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Abstract: 
This work describes the modeling and control of an experimental platform associated to a single link flexible 
robot, whose motion is restricted to an horizontal plane, thus neglecting the gravity effects. The modeling problem 
is addressed using the so-called Euler-Bernoulli beam equation. The design, construction and integration of an 
experimental set-up developed for this work is also presented. Two main control schemes are then devised for 
controlling the end tip position of the flexible link, the passive velocity feedback and strain feedback approaches. 
Finally, the overall system performance is illustrated by some experimental results obtained with both control 
methods. 
Keywords: Flexible link, Modal coordinates, Passivity based control, Strain feedback. 
 
Resumen: 
En este trabajo se describe la modelación y control de una plataforma experimental de un robot con un eslabón 
flexible, cuyo movimiento se restringe a un plano horizontal. El eslabón flexible es una viga larga de acero con 
poco espesor, por lo que su ecuación de movimiento se obtiene a partir de la ecuación de Euler-Bernoulli, que 
describe a un sistema con masa y rigidez distribuida a lo largo de su coordenada espacial (longitud). Se describe el 
diseño, construcción e integración de la plataforma experimental. Para los propósitos de control de la posición del 
extremo libre se aplican dos esquemas de control, el enfoque basado en la retroalimentación pasiva de la velocidad 
y otro enfoque reciente conocido como retroalimentación del esfuerzo. Finalmente, el desempeño dinámico del 
sistema en lazo cerrado se ilustra mediante algunos resultados experimentales. 
Palabras clave: Control basado en pasividad, Eslabón flexible, Coordenadas modales, Retroalimentación de 
esfuerzo. 

 
1 Introduction 
 
The control of flexible link robots has been widely studied in recent years and there are different models available in 
the literature [1,3,7,9,10]. A thin and flexible link is described by partial differential equation, highly nonlinear and 
with complex dynamics, hence, it represents an interesting control problem for the asymptotic output tracking in 
presence of vibrations. Most of the models are derived from the so-called Euler-Bernoulli equation [8], which is a 
second order partial differential equation in the time variable and of fourth order in the spatial coordinate. The 
solution for this equation represents the deflection of the link at a given distance from the selected reference frame as 
a function of time [7]. In general, the solution is obtained using the modal approach, in which the solution is assumed 
to be a combination of spatial functions called mode shapes weighted by time functions referred to as modal 
coordinates. The mode shapes depend on the boundary conditions. In the present paper, clamped-free boundary 
conditions are used to derive the mode shapes. The mode shapes (vibration modes) are related to a respective natural 
frequency of the link [8], which in turn, depends entirely on the mechanical parameters of the link. 

In order to design an effective control scheme for the end tip of the flexible link, the election of an adequate 
output is of great importance [9, 10]. Typical results often use a combination of the rotation of the motor shaft 
(referred to as rigid mode) plus the deflection of the link at the tip. In this way, an output expression for the total tip 
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deflection, measured from a fixed reference frame was obtained. However, controllers proposed for such an output 
were found to be complicated. In this context, it is known that using the rotation of the motor plus the reflected 
deflection of the tip, to the rigid mode, as an output function, leads to a transfer function with a well defined relative 
degree [10]. Then, a passive output, which relates the input link torque, applied by the motor, to the angular velocity 
of the end tip, can be used in combination with a strictly passive compensator to stabilize the overall system [9, 10]. 

In this paper it is considered the regulation and tracking control problem of the end tip position of one flexible 
link, actuated by a DC motor and excited up to its first three flexible modes, in contrast to most of the existing results 
for one mode deflection and slow motions (low frequency components). The mathematical model includes the 
dynamics of these three modes, with beam deflections estimated via three strain gages, and the dc motor. Two 
different control schemes (passive velocity feedback and strain feedback) are applied to an experimental setup, both 
resulting in good dynamic behaviors. 

 
2 Modeling 
 
System description 
The flexible link considered in this work consists of a rotating flexible link whose base is clamped to a DC motor 
shaft, as shown in figure 1.  
 

 
Fig. 1. Flexible link robot set-up 

 
The flexible link is a thin metallic beam which is attached to move around the motor shaft in an horizontal 

plane; the elastic deflection of the link takes place in the same motion plane, so that the gravity effects can be 
neglected. The link is a uniform aluminum beam of  mmm 10254.0003175.0 ××   and the actuator of the system 
is a DC motor which generates the input torque to the link. The angular displacement of the rigid mode is measured 
via an optical encoder directly attached to the motor shaft, and the modal coordinates are estimated using a set of 
strain gages attached at specific positions along the link. A detailed description of the flexible beam built can be 
found in [7]. 
 
Modeling of the flexible link 
The flexible link is considered to be a uniform beam of length , with a constant transverse section , the cross-
section moment of inertia is  , and a uniform mass distribution

L A
AI ρ . The beam stiffness is also taken to be a 

constant. Since no external force distributions are applied in this case, the Euler-Bernoulli equation is simplified to  
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where r  is the spatial coordinate, t  is the time and    represents the deflection of the beam from a reference 
frame, which is attached to the base of the link. A solution for (1) can be obtained using the assumed-modes 
approach, in which the deflection is expressed by  
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where )(riϕ   represents mode shapes and    denotes the modal coordinates. The clamped-free boundary 
conditions are given by  
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The first three mode shapes for a clamped-free beam are depicted in figure 2. For faster motion of the DC motor 

shaft (see figure 1) more vibration modes can be excited and, as consequence, the position control of the end tip 
position of the flexible link will be more difficult.  

 

 
Fig. 2. Clamped-Free modal shapes for a thin beam 
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Using the mode shapes approach, the model of the rotating flexible link can be expressed as 
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where R represents the coupling shaft radius. Due to the fact that the link is restricted to move on an horizontal 
plane, no gravity terms are included. Besides, the term    in (4) is also neglected due to the real dimensions of 
the experimental platform (see, for example, [2,7]). Thus, the model (4) takes the form  
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Since the mode shapes and boundary conditions are known, they can be applied to (5) resulting in the following 

set of second order linear differential equations,  
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Let us now consider that the coupling shaft inertia is , the shaft rotation angle ishI θ  , and the flexible link mass 

distribution along its length is concentrated in its centre of gravity (CG). The CG is out of the deflection curve when 
the link is deflected, so that a way to express its relative position to the rotating reference frame attached to the base 
of the link must be found. Recalling that the deflection curve  is the solution for the Euler-Bernoulli 
equation, making basic geometric considerations and carrying out some straightforward calculations, it can be shown 
that the position of the CG of the deflected beam , relative to the reference frame attached to the base of 
the link, can be expressed in terms of the mode shapes as  
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 According to figure 3, the rotation angle of the CG of the link, denoted as )(tψ and measured from the fixed 

reference frame, is a composed quantity given by  
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Fig. 3. Flexible link layout 
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where iμ  is a constant denoting the integral of the i -th flexible mode in (8). Thus, the kinetic energy of the whole 
system can be expressed as  
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and the potential energy of the system is given by  
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and the 's, for , are the generalized coordinates, the Euler-Lagrange dynamic equations for the system 
take the form 
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and for the -th flexible mode one has that  i
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By multiplying (13) by   , and carrying out a summation for the  n   flexible modes, it can be shown that  iq&
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 The left hand member of (14) is just   . Thus,  pE& pk EEE +=   and using (12) one has that 
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therefore, the substitution of (14) into (15) yields  
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which holds up to n flexible modes. Thus, the system model satisfies the energy conservation property. It should be 
noticed, however, that some viscous damping is present in the physical system . 
 
3 Passivity-based control of the end effector 
 
Derivation of a passive transfer function 
For control purposes, it is necessary to propose an adequate output function. Such an output is crucial, since this 
makes possible to design a simple controller with acceptable results; in fact, a bad choice of the output function can 
lead to system instability. 

In the following,  is the rigid mode ()(0 tq )(tθ in this case), is the set of modal coordinates for the 
flexible link, and  is the total number of modes considered in the model. 

)(tqi
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The dynamics for the rigid mode (rotational degree of freedom) is given by  
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For the flexible modes one has  
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where  is the moment of inertia for the motor shaft, hI 3
2
1 ALρ  is the moment of inertia due to the mass of the link at 

its center of mass, )(tτ  is the applied torque at the base of the link. Note that )(tτ  is the control input to the system 
provided by a DC motor. A more complete model of this system should include the electrical dynamics associated to 
the DC motor, but this can be neglected because it is faster than the mechanical dynamics of the link and shaft. From 
the dynamics (17), the transfer function from the input torque  to the rigid mode  is easily obtained as  )(sT )(0 sQ
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In the same way, a set of transfer functions from  to the flexible modes  is calculated from (18) as  )(sT )(sQi
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In [10], an artificial output of the system, known as the reflected output, is employed to derive a transfer 

function with a well defined relative degree. This output is, in general, the displacement of the end tip, due to the 
rotation of a rigid mode minus the elastic deflection of the link, due to the flexible modes. This is opposed to the 
displacement of the tip, due to the rigid mode, augmented with the elastic deflection, which actually happens. It is 
important to mention that, the mode shapes used in [10] are the pinned-free functions instead of the clamped-free 
functions considered here. It was shown in [1] that the two models are equivalent. For the clamped-free beam 
considered in this work, the reflected output is given by  
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and the resulting transfer function, from the input torque to the reflected output has a relative degree equal to 2. It is 
also of interest to obtain a transfer function with a relative degree equal to 1. Hence, the transfer function from  

to  is given by  
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It is well known that and are both passive. For the transfer function (22) to be passive it is 

necessary that the coefficients of  be non-negative [5,6]. However, this is not true, because 
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and  for the clamped-free mode shapes [8]. That is, the coefficients 1)1()( +−= i
i Lϕ )(11 LN ϕ  and )(3 L3N ϕ  are 

negative, whereas the coefficient )(22 LN ϕ  is positive, and the transfer function (22) is not passive. Therefore, 
another output function is proposed, more precisely  
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Equation (23) is called the negative mode reflected output, where  represents a set of positive coefficients 

referred to as modal weights. Due to the fact that , the differentiated transfer function from  to 

 takes the form 
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whose coefficients are always positive since 0<iN  for ni ,...,2,1= . Thus, the passivity property is obtained by 

reflecting only the odd mode shapes, which leads to negative coefficients in  when i  is odd. )/( 22
iss ω+
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4 A passivity-based PID control 
 
 A well known result in passivity based control states that, if the compensator in figure 4 is strictly passive with finite 
gain and the plant is passive, then the closed loop system is   -stable [6, 10]. 2L

Since the transfer function (24) is passive, a strictly passive compensator with finite gain will stabilize the 
overall system. The simplest compensator is given by  
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where fω  must be higher than the last natural frequency considered in the model, but lower than the first natural 
frequency rejected. Compensator (25) stabilizes the system for the output (23) in which the shaft rotation and the 
deflections effects are combined. After stabilizing the system, via the passive compensator (25), a simple controller 
can be applied to regulate the tip position. In this work, a classical PID controller is implemented on an external 
control loop [4] (see figure 4). 
 

 
Fig. 4. Passivity-based PID control for trajectory tracking of the tip position 

 
To achieve the trajectory tracking using the above PID controller is included a feed-forward term with the 

acceleration of the desired reference trajectory (see the two first order filters in figure 4). This compensator yields the 
approximate acceleration, with an attenuation frequency set by adjustment of the  5.0=β  parameter, together with 
the parameter 1=α . 
 
5 Strain feedback control 
 
A different control approach for flexible-link robots is the so-called strain feedback control [4]. In this case, the main 
objective of the controller is to regulate the joint position while trying to damp out the flexible-link vibrations, rather 
than controlling directly the tip position. Measurements of the elastic deflection of the link are taken using a strain 
gage attached to the link. The voltage signal obtained from the strain gage is, in fact, a measurement of the strain 
present in the deflected link. It is well known that the strain present in a deflected beam is directly related to its 
bending moment curve and that the bending moment can be expressed in terms of the elastic deflection of the beam. 
Therefore, a measurement of the elastic deflection of the link can be obtained by using the voltage signal gathered 
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from the strain gages. The voltage signal  gathered from the strain gage can be expressed in term of the modal 
solution as  

sgV
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where  is a scaling constant and  is the position of the strain gage along the link. The control law employed in 
this scheme then takes the form  
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which is a classic PD controller extended to the flexible case by the addition of an integral term which includes the 
effects of the elastic deflection in terms of the strain signal sensed by the gage. 

In order to verify the closed-loop stability properties for this system, a storage function is chosen as  
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which is a positive definite function. Then, taking the time derivative of (28) yields  
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and, by substituting (16) in (29) one obtains  
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Then, using the control law (27), it can be shown that  
 

)(2 tkV vθ&& −=   
 
which is negative semidefinite. Hence, the closed loop system is stable [6]. Notice, however, that the presence of 
viscous damping in the physical system allows guaranteeing asymptotic stability (see [2] for a detailed discussion of 
this issue). 
 
6 The experimental setup 
 
In order to validate the above results, an experimental platform with a flexible link robot was completely designed, 
constructed and integrated [2].  The overall system is described in the block diagram shown in figure 5. 
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ecoupling matrix 
[2,7]

llers devised for this 
rototype are implemented into a PC with an acquisition card Sensoray 626, included as a part of the signal 

conditioning stage in the set-up to provide the D/A and A/D operations, and running under Windows XP® and 
Matlab/Simulink® (see figure 5). A photograph of the experimental setup is shown in figure 6. 
 

The experimental platform has a DC motor to actuate the flexible link at its clamped base. The rotation angle of 
the motor shaft is measured with an optical encoder attached to the motor shaft. This DC motor was tested and 
validated, to provide the required control torques. 

The elastic deflection of the end tip is measured via a set of three strain gages, which are attached to the flexible 
link at specific positions to measure the dynamical contribution up to the first three flexible modes. The selection of 
those locations for the strain gages depends on granting the invertibility property of the so-called d

; this is of outmost importance, since a bad choice in locating the gages can lead to closed-loop system 
instability. A common placement procedure consists in placing the gages on positions where the strain due to the first 
rejected flexible mode equals zero [7]. In the present case, the first rejected mode is the fourth one. 

The use of strain gages as deflection sensors requires some additional instrumentation circuits and a signal 
conditioning stage. A set of commercial-available Wheatstone bridges, each one with its respective instrumentation 
amplifier is employed to gather the information signal from the set of strain gages. The contro
p

 
Fig. 5. Schematic diagram of the integration of the experimental set-up 

he physical parameters of the experimental platform are shown in table 1. Some of the parameters in that table are 
associated to physical dimensions or material properties of the flexible link while others were estimated via several 
static and dynamical tests [2].  
 

 
7 Experimental results 
 
T
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Fig. 6. The experimental platform of the flexible-link robot arm 

 

Table 1. Parameters for the flexible link robot 

Parameter Value Parameter Value 
ρ  2700 3mKg  E  68  GPa

AI  3.20 X 10   10− 4m A  8.0645 X 10  5− 2m
hI  27.059 X 10  4− 2mKg ⋅ 1ω  16.1724 srad  

2ω  101.3511 srad  3ω  283.7861 srad  

1N  -10.8799 ( )mKg ⋅1  2N  -1.9297 ( )mKg ⋅1  

3N  -0.8000 ( )mKg ⋅1  Rb  0.01 ( ) msN ⋅  

1ζ  0.001 ( ) msN ⋅  2ζ  0.001 ( ) msN ⋅  

3ζ  0.001 ( ) msN ⋅    
 
Model performance 
Some numerical simulations of the system were carried out using the parameters shown in table 1 in an open-loop 
scheme. To obtain the open-loop link behavior, the motor shaft is regulated, without considering the flexural effects 
of the link, to a desired position, thus allowing the flexible link to bend freely. The validation of the model for the 
elastic deflection of the link is depicted in figure 7. From that figure a good matching can be observed between the 
system model and the experimental results, in spite of large beam deflections (about 150 mm). 

The amplitude spectrum (FFT) of this experiment is shown in figure 8 where the first three vibration modes of 
the flexible link occur at 1.98 Hz, 8.6 HZ and 19.07 Hz, respectively.  
 
Passivity-based PID control results 
Some experimental results for the regulation problem, using the passivity-based PID control scheme, are shown in 
figure 9. The PID gains were set to   0.25,  =pk =vk  0.1 and  =Ik  0.01, whereas the modal weights were set to  

 1,   1 and   1; it should be said that, since there are six control parameters to adjust, the tuning is 
not an easy task. The upper graphic shows the joint angular position (end effector) of the flexible link when the 
controlled output is the artificial tip position , whereas the lower graphic shows the elastic deflection of the 
flexible link at the end tip. The last graphic represents the control action applied via the DC motor. From this 

=1k =2k =3k

)(tyMIR
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experiment one can notice that the tip position achieves the step reference (1.57 rad) in approximately in 2 s, with 
contributions of the first three flexible modes, significant beam deflections (80 mm) and  small control efforts. 
 

 
Fig. 7.  Experimental validation for the deflection of the tip. Numerical result (blue line) and Experimental result (red line) 

 
 

 
Fig. 8.  Amplitude spectrum (FFT) of the flexible link 

 
Additional experimental results for trajectory tracking, when using the passivity-based PID control scheme, are 

shown in figure 10. The desired trajectory was chosen to be a periodic signal given by 
[rad]. In this experiment the parameters of the control law were set to )2sin(0.2617)( ttyd = =pk 0.25, 

0.1 and 0.01 and the modal weights to =vk =Ik =1k  3, =2k  3 and  =3k  3. Figure 10 shows also the elastic 
deflection at the tip. From the results shown one can notice a good tracking performance with a small phase lag and 
steady-state errors of 0.015 rad (5.6%), mostly attributed to the presence of backlash in the DC motor. 
 
Strain feedback control results 
Some experimental results for the strain feedback control scheme are shown in figure 11. In this control scheme there 
are only three control parameters making the tuning of the controller easier when compared to the passivity-based 
control scheme. For the experiment shown the parameters were set to =pk 0.0000002, 0.00000005 and 

0.0000004. The upper graphic represents the joint angular position (end effector) of the flexible link while the 
lower graphic represents the voltage strain signal gathered from one of the gages attached to the flexible link. The 

=vk
=fk
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step reference (1.57 rad) is achieved in approximately 1 s, without overshoot. It is important to remark that this 
control method is simple and easier to be applied for regulation purposes on flexible links. 
 

 
Fig. 9.  Experimental results using the passivity-based PID control (regulation). Desired step signal (blue line)  

and tip position (red line) 
 
 

 
Fig. 10.  Experimental results using the passivity-based PID control (trajectory tracking). Desired trajectory (blue line) and tip 

position (red line) 
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Fig. 11.  Experimental results using the strain feedback control (regulation). Desired step signal (blue line)  

and tip position (red line) 
 

8 Conclusions 
 
In this work the modeling and tip position control of a single link flexible robot arm, whose motion is restricted to an 
horizontal plane, are addressed. It is shown that the negative mode reflected output yields acceptable results, since it 
makes possible to derive a passive transfer function to stabilize the overall system. The modal weights    provide a 
way to distribute the energy between the mode shapes, and they can be used also to reduce the vibration effects, but 
in change, lower vibrations of the flexible modes will increase the rigid mode motion. A passivity based PID control 
was implemented in order to achieve the asymptotic output tracking for the end tip position, obtaining a good system 
performance, even when the first three modes of the physical system are being excited. In addition, a strain feedback 
control scheme was applied to the one flexible link robot, obtaining better results with an easier implementation and 
tuning. 

ik
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