2 → . . .→ ki+t−1

f
−→

φi
−→ ki+t.

After each iteration (f application + masking (φi)) DP is checked and if found we stop the chain.

Hardware Architecture and Cost/time/data Trade-off for Generic Inversion... 341

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
 ISSN 1405-5546

SupposeD pointsy1, . . . , yD are available at the online stage and we have to find the pre-image of any one of
these points whereyi, i = 1, 2, . . . , D is viewed as unrelated random points. This enables us to perform independent
search for different data points. Suppose we have processorsP1, P2, . . . , Pn which are dedicated to perform thef
invocation andQ1, Q2, . . . Qk are I/O processors to perform the table lookup. We now describe the matching phase
architecture for the following cases depending on the value ofD.

from DB
Input

y/

MR

DR
 PUnit

Out 3

Out
2

 T
SC2

r

PC

3

1

Input from L

signal to RB

Output to R

new table

Out4
Out1

DP
psig

mask

Fig. 7. Architecture of ap-processor in the matching phase architecture whenD is large.i/p : new table signal,y,
function mask;o/p : mask,y′, DP, psig, load signal to RB, completion signal toR

6.1 For Many Data Points

Let there be sufficient amount of data available to the attacker. We partition the data points inton separate data blocks
DB1, DB2, . . . , DBn with z data points in each. ThenD = z × n. We apply the search technique for all the data
within a single table and after completion of the search for all data points we move to the next table.Since table
load is expensive, we complete the search on one table before moving onto the next table. Figure 6 illustrates the
architecture to perform the parallel searching for a single table and for all data points. The processorPi stores a
data point fromDBi into its internal registerDR and the mask value corresponding to the table (coming from L) in
the register MR (see Figure 7 that describes aP -processor). The countersPC1 keeps track of the number of data
points already covered. TheP -processors andQ-processors are connected through a common buffer queueB and a
schedulerSCHEDULER1. To search in a table, the processorsP1, P2, . . . Pn are assigned to perform the DP search
technique for different data in parallel where the data are coming from its data block through the read block unit. So
these processors are essentially executingn different chains corresponding ton different data in parallel. The table
lookup is needed whenever a DP is encountered during the execution of the chain while searching the key in a table.

After encountered a DP during the execution of the chain, the corresponding processor generates a signalpsig.
It then passes the tuple(mask, y′, DP) to B and a load signal where “mask” is generated by LFSR L andy′ =
masking(y). The processor also passes a signal toRB to read the next data point from data block. After this, the

342 Sourav Mukhopadhyay and Palash Sarkar

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
ISSN 1405-5546

processor starts executing the chain for the next data. In this way, eachP -processors keeps on executing until it finishes
the search for allz data points. After completion it sends a completion signal to the register R. Processor waits until it
receives the new table signal. Job ofSCHEDULER1 is to check the buffer queue. If there is any tuple in the buffer
queue then it searches for a free I/O processor and if there is any free I/O processor, it assigns the DP into the (the
ordering isQ1, Q2, . . . , Qk circularly) free I/O processor for table lookup. The queue size is to be chosen such that it
will not be full until there is a free I/O processor. During the table lookup, if a match occurs, then the corresponding
Q-processor passes the tuple(mask, y′, SP) (SP is the start point for the datay) to theSCHEDULER2 to store the
tuple intoOMB to get the key. After receiving completion signal from allP -processors theSCHEDULER1 checks
whetherB is empty and all theQ-processors have finished the table lookup. After completion of all table lookup, a
new table will be loaded and continue.

P1

Pn

. .
 .

. .

. .
 .

. .

BUF1 BUF2

. .
 .

. .

k

. .
 .

. .

. .
 .

. .

. .
 .

. .

 SCHEDULER

(mask, y’, SP)

(mask, y’, DP)

Table 1

Table k

3s

3s

OMB

Q1

Q

Fig. 8. Architecture for matching phase whenD = 1

Analysis: Let 2−p be the probability of a point being a DP. Hence, we can expect one DP in a random collection of
2p points. In our parallel execution,n processors are executing in parallel and generatingn many random points each
time. Assuming,n < 2p, after each⌊ 2p

n ⌋ = t1 (say) iterations we can expect one DP. At each of timeT = it1 for
i = 1, 2, . . ., we can expect a DP. The encountered DP will be assigned to the I/O processors for table lookups. Thus
at timeT = it1, the corresponding DP will be assigned to the processorQi for i = 1, 2, . . . , k. The next DP will be
encountered (expected) at timeT = (k + 1)t1, but at that time the I/O processorQ1 may not be free, since the table
lookup time (γ) is quite significant. Let us consider the following cases.
Case 1: Whenkt1 = γ, i.e.,k2p = γn, then at timeT = (k + 1)t1, the I/O processorQ1 will be free (since the time
difference between the present time and the time when the processorQ1 was assigned the DP is(k + 1)t1 − t1 =
kt1 = γ, the table lookup time). So the corresponding DP will be assigned toQ1 for table lookup. In this way the
next DP will be assigned toQ2 and so on. So in this case all the processors will remain busy at all the time. For a
table with sizem× t, the total number off invocations will be reduced fromtD to ⌊ tD

n ⌋. Then the total runtime for a
single table istDn +γ. Hence in this case the total number off invocations is reduced by a factor ofn and theeffective
number of table lookup required is only one for a single table.
Case 2: Whenkt1 < γ, then we need to use the buffer queue. Note that the DPs are coming at the following expected
times:

T = t1, 2t1, 3t1, . . . , kt1, (k + 1)t1, . . .

Hardware Architecture and Cost/time/data Trade-off for Generic Inversion... 343

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
 ISSN 1405-5546

So up to timekt1, we keep on assigning the DP’s into the I/O processors. But after that the next (circular ordering)
I/O processor, i.e.,Q1 will be free at timet1 + γ. Thus the next generated DP’s need to store into the waiting queue
upto timeT = (k + )t1, where is the integer such that,(k + − 1)t1 < γ < (k + )t1. Hence theoptimalsize of
the buffer queue is so that all the processors will remain busy at all the time. Hence in this case also the total number
of f invocations is reduced by a factor ofn andeffectivenumber of table lookups required is. Hence, total runtime
for a single table istDn + γ.
Case 3: Whenkt1 > γ, this case is similar to the case 1, except that in this case not all thek I/O processors will be
busy, some of the I/O processors will always be idle which is not desirable. In this case, one can use fewer number of
I/O processor if some of them are busy.
In Figure 6,k many I/O processors are randomly accessing the table (memory block). Hence the memory block need
to have multiple data and address bus to support this multiple access. The table lookup timeγ = δ logm whereδ is
the memory access time. Note that in the above analysis, we have assumed that theQ-processors will have finished
their table lookups in the same ordering which may not be true. More than one match can occur at the same time for
theQ-processors and that is the reason we need to haveSCHEDULER2.

S
C
H
E
D
U
L
E
R

STOP

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

RB1

RBn

P
1

P
n

OMB

false alarm

false alarm

Key

Key

(mask, y’, SP)

Fig. 9. Architecture for parallel key find strategy

6.2 For a Single Data Point
Suppose the attacker has a single data point at the online stage, i.e.,D = 1. We perform the parallel search strategy
by grouping tablesGT1 = {Table1, T able2, . . . , T ablen};GT2 = {Tablen+1, T ablen+2, . . . , T able2n}; . . . such
that each group containsn many tables. In Figure 8, we describe the architecture wherePi’s are the processor units
running in parallel to search forDP for n tables from the same group in the increasing order of the table number. After
encountering a DP, the processor passes the quadruple(mask, y′, DP) toBUF1 and waits until the other processors
finish their DP search for the same group. After completion of DP search for all the tables in the group,BUF1 will be
stored intoBUF2 in increasing order of table numbers and theP -processors start searching the DP for the next group
of tables. The processorPi is similar to the processor which is used in the many data points case (see Figure 7) expect
for the following. (1) registerDR will always contains the given data point. (2) For each group of tables, the LFSR
(L) will clock n times to get the corresponding mask value for the tables and store it to the registerMR for each table.

For table lookup,k manyQ-processors are connected to the firstk position ofBUF2. Parallel table lookup is
performed for firstk tables in the group and after completion of all thisk table lookup, we pop the firstk tuples and

344 Sourav Mukhopadhyay and Palash Sarkar

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
ISSN 1405-5546

push the nextk tuple in the firstk places ofBUF2. Then we load nextk tables from the same group for table lookup.
This technique can also be used whenD is small.

Analysis: We can expect one DP in a random collection of2p points. In our parallel execution,n processors are
executing in parallel and generatingn many random points each time. Hence after2p time, expected number of DPs
isn which completes thef invocation for a group of tables. LetT1 = 2p. The time required to complete table lookups
for a group =γn

k , sincek manyQ-processor are running in parallel. LetT2 = γn
k . Let us consider the following cases.

Case 1: WhenT1 = T2, i.e., the total expected time required to completef invocations is same as the total time
required to complete table lookups for a group. Then the following will be done simultaneously: (1)ith group of
tables, i.e.,GTi completes thef invocation stage and (2)(i− 1)

th group of tables, i.e.,GTi−1 has completed the
table lookups stage. There are total number of⌊ r

n⌋ group of tables. Hence the expected runtime required to complete
the matching phase in this case = total time required to completef invocation stage for⌊ r

n⌋ group of tables + time
required to complete the table lookup step for the last group (GT⌊ r

n ⌋) of table =⌊ r
n⌋ × 2p + γn

k =
(

⌊ r
n⌋ + 1

)

2p.

Case 2: WhenT1 < T2, i.e., table lookup time dominates the total time. The total table lookup time =r
n × γn

k = γt
k ,

which is independent ofn.

7 Finding the Key
After a match is found in table lookup step, we come to the corresponding start point and repeatedly apply the function
(f + masking) until it reachesmasking(y). The previous value it visited isk. Hence, to get the key from the given

(mask, y′, SP), the following chain is executed.SP
f

−→
masking
−→ k1 → . . . → ki

f
−→ y

masking
−→ ki+1 → . . . →

ki+t−1
f

−→
masking
−→ DP. (1)

Figure 9 describes the architecture for parallel key find strategy wheren processorsP1, P2, . . . , Pn are running in
parallel taking input tuples from OMB.

Finding a matching endpoint when searching the key in a table does not necessarily imply that the key is in the
table, since the key may be a part of a chain that has the same end point but is not in the table. It is called afalse alarm.

7.1 Description of a Processor
Figure 10 describes theP -processor in the parallel key find architecture. Each processor takes the input(mask, y, SP)
from the OMB and storesmask, y′, SP respectively into the registersR8, R6 andR1. Then the processor executes
chain (1). Every time it checks for equality withy′ and stops if it finds the match and returns the previous point as the
key. If it finds no match after executing complete chain (lengtht), it returns a false alarm.

7.2 Analysis
Finding the key can require “substantial” time compared to finding a table match due to false alarms. The number of
false alarms can be as large as half the total number off required for online phase. However, table match requires
memory access, whereas finding key does not.

8 Cost Analysis

We would like to perform a cost-time analysis of TMTO and exhaustive search attacks. To do this, we need to identify
the dominant components of both the attack time and the costs. This is relatively easy to do for exhaustive search.
The functionf has to be applied on every possible input in the domain. Hence, the dominant component of the time
is the time required to applyf a total ofN times; for parallel implementation, this time is scaled down by the number

Hardware Architecture and Cost/time/data Trade-off for Generic Inversion... 345

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
 ISSN 1405-5546

R2

R3 R4

f

MUX MUX

R5

s

s

s s

s

s

.

. . .

Key

Load

mask s

 R8

MUX MUX

0 0

. .

r1

C1

SC1

 false alarm

input from RB

3s

s s y SP
 R 1R6

s

. . .

+1

r
1

C3

r
1

(mask, y, SP)

signal to RB

key

Fig. 10. P -processor in the parallel key find architecture

of processors used. The dominant cost component is the cost of implementing the parallelf -invocation units (or
processors). The cost should also include the manpower cost, but this is harder to estimate.

A TMTO algorithm is more complex than exhaustive search and deriving an appropriate cost model is more
difficult. The precomputation phase of the TMTO algorithm has several time components – time required to obtain
the (start-point, end-point) pairs; memory access time required to store these pairs into the table; and the time required
to sort the tables. The online time has two major components – time to obtain the end-points; and the time for table
look-up. Similarly, the cost has several components – the cost of the parallelf -invocation units; and the cost of storage
media. In the online stage, the wiring cost of connecting processors to memory can also be substantially high (Wiener
2004).

To a large extent, the appropriate choice of the cost model depends on the underlying architecture used for the
implementation. Below we provide a top level description of our proposed architecture. This top level view makes
understanding of the cost analysis easier.

Pre-Computation Phase:Let us consider the tasks performed in the pre-computation phase. At a top level this consists
of the following two separate tasks for each table.

346 Sourav Mukhopadhyay and Palash Sarkar

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
ISSN 1405-5546

1. Compute the chains and write the (start-point, end-point) pairs to the table.

2. Sort the table.

3. Write the table into a DVD

Let us call the first task,chain-computation, the second tasksorting, and third taskDVDwrite. In the Hellman+DP
method, a total ofr tables are to be prepared. Let us denote the tables byTab1, . . . , T abr. Consider the following
algorithm.

1. Performchain-computation for Tab1;
2. do in parallel

performchain-computation for Tab2;
performsorting for Tab1;

3. for i = 3 to r do in parallel
performchain-computation for Tabi;
performsorting for Tabi−1;
initiateDVDwrite for Tabi−2 ;

4. end do;
5. do in parallel

performsorting for Tabr;
performDVDwrite for Tabr−1;

6. performDVDwrite for Tabr.

This algorithm pipelines the chain computation forTabi with the sorting ofTabi−1 and DVD writing forTabi−2.
Under the reasonable assumption that the sorting time is at most the chain computation time, the major time component
is at most the time required forchain-computation of r tables plus the time required to sort a table and write to DVD.
Thechain-computation itself has two tasks – parallelf -invocations and writing to high speed memory. These two
tasks can also be pipelined as we discuss below.

Supposen manyf -invocation units are available. Each table has a total ofm many (s-p, e-p) pairs. These are
divided intom/n blocksB1, . . . , Bm/n, where each block containsn pairs. Then manyf -invocation units will be
operating in parallel to produce one block.

1. Generate blockB1;
2. for i = 2 tom/n do in parallel

Generate blockBi;
Write blockBi−1 to the table;

3. end do;
4. Write blockBm/n to the table;

Producing each blockBi requiresn× t manyf -invocations. We may assume that the time fornt manyf -invocations
is more than the time to write a block ofn pairs to the table. Hence, the dominant time is the time required to compute
all the chains in a table, which is time required form× t manyf invocations.

Let us consider the time required to prepare all the tables. Using the above two algorithms, the total time will essen-
tially bemrtmanyf -invocations done in parallel bynmanyf -invocation units. The cost has several components–cost
of thef -invocation units; cost of input/output (I/O) units to write the blocksBi’s to the table; cost of storingr tables;
and cost of the sorting unit. The dominant cost components are the cost of thef -invocation units and the cost of
storage (memory).

Hardware Architecture and Cost/time/data Trade-off for Generic Inversion... 347

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
 ISSN 1405-5546

On-Line Phase:We would like to avoid the lower bound on the wiring cost obtained by Wiener (Wiener 2004). Our
architecture can be described as follows. There is a set ofn manyf -invocation units, which produce DPs and write
them to a buffer. There is another set ofk many I/O processors, which read from this buffer and perform look-up into
the tables.

At a time, thek I/O processors are connected tok tables. Once look-up onk tables are completed, the tables are
moved out and a new set ofk many tables are moved into place. Thus, the system operates as follows: Look-up on
Tab1, . . . T abk are completed, then look-up onTabk+1, . . . , T ab2k are completed, and so on. Once a table is replaced,
it is never loaded again for this data set. Thus, if we haveD targets, then the look-up into tableTabi for all these
targets are completed beforeTabi is replaced.

In the above scenario, the following two tasks are performed in parallel.

• Apply f -invocations to theD targets and write the final DPs to the buffer.

• Read from the buffer; perform look-up in thek tables; and then replace the tables.

With a suitable design and choice of the parametersk andn, we can make the assumption that the above two tasks
require approximately the same time. Under this assumption, the total time required in the online phase can be taken
to be the total time for all thef -invocations. Further, in this architecture, the wiring cost is minimal and the dominant
cost is the cost of implementing thef -invocation units. The task of an I/O processor is relatively simple and also we
will havek to be much less thann. Hence, the cost of implementingk I/O processors can be ignored with respect to
the cost of implementing then manyf -invocation units.

We summarize the above discussion with respect to the cost and time measures.

Pre-computation phase:

• Time: time required forrmt manyf -invocations;

• Cost: cost of implementingn many parallelf -invocation units and cost of storingr many tables.

Online phase:

• Time: time required forrtD manyf -invocations;

• Cost: cost of implementingn many parallelf -invocation units.

8.1 Approximate Cost Analysis
In CHES 2005, Good and Benaissa (Good and Benaissa 2005) proposed a new FPGA design for AES using Xilink
Spartan-III (XC3S2000). The cost of a Xilinx Spartan-III FPGA device whose cost is around 12 USD (see (Quisquater
and Standaert 2005)). The speed of encryption of the design in (Good and Benaissa 2005) is 25Gbps=0.2× 232 AES-
128 encryption/sec. Under the assumption that the cost and time scale linearly as we move from one processor ton
processors, the total processor cost forn processor units isHp = 12n USD and the speed isn × 0.2 × 232 AES-128
encryptions/sec. LetTsec be the pre-computation time in seconds. InTsec time, the number of encryptions will be,
Tsec × n× 0.2 × 232.

For a generals-bit (s ≤ 128) cipher, attackingD = 2d online data points, the number of encryptions required at
the pre-computation stage is2s−d. We assume that for ans-bit cipher withs ≤ 128, the throughput and chip area
will remain same as for the best AES-128 implementation. Hence, inTsec time, the number of encryptions will be,
Tsec × n× 0.2 × 232 and we get,

Tsec × n× 0.2 × 232 = 2s−d. (1)

UsingHp = 12n, we getTsecHp = 60 × 2s−d−32, or

232TsecHpD = 60N. (2)

348 Sourav Mukhopadhyay and Palash Sarkar

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
ISSN 1405-5546

Table 1. Trade-off for different values ofs withD = 1
s r m t Tsec n Hp Hm k Hw τsec

56 2
19

2
19

2
19

2
16.5

2
10

2
13.6

2
19

2
8.5

2
15 0.31

64 2
21

2
21

2
21

2
16.5

2
18

2
21.6

2
21

2
12

2
18.5 0.03

80 2
27

2
27

2
27

2
25

2
25

2
28.6

2
27

2
8

2
14.5 0.62

86 2
29

2
29

2
29

2
25

2
31

2
34.6

2
29

2
10

2
16.5 0.61

96 2
32

2
32

2
32

2
38.3

2
28

2
32

2
32 1 2

6.5 80
128 2

32
2
64

2
32

2
70.3

2
28

2
32

2
32 1 2

6.5 80

This gives a new type of trade-off involving pre-computation timeTsec, processor costHp and dataD whereas usual
trade-off curve involves online time (number off invocations), data and memory.
Memory Cost: We assume that one table will fit into one memory block. This simplifies the table management and
in particular the design of the sorting algorithm. The latest cheap high density storage isDVD with storage capacity
between 4 and 20 Gbyte. In the near future, SONY will launch thepaper disk with capacity of 100 Gbytes. At
present, we consider 4Gbyte (= 4 × 232 bytes) DVD with cost around 1 USD. Since, for a table we need2sm

8 bytes
storage, so2sm

8 ≤ 4 × 232, or,

sm ≤ 236. (3)

DVD write time: At present, we consider the writing time for a 4GB DVD is 1min3 (≈ 26sec). The total number
of f -invocations required for a single table ismt and the time required for this ist1 = mt

n×0.2×232 . LetW1, . . .Wk

be the DVD writers which are running in parallel. At each of timeT = it1 for i = 2, . . . r + 1, one table will be
ready for DVD write. At timeT = (i + 1)t1, the tableTi will be assigned toWi for i = 1, 2, . . . , k. The next table
Tk+1 will be ready for DVD write at timeT = (k + 2)t1. If we choosekt1 ≥ 26, then at timeT = (k + 2)t1,
W1 will be free (since the time difference between the present time and the time whenW1 was assigned the table is
(k + 2)t1 − 2t1 = kt1 ≥ 26 = DVD write time). So the tableTk+1 will be assigned toW1 for DVD write. In this
way the next table will be assigned toW2 and so on. So in this case all the processors and DVD writers will remain
busy at all the time. Hence from the above discuss we havekt1 ≥ 26, or,

k ×
mt

n× 0.2 × 232
≥ 26. (4)

or,

k ≥
n236

mt
. (5)

Note the there arer table to be written intor DVDs and each DVD write takes26 seconds. The total time required
for DVD write is r26

k while k many DVD writers are running in parallel. This time must be less than or equal to the

pre-computation time, i.e.,r26

k ≤ Tsec, or,

k ≥
r26

Tsec
. (6)

We takek = max
(

n236

mt ,
r26

Tsec
, 1

)

. Thenk satisfies both the inequalities 5 and 6. At present, we consider the DVD

writer cost is 100 USD each. The total DVD writer cost isHw = 100k USD. Forr tables, memory cost isHm = r
USD and total hardware costC = Hp +Hm +Hw = (12n+ r + 100k) USD. Let us consider the following cases.

3Forexample writing speed of Samsung SH-W162 is 21.6MB/sec (16X).

Hardware Architecture and Cost/time/data Trade-off for Generic Inversion... 349

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
 ISSN 1405-5546

Table 2. Trade-off for different values ofs and d = s
4

s r m = t Tsec n Hp Hm k Hw τsec

80 2
6.7

2
26.7

2
16.5

2
14

2
17.6

2
6.7 1 2

6.5 845
86 2

6.7
2
28.6

2
16.5

2
18

2
21.6

2
6.7 1 2

6.5 776
96 2

8
2
32

2
16.5

2
26

2
29.6

2
8 1 2

6.5 320
96 2

8
2
32

2
25

2
17

2
20.6

2
8 1 2

6.5
2
17.3

128 2
11

2
43

2
25

2
41

2
44.6

2
11 1 2

6.5
2
15.3

128 2
32

2
32

2
25

2
41

2
44.6

2
32

2
13

2
19.5

2
25.3

128 2
32

2
32

2
38

2
28

2
32

2
32 1 2

6.5
2
38.3

Case 1: D = 1 (d = 0). We choose the Hellman table parameters as:r = m = t = N1/3 = 2s/3. The total number
of f invocations required at the online stage= r × t and the time required for this isτsec = r×t

n×0.2×232 , runningn
processors in parallel with the speed of0.2 × 232 encryptions/sec. Suppose we want to finish the pre-computation
within a day, thenTsec = 216.5 (the number of seconds in one day). From Equation 1, we get,n = 5 × 2s−48.5. For
1 year pre-computation time, i.e.,Tsec = 225 (the number of seconds in one year) we need the number of processors,
n = 5 × 2s−57. In Table 1, we summarize some of the trade-offs with different values ofs.
Case 2: D > 1. The memory cost increases with the number of tables. We consider the following table parameters as

in (Biryukov and Shamir 2000):r = N1/3

D = 2
s
3
−d andm = t = N1/3 = 2s/3. The total number off invocations

required for online search= rtD and the time required for this isτsec = r×t×D
n×0.2×232 , runningn processors in parallel

with speed of0.2 × 232 encryption/sec. From Equation 1 we get,n = 5×2s−d−32

Tsec
. Table 2 summarizes some of

the trade-offs with different values ofs andd = s
4 . The rows of the tables were calculated by fixing some of the

parameters as mentioned below.

• Table 1 (d = 0)

–rows 1 and 2: Fix Tsec to be one day.

–rows 3 and 4: Fix Tsec to be one year.

–rows 5 and 6: Fix Hp = Hm = 232.

• Table 2 (d = s/4)

–rows 1, 2 and 3: Fix Tsec to be one day.

–rows 4 and 5: Fix Tsec to be one year.

–row 6: Fix Tsec to be one year andHm = 232.

–row 7: Fix Hp = Hm = 232.

Discussion: From Tables 1 and 2, we conclude the following.

• 56-bit and 64-bitf ’s are completely insecure.

• Ford = 0, with one year pre-computation time and around 500M USD investment it is possible to crack 80-bit
f in online time less than one second. For multiple targets (data) withd = s/4, attacking 80-bit becomes easier.

• For s = 96, and with a single data point, pre-computation time is more than 4000 years. This is at a cost of
around 1 billion USD. It is possible to bring down the pre-computation time to a few years by increasing the
cost to around 1 trillion dollar. Another problem is that the size of single table becomes large and barely fits in
a single storage unit (see the bound 3). In the presence of multiple data of the order of224 (d = s/4), the attack
becomes reasonable. Hence, 96-bitf also does not provide comfortable security

350 Sourav Mukhopadhyay and Palash Sarkar

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
ISSN 1405-5546

• Fors = 128, and with a single data point (d = 0), at least one of the parameters among(Tsec, Hp, Hm) become
infeasible. Also even withd = s/4 = 32, one of the above parameters continue to remain infeasible. Increasing
d beyond 32 is not practical. Hence, 128-bit can be considered to provide adequate security margin, at least until
a new technological revolution invalidates the analysis performed here.

8.1.1 General Case For the general case, let us assume thatC1 andC2 are the costs of one search unit and one
storage unit respectively andρ, δ are the rate of encryption and size of one storage unit in Gbyte respectively. Then
Equation 1 becomes,

Tsec × n× ρ = 2s−d (7)

and,Hp = C1n andHm = C2r. UsingHp = C1n in Equation 7, we getTsec ×Hp × ρ = 2s−dC1, or ρTsecHpD =
C1N . Since for a table we need2sm

8 bytes storage, so2sm
8 ≤ δ × 232, or,

sm ≤ δ234. (8)

This constraint is required because we are fitting one table into one storage unit. Letǫ be the DVD (storage) writing
time. Then equation 4 becomes,k × mt

n×ρ ≥ ǫ, or, k ≥ n×ρ×ǫ
m×t and equation 6 becomes,k ≥ rǫ

Tsec
. Thus we take

k = max
(

n×ρ×ǫ
m×t ,

rǫ
Tsec

, 1
)

. LetC3 be the cost of one DVD writer, thenHw = kC3USD.

8.2 Cost of Exhaustive Search
Cost analysis of exhaustive search is same as the cost analysis for TMTO pre-computation except the memory cost and
DVD writer cost. Note that the processor costHp is required for both exhaustive search and TMTO pre-computation.
The factorHm is additionally required for TMTO. Hence, the trade-off for exhaustive search is same as Equation 2,
i.e.,

232THD = 60N (9)

whereT denotes the time in seconds required for exhaustive search,H is the total processor cost andD is the number
of data points. The general equation is the following.

ρTHD = C1N (10)

8.3 Rainbow Method
The rainbow method replacest Hellman table of sizem × t into a single rainbow table with sizem′ × t, where
m′ = mt. Let us consider the case whens = 56 (DES). ThenN = 256, takingm = t = N1/3, we getm′ = 236,
i.e. sm′ = 56 × 236 > 236. This violates the constraint 3 (sm′ ≤ 236). Hence a single large rainbow table need
to stored into more than one memory block (the number of memory block will increase with the value ofs). Then
the sorting algorithm becomes much more complicated since it has now to sort the table which is split into different
memory blocks. On the other hand, if we break the large single rainbow table into several number of small mutually
disjoint rainbow tables the online time increases by a factor ofr, wherer is the number of rainbow tables. In view of
this, rainbow method is not a good choice for hardware implementation.

9 Application to Stream Ciphers with IV

Application of TMTO to stream ciphers with IV was analysed in (Hong and Sarkar 2005). For ak-bit stream cipher
using anl-bit IV, consider the following(k + l)-bit one-way functionf :

(k-bit key, l-bit IV) 7→ (k + l)-bit keystream prefix. (11)

Hardware Architecture and Cost/time/data Trade-off for Generic Inversion... 351

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
 ISSN 1405-5546

Table 3. Trade-off of GSM for different values ofD
D r m = t Tsec n Hp Hm k Hw τsec

1 2
29

2
29

2
25

2
31

2
34.6

2
29

2
10

2
16.5 0.61

2
8

2
21

2
29

2
25

2
23

2
26.6

2
21

2
2

2
8.5 32

2
16

2
13

2
29

2
16.5

2
24

2
27.6

2
13

2
3

2
9.5 16

2
22

2
7

2
29

2
16.5

2
18

2
21.6

2
7 1 2

6.5
2
10

As pointed out in (Hong and Sarkar 2005), inverting this one-way functionf will provide the secret key. Since many
IVs are used with the same key, and since IVs are public, one can apply multiple data TMTO tof , usingD many
publicly available IVs. It has been shown in (Hong and Sarkar 2005), that if IV length is less than key length, then
this the online time of TMTO is less than exhaustive key search. (This has resulted in the recent Ecrypt call for stream
ciphers, to mandate IV length to be at least equal to the key length.) However, the pre-computation time becomes2k+l

which is more than exhaustive key search. On the other hand, the importance of IV in a TMTO attack matters more
than its length. The effective length of IV is also crucial and has been pointed out in (Hong and Sarkar 2005). Let us
consider this point in more details.

The usual requirement on IV is that it should be a nonce, i.e., no value should be repeated. Thus, for example, one
can fix a key and use the numbers1, 2, . . . , as IVs for different messages. Suppose at most2λ messages are encrypted
before a key change. The above appears to be a valid protocol for using stream cipher. The problem is that in this
approach, only the lastλ bits of the IV ever change. If we put the (arbitrary) restriction that at most 1000 messages
are encrypted before a key change, thenλ ≈ 10.

Suppose, for a particular key we have access to the keystream segment for about32 = 25 messages. This gives
D = 25. Since we know all the IVs, we can apply TMTO to a search space of sizeN = 2k+10 with D = 25. The
precomputation time isN/D = 2k+10/25 = 2k+5 and the online time then comes to around22(k+5)/3. If k = 80,
then the precomputation can be completed in one year at a cost of232 USD and the online time is around a minute.
While the cost is quite high, it is not out of reach of powerful organizations.

We interpret this situation as indicating that to resist TMTO, it isnotsufficient to have IV length to be equal to key
length. The protocol must ensure that the entire IV length is actually used. One simple way of doing this can be to
choose a random nonce as IV for the firstmsg encrypted using a particular key and then use nonce + 1, nonce + 2,. . .
as IVs for subsequentmsg.

9.1 GSM

For the GSM mobile phones (3GPP 2003), A5/3 stream cipher is used which is based on the iterated block cipher
KASUMI. The cipher A5/3 uses 64-bit key and 22-bit effective IV size (others bits of IV are fixed). The following
one-way functionf from 86-bit to 86-bit has been considered in (Hong and Sarkar 2005):

(64-bit key, 22-bit effective IV) 7→ 86-bit keystream prefix. (12)

The size of the search space for exhaustive search attack is264. From Table 1 (see row 2), we have the time for exhaus-
tive search attack which is same as the pre-computation time for TMTO to be216.5 sec with a221 USD investment.

This is certainly doable and hence GSM mobile phone communications cannot be considered secure for more
than a day. However, can we consider such communications to be secure for a shorter duration such as an hour. For
example, a stock order is placed over a phone and the order is executed within an hour. Once the order is executed,
there is no need for secrecy. Thus, it is enough to ensure secrecy from the point of the order being placed and it being
executed, which is at most an hour. If we consider only exhaustive search attacks, then such communication over GSM
phones appears to be secure. However, if we apply TMTO to the search space of the functionf defined in (12), then
this might not be true.

352 Sourav Mukhopadhyay and Palash Sarkar

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
ISSN 1405-5546

The size of the search spacef isN = 286. From Equation 1 we get,n = 5×286−d−32

Tsec
where2d is the number of

data points available to the attacker. Table 3 summarizes some of the trade-offs with different values ofD where the

table parameters are taken as:r = N1/3

D = 2
s
3
−d andm = t = N1/3 = 2s/3. From Table 3, we conclude that the

A5/3 algorithm of GSM provides inadequate security.

10 Conclusion

In this paper, we have provided a detailed top-level description of an architecture for inverting a one-way function
using TMTO. Based on our architecture, we have developed a new cost/time/data trade-off model and have used it to
analyse the security of different key sizes. Our future work is to validate the different hardware architectures through
a hardware synthesis tool. Such a simulation will provide estimates of the number of gates, the clock frequency, rout-
ing costs, power consumption, mean time between failures and other relevant parameters. This may lead to possible
alterations of the design as well as provide a better understanding of different implementation issues.

Acknowledgments

Authors would like to thank anonymous reviewers for providing constructive and generous feedback. Despite their
invaluable assistance any error remaining in this paper is solely attributed to the author.

References

3GPP. 3rd generation partnership program. http://www.3gpp.org/.

3GPP (2003). 3gpp ts 55.215 v6.2.0 (2003-09), a5/3 and gea3 specifications. http://www.gsmworld.com.

Amirazizi, H. and M. Hellman (1988). Time-memory-processor trade-offs.IEEE Transactions on Information
Theory 34(3), 505–512.

Biham, E. (1994). New types of cryptanalytic attacks using related keys.Journal of Cryptology 7(4), 229–246.

Biham, E., A. Biryukov, and A. Shamir (1999a). Cryptanalysis of skipjack reduced to 31 rounds using impossible
differentials. InEurocrypt 1999, Proceedings, Volume 1592 ofLecture Notes in Computer Science, pp. 12–23.
Springer.

Biham, E., A. Biryukov, and A. Shamir (1999b). Miss in the middle attacks on idea and khufu. InFSE 1999,
Proceedings, Volume 1636 ofLecture Notes in Computer Science, pp. 124–138. Springer.

Biham, E. and A. Shamir (1993).Differential Cryptanalysis of the Data Encryption Standard. SpringerVerlag.

Biryukov, A. (2005). Some thoughts on time-memory-data tradeoffs. http://eprint.iacr.org/2005/207.

Biryukov, A. and A. Shamir (2000). Cyptanalytic time/memory/data tradeoffs for stream ciphers. InAsiacrypt
2000, Proceedings, Volume 1976 ofLecture Notes in Computer Science, pp. 1–13. Springer.

Biryukov, A. and D. Wagner (1999). Slide attack. InFSE 1999, Proceedings, Volume 1636 ofLecture Notes in
Computer Science, pp. 245–259. Springer.

Borst, J., B. Preneel, and J. Vandewalle (1999). Linear cryptanalysis of rc5 and rc6. InFSE 1999, Proceedings,
Volume 1636 ofLecture Notes in Computer Science, pp. 16–30. Springer.

COPACOPANA (2006). A codebreaker for des and other ciphers.

Denning, D. (1982).Cryptography and data security. Addison Wesley.

EFF (1998).Electronics Frontier Foundation: Cracking DES. O’Reilly and Associates.

Hardware Architecture and Cost/time/data Trade-off for Generic Inversion... 353

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
 ISSN 1405-5546

ETSI/SAGE (2002). Specification of the a5/3 encryption algorithms for gsm and edge, and the gea3 encryption
algorithm for gprs, document 1: A5/3 and gea 3 specifications.

Fiat, A. and M. Naor (1991). Rigorous time/space tradeoffs for inverting functions. InSTOC 1991, pp. 534–541.

Gilbert, H., H. Handschuh, A. Joux, and S. Vaudenay (2000). A statistical attack on rc6. InFSE 2000, Proceed-
ings, Volume 1978 ofLecture Notes in Computer Science, pp. 64–74. Springer.

Good, T. and M. Benaissa (2005). Aes on fpga from the fastest to the smallest. InCHES 2005, Proceedings,
Volume 3659 ofLecture Notes in Computer Science, pp. 427–440. Springer.

Handschuh, H. and H. Gilbert (1997).χ2 cryptanalysis of the seal encryption algorithm. InFSE 1997, Proceed-
ings, Volume 1267 ofLecture Notes in Computer Science, pp. 1–12. Springer.

Hellman, M. (1980). A cryptanalytic time-memory trade-off.IEEE Transactions on Information Theory 26, 401–
406.

Hong, J. and P. Sarkar (2005). New applications of time memory data tradeoffs. InAsiacrypt 2005, Proceedings,
Volume 3788 ofLecture Notes in Computer Science, pp. 353–372. Springer.

Kumar, S., C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler (2006). Breaking ciphers with copacobana-a cost-
optimized parallel code breaker. InCHES 2006, Proceedings, Volume 4249 ofLecture Notes in Computer
Science, pp. 101–118. Springer.

Lai, X. (1994). Higher order derivatives and differential cryptanalysis.Communication and Cryptography, 227–
233.

Matsui, M. (1993). Linear cryptanalysis method for des cipher. InEurocrypt 1993, Proceedings, Volume 765 of
Lecture Notes in Computer Science, pp. 386–397. Springer.

Matsui, M. (1994). The first experimental cryptanalysis of the data encryption standard. InCrypto 1994, Proceed-
ings, Volume 839 ofLecture Notes in Computer Science, pp. 1–11. Springer.

Mentens, N., L. Batina, B. Preneel, and I. Verbauwhede (2005). Cracking unix passwords using fpga platforms.
In SHARCS 2005, Proceedings.

Mukhopadhyay, S. and P. Sarkar (2006). Application of lfsrs for parallel sequence generation in cryptologic
algorithms. InApplied Cryptography and Information Security 2006 (ACIS’06) in conjunction with ICCSA
2006, Proceedings, Volume 3982 ofLecture Notes in Computer Science, pp. 426–435. Springer.

Oechslin, P. (2003). Making a faster cryptanalytic time-memory trade-off. InCrypto 2003, Proceedings, Volume
2729 ofLecture Notes in Computer Science, pp. 617–630. Springer.

Quisquater, J. and J. Delescaille (1989). How easy is collision search? application to des. InEurocrypt 1989,
Proceedings, Volume 434 ofLecture Notes in Computer Science, pp. 429–434. Springer.

Quisquater, J. and F. Standaert (2005). Exhaustive key search of the des: Updates and refinements. InSHARCS
2005, Proceedings.

Quisquater, J., F. Standaert, G. Rouvroy, J. David, and J. Legat (2002). A cryptanalytic time-memory tradeoff:
First fpga implementation. InFPL 2002, Proceedings, Volume 2438 ofLecture Notes in Computer Science, pp.
780–789. Springer.

Shimoyama, T., M. Takenaka, and T. Koshiba (2002). Multiple linear cryptanalysis of a reduced round rc6. In
FSE 2002, Proceedings, Volume 2365 ofLecture Notes in Computer Science, pp. 76–88. Springer.

Shimoyama, T., M. Takeuchi, and J. Hayakawa (2002). Correlation attack to the block cipher rc5 and simplified
variants of rc6. In3rd AES Candidate Conference.

Wagner, D. (1999). The boomerang attack. InFSE 1999, Proceedings, Volume 1636 ofLecture Notes in Computer
Science, pp. 156–170. Springer.

354 Sourav Mukhopadhyay and Palash Sarkar

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
ISSN 1405-5546

Wiener, M. (1996). Efficient des key search. InCrypto 1993 (rump session presentation). Reprint in Practical
Cryptography for Data Internetworks, William Stallings editor,IEEE Computer Society Press, pp. 31-79, 1996.

Wiener, M. (2004). The full cost of cryptanalytic attacks.Journal of Cryptology 17(2), 105–124.

Sourav Mukhopadhyaycompleted his B.Sc (Honours in Mathematics) in 1997 from University of Calcutta, India. He
has done M.Stat (in statistics) and M.Tech (in computer science) from Indian Statistical Institute, India, in 1999 and
2001 respectively. He received his Ph.D. degree in the area of Cryptology (Computer Science) from Indian Statistical
Institute, India in 2007. Currently, he is working as a full time post-doctoral research fellow and part time Lecturer
with School of Electronic Engineering, Dublin City University, Ireland. His research and teaching interests include
network security, cryptology, mathematics, statistics and computer science

Palash Sarkarreceived his Bachelor of Electronics and Telecommunication Engineering degree in the year 1991 from
Jadavpur University, Kolkata and Master of Technology in Computer Science in the year 1993 from Indian Statistical
Institute, Kolkata. He completed his Ph.D. from Indian Statistical Institute in 1999. Since June 2005 he has been a
professor at Indian Statistical Instute. His research interests include cryptology, discrete mathematics and computer
science.

Hardware Architecture and Cost/time/data Trade-off for Generic Inversion... 355

Computación y Sistemas Vol. 12 No. 3, 2009, pp 331-355
 ISSN 1405-5546

