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Abstract

Artificial Intelligence applications in large-scale industry, such as thermal power plants, require the ability to
manage uncertainty because current applications are large, complex and influenced by unexpected events and their
evolution in time. This paper shows some of the efforts developed at the Instituto de Investigaciones Eléctricas
(IIE) to assist operators of thermal power plants in the diagnosis and planning tasks using probabilistic intelligent
systems. A diagnosis system, a planning system and a decision support system are presented. The diagnosis
system is based on qualitative probabilistic networks, and the decision support system uses influence diagrams.
The planning system is based on the Markov Decision Processes formalism. These approaches were validated in
different power plant applications. Current results have shown that the use of probabilistic techniques can play an
important role in the design of intelligent support systems for thermal power plants.

Keywords: power plants, diagnosis, probabilistic reasoning, Bayesian networks, influence diagrams, Markov
decision processes

Resumen

Las aplicaciones de Inteligencia Artificial (IA) en industrias de gran escala, como las centrales generadoras
termoeléctricas, requieren de la habilidad de manejar incertidumbre ya que estas aplicaciones son complejas e
influenciadas por eventos inesperados que evolucionan en el tiempo. Este articulo muestra algunos de los
esfuerzos desarrollados en el Instituto de Investigaciones Eléctricas (I1E) para apoyar a los operadores de plantas
termoeléctricas en sus tareas de planeacion y diagnostico, usando sistemas inteligentes probabilistas. Se presentan
en este articulo un sistema de diagnostico, un sistema de planificacion y un sistema de soporte a las decisiones. El
sistema de diagndstico esta basado en redes probabilistas cualitativas y el sistema de diagnéstico en diagramas de
influencia. El sistema de planificacion esta basado en el formalismo de los procesos de decision de Markov. Estos
tres sistemas fueron validados en diferentes aplicaciones dentro de la operacion de la planta termoeléctrica. Los
resultados obtenidos muestran que las técnicas probabilistas pueden jugar un importante papel en el disefio de
sistemas de ayuda en la operacién de plantas termoeléctricas.

Palabras clave: Plantas termoeléctricas, diagnostico, razonamiento probabilista, redes Bayesianas, diagramas de
influencia, procesos de decision de Markov.

1 Introduction

A thermal power plant can be described by a great variety of processes with multiples state variables, events and
disturbances. The state variables change over time in response to both events and disturbances, as well as the
transition of time itself. In this process, a variable (or signal) exceeding its specified range of normal operation is
considered an event, and a sequence of events that have the same underlying cause are considered as a disturbance.
During disturbances or faults, the operator must determine the best recovery action according to the type and
sequence of the signals received.

Besides the multimodal dynamics of a power plant there are other factors and conditions that make more
complex its operation. Faced with vast amount of raw process data, human operators will require the time consuming
task of analyzing the incoming data in order to understand the plant condition. On the other hand, current control
systems do not provide the means for intelligent interpretation of sensor data, diagnostic problems, copying with
large process disturbances or predicting the consequences of control action. Furthermore, the age of a plant, for
instance, increases the probability of failures in process equipment, which in the future will affect its reliability and
performance. At the same time, power plants require to keep higher production profits, safer operation and stringent
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environment regulation. In general, these situations not only increase the number of diagnoses and control decisions
that a human operator must make, but they limit operators to contribute timely with effective solutions.

The computer and information technology have been extensively used in thermal plant process operation.
Distributed control systems (DCS) and management information systems (MIS) have been playing an important role
to show the plant status. However, in non-routine operations such as equipment failures and extreme operation (start
up phase, changes in the load, etc.), human operators have to rely on their own experience. Process operations are
knowledge-intensive work tasks because thermal plants are large, complex and influenced by unexpected
disturbances and event over the time. The process industry demands new computer integrated technologies that
reduce operator’s working burden by providing operation support systems. Artificial Intelligence (Al) has been
considered promising to deal with problems that require both, human expertise and heuristic combined.

The Electrical Research Institute of Mexico (IIE) has been working in various fields related to operational
support using Al techniques. Special interest has been developed in uncertainty management, given the complexity
of the application. This paper describes some of the research in the context of probabilistic intelligent system
applications for the operation of thermal power plants. The first system uses Bayesian networks with quantified
states for diagnosis of gas turbines. The second system demonstrates the utilization of influence diagrams in the
diagnosis, and the third system applies Markov decision processes to find the optimal recommendation to the
operator in case of abnormal events or optimization ends.

This paper is organized as follows. First, section 2 presents a brief background about probabilistic graphical
models and introduces the related work in this area. Section 3 describes the basis of the diagnosis systems, namely
the qualitative and probabilistic diagnosis system in section 3.1, and the decision support system utilizing influence
diagrams in section 3.2. Next, section 4 explains the planning system based on Markov decision processes and how a
power plant application can be specified in this framework for making optimal decisions on line. In each of these
projects, the experiments carried out are described discussing the results obtained. Finally, section 5 concludes the
paper and establishes the future direction in this work.

2 Technical Background

This section briefly introduces the basis of probabilistic reasoning techniques utilized in this paper, namely Bayesian
networks, influence diagrams and Markov decision processes (MDP). The following sections will describe the
probabilistic intelligent systems developed under these formalisms.

2.1. Bayesian Networks
By definition, a Bayesian network is a directed acyclic graph (DAG) representing the joint probability distribution of
all variables in the domain [10]. The nodes represent the variables and the arcs represent the probabilistic relation
between the variables. The topology of the network gives direct information about the dependency relationship
between the variables involved. In particular, it represents what variables are conditionally independent given
another variables, and what variables are dependent of others. The variable destine of the arc is probabilistically
dependent of the variable at the source of the arc. This follows the Bayes theorem that allows calculating the
probability of a hypothesis given certain evidence.

As an example, if we want to calculate the probability of a faulty turbine hypothesis P(H | E) given that we

observe high vibration as evidence, we could easily calculate by counting the times that we observe high vibration
given that we knew that the turbine failed, i.e., P(E|H).

Given a knowledge base represented as a Bayesian network, it can be used to reason about the consequences of
specific input data, by what is called probabilistic reasoning. This consists in assigning a value to the input variables,
and propagating their effect through the network to update the probability of the hypothesis variables. The updating
of the certainty measures is consistent with probability theory, based on the application of Bayesian calculus and the
dependencies represented in the network.
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2.2. Influence Diagrams
An influence diagram (ID) is a Bayesian network augmented with decision variables and utility functions. Thus, the

nodes in the ID can be partitioned into three disjoint subsets: decision nodesV_, chance nodes V, , and utility nodes

V, . Chance nodes represent variables or events that are not under the direct control of the decision maker. Decision

nodes correspond to actions under the direct control of the decision maker. We suppose that there is a total ordering
among the decisions, which indicates the order in which the decisions are made. A stochastic policy for a decision
D is a probability distribution defined over D and conditioned on the set of its informational predecessors iPred ,
P (d [iPred(D)). If P is degenerate (consisting of ones and zeros only) then we say that the policy is

deterministic. For a summary of I1Ds see [8].

2.3. Factored MDPs

The formalism of Markov Decision Processes (MDPs) [11] provides a powerful framework for solving sequential
decision problems under uncertainty. A Markov decision process (MDP) models a sequential decision problem, in
which a system evolves in time and is controlled by an agent. The system dynamics is governed by a probabilistic

transition function @ that maps states S and actions A to new statesS’. At each time, an agent receives a reward
R that depends on the current state s and the applied actiona . Thus, the main problem is to find a control strategy
or policy = that maximizes the expected reward V over time.

Formally, an MDP is a tuple M =< S, A,®,R >, where S is a finite set of states {s,...,s }. A is a finite set
of actions for all states. @ : AxS xS is the state transition function specified as a probability distribution. The
probability of reaching state s’ by performing action a in state s is written as®(a,s,s’). R:Sx A — R is the
reward function. R(s,a) is the reward that the agent receives if it takes action a in state s.

For the discounted infinite-horizon case with any given discount factor y , there is a policy =~ that is a mapping

S — A that selects an action for each state, it is optimal regardless of the starting state, and that satisfies the
Bellman equation [4]:

V7 (s) = max {R(s,a) + D ®(a,s,s)V"(s') } (1)

seS

Two methods for solving this equation and finding an optimal policy for an MDP are: (a) dynamic
programming and (b) linear programming [11].
In a factored MDP, the set of states is described via a set of random variables S = { X ,..., X}, where each X,

takes on values in some finite domain Dom( X, ). A state x defines a value x e Dom( X, ) for each variable X, .

Thus, when the set of states S = Dom( X, ) is exponentially large, it results impractical to represent the transition

model explicitly as matrices. Fortunately, the framework of dynamic Bayesian networks (DBN) gives us the tools to
describe the transition model concisely. In these representations, the post-action nodes (at the time t+1) contain
smaller matrices with the probabilities of their values given their parents’ values under the effects of an action. For a
more detailed description of factored MDPs see [1].

2.4. Related Work

In the context of our application domain, some of the intelligent systems found in the literature are: ASTRAL [2],
which is a simulator-based assistant for power operator’s training. Its main functions are the recognition of the
actions executed by an operator in a plant simulator, and the classification of detected errors with respect to an
expected behavior. The main effort in this work is oriented to the development of explanation systems that support
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the operator’s understanding about the plant state. SOCRATES [14] is a real time assistant for control center
operators in alarm processing and energy restoration. The core of the system is SPARSE, an expert system initially
developed to use it in power transmission and distribution control centers. SOCRATES also provides an intelligent
tutor, SPARSE-IT, which fulfill two purposes: i) to show the users how a trained operator solves problems and ii) to
train the user to deal with specific situations and evaluate its performance. SART is a traffic control support system
for the French subway (SART is the acronym for the system in French). The SART project implements an intelligent
tutor with several functions such as: knowledge acquisition from operators, traffic simulation, model management of
the network to test with alternative cases, enumeration of alternative solutions to incidents, and training of new
operators. SART uses a multi-agent approach to have an evolutionary architecture.

3 Diagnosis systems

The objective of a diagnostics system is to determinate the main cause of a fault or disturbance. The analysis starts
when an event is detected by the supervisory system. The analysis is performed separately from other modules, so
that data acquisition can continue while the diagnosis system is under way. The IIE has been working in different
approaches for the diagnosis of faults and disturbance based on the following requirements: early detection and
diagnosis, isolability, robustness, multiple faults, explanation facility, adaptability, reasonable storage and
computational requirements. In this section two of these approaches will be presented, one using a Bayesian and
qualitative model, and other using influence diagrams.

3.1. Probabilistic and qualitative diagnostic model

This section presents a qualitative and probabilistic diagnosis system for gas turbines [6]. Three special challenges
are solved in this project. The first is the definition of the most common faults in the diverse stages of the operation
of a gas turbine, namely starting up, normal generation of power, and special maneuvers. The second is the
construction of probabilistic models of the gas turbine, given real data from the plant and special advice from the
experts. Third, since most of the signals utilized are continuous value variables, then a practical treatment is required.
Thus, the main contribution of this work can be established as follows: It presents a complete methodology for the
construction of real applications of Bayesian networks for diagnosis. This methodology consists in the discretization
of variables to their qualitative tendencies, the model induction, and their integration in an architecture for on-line
diagnosis.

Figure 1 shows the architecture of the proposed system. Data from the gas turbine simulator are utilized to
create data files that are used by the learning process. In this research, the K2 induction algorithm for Bayesian
network is used. K2 [3] uses a Bayesian score, P(Bs, D), to rank different structures and it uses a greedy searching
algorithm to maximize P(Bs, D). Inputs to K2 include: a set of nodes, an ordering on the nodes, an upper bound on
the number of parents a node may have, and a database D containing m cases of training data. For each node, K2
returns its most probable parents given the training data D . This is carried out off-line.

The learning module generates different models for different faults. This schema assumes that all the faults are
independent and assumes that multiple simultaneous faults can be detected independently, i.e., they do not cancel
one another. During simulator operation, data are collected every 250 ms. with the value of the variables before the
simulated fault, and some samples of data after the simulated fault. This data is given to the automatic learning
module and different models for different faults are obtained.

The initial experiments carried out in this project include the following faults:

o Low fuel supply pressure: The fuel provider presents low pressure in the supply. The control calculates
the aperture of the gas valve based on a certain supply pressure, so incorrect aperture is commanded and the
fault occurs.

e Fault in the compressor bleed valves: theses valves stabilize the pressure of the turbine in the start up
phase. The pressure may increase or decrease to dangerous levels if the valve is stuck at incorrect values.

e Permanent stuck of the fuel valve: the fuel valve gets stuck and has no response to the control
commands.
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Fig. 1. Software architecture for multiple faults diagnosis of gas turbines

The fuel valve malfunction has three main sources. First, excess of friction in the actuator of the valve causes an
increment in the difference between the real position and the commanded position. Second, the position of the valve
remains stuck in some value. Third, the valve may unstuck unexpectedly and cause a large amount of fuel flow. This
may cause an increment of temperature that the control algorithm will try to compensate, with the final result in a
dangerous unbalance of the process and an oscillation of temperature.

The inference module in Figure 1 is formed by independent threads that receive evidence from the data acquisition
module. Every one of these threads is a model of one fault considered. Data are refreshed every 250 ms, so the
calculation of the probability of the different faults is calculated on—line and reported to the operator.

3.1.1. Experiments

The model was applied for fault diagnosis in a gas turbine of thermal power plant. Data for the experiments were
obtained utilizing a gas turbine simulator at the I1E laboratory. Table 1 shows the set of variables utilized and their
identifier

Table 1. Variables involved in the experiments

IDentifier Description
MW generated power
RMW demand of power generation
XV valve of gas position
RXVc reference of valve of gas position
EXVc error in the valve of gas position
Pcc combustion chamber pressure
Piqg gas pressure in the burners

One experiment corresponds to the start up phase of the turbine, in which the speed goes from 0 to 5100 rpm
without load. Other experiment corresponds to the power generation phase. The simulation includes generating from
2 MW to the maximum load of 24 MW, and then returning to 2 MW.
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Practically all the signals in table 1 are continuous variables. Using a representation based on traditional
Bayesian networks, a discretization process is required. However, if a large number of intervals is chosen, then a
great amount of memory and computer time is required to obtain the posterior probabilities. An additional problem
when using a large number of intervals is that many configurations are not represented in the database, and so the
corresponding probabilities cannot be estimated, thus reducing the accuracy of the model. If a short number of
intervals is chosen, then lack of expressivity is obtained. In this work, a qualification of the variables is proposed,
inspired in the work by Suc and Bratko [13] that express the state of a system as qualitative changes. This is similar
to the human reasoning performed in the control rooms where operators observe if a signal increases, decreases or
remains unchanged. For example, the operator knows that at the start up phase, if the temperature increases, then the
speed must also increase. Thus, the nodes of the network can have one of three states, according to the relation
shown in table 2.

Table 2. Description of the qualitative changes of variable V

Condition Variable state
ifv,-v,, >0 S
ifv,—v,, <o S down
if |Vt —Via |S o rem

where v, represents the value of a variable at current time, v_, represents the previous value, and & represents a

small threshold dependant on a percentage according to the noise in the signal. Syp, Sdown, Srem are the state values that
a variable can take.

Using this qualification process, data obtained in the simulator are transformed and applied to the automatic
learning process.

Similar models were obtained for different faults as described in Figure 1. Table 2 shows the initial results. The
rows indicate the case study applied to the prototype. The columns describe the results obtained for the different fault
models given the same evidence.

Table 3. Preliminary results of the experiments

Case Fault 1 Fault 2 Fault 3
start up, no fault Not detected 15% Not detected
generating, no fault Not detected Not detected Not detected
simulating fault 1 100 % Not detected Not detected
simulating fault 2 Not detected 98 % Not detected
simulating fault 3 Not detected Not detected 95 %

Experiments consisted in the operation of the gas turbine under different operating conditions. One specific
condition was the start-up phase that was executed several times. Other conditions consisted in the steady power
generation with changes in the load. Notice that the simulation is governed by a distributed control system running in
parallel with the diagnosis system. In some of these experiments, and in certain point of time, a fault was inserted.
For example, in the first row of Table 2, the experiments in all the instances of this case (start up phase without
simulated fault), produced only a 15% probability of fault in the compressor bleed valve (Fault 2). This percentage is
considered very low, and is considered as no fault detected. The propagation of probabilities of Fault 1 and Fault 3
resulted in 0 %, or not detected. In the last 4 rows, a specific fault was simulated and reported. Additional tests were
developed in the laboratory, including variations of operational conditions and for other faults.
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3.2. Decision support system using influence diagrams

This section presents a gas turbine decision support system that manages the natural uncertainty found in
thermodynamic conditions of the gas turbine for power generation. This project tackles the problem of modeling the
state of a process and calculates the optimal decision that the operators may take, according to the state detected. The
final goal is the early detection of small deviations of the normal behavior in order to recommend actions for
maintaining the generation of electricity in optimal condition [9]. In other words, when the turbine manifests changes
in its behavior, the operator may decide to execute a revision of the turbine in order to observe defects in the turbine
components. This is similar to our decision to take our car to the service station for revision when feeling vibrations
or before vacations.

This project utilized a gas turbine simulator at the I1E laboratory. The simulation executed for the experiments
consists in the generation of electricity, increasing load from 2 MW to 23 MW of power. Six analog signals were
sampled every half second, so a number of 2111 records were obtained during a time close to 18 minutes. Table 4
explains the variables considered, their identifiers, their description, and the number of intervals in which every
variable was discretized. The number of intervals was chosen according to the value range and the requirements of
granularity in the experiments.

Table 4. Variables participating in the experiments

ID Description Num. states

MWdem Demanded power 8
Vgas Valve of gas position 10
MW Generated power 8
TTXD1 Exhaust gas temperature 1 10
TTXD2 Exhaust gas temperature 2 10
TTXD3 Exhaust gas temperature 3 10
Decision decision 3
Utility Utility 24

The learning module of Elvira [5] with the K2 algorithm were executed utilizing the data table acquired in the
simulation. The K2 algorithm was chosen since it permits to suggest the structure of the network through the
ordering of the variables in the data table. This ordering was obtained with expert advice.

The MWdem variable represents the power demanded by the operator. In an automatic control system, this is the
only set-up that the operator manipulates. The rest of the variables will move according to this set-up. The position
of gas control valve Vgas, is the control variable that represents the aperture of the gas valve. Thus, if more power is
demanded, wider aperture will be read in this variable. Variable MW is the measure of the mega watts generated. If
the gas valve is opened, then the mega watts will increase. Finally, the TTXDi variables represent the exhaust gas
temperature in the turbine, at different parts of the circumference.

Figure 2 shows the resulting influence diagram involving the six variables. In fact, the learning module defined
only the structure concerning the six chance nodes (ovals in Fig. 2). Experts consider that the decision for turbine
revision can be taken knowing the demand of power and the aperture of the gas valve. This means that if certain
demand of power requires more gas than normal situations, then this is considered as a deviation. Thus, power plant
operators can revise and clean the turbine while working (with low load of course), or stop the turbine for an off-line
revision, or maintain the turbine working. The Decision node can consequently take three values: in-line revision,
off-line revision, and do nothing.
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DECISION

Fig. 2. Influence diagram obtained with automatic learning and experts advice

The utility of the decision depends only on the power demand and the decision itself. Thus, the Utility node has
24 values corresponding to all the combinations between 8 values of MWdem and 3 values of Decision. The utility
function considers the cost of taking a decision and the gain obtained if this decision is made in the current situation.
For example, if more power is demanded, the associated cost of stopping the turbine for an off-line revision is much
higher and the benefit may not be high since full power was demanded. On the contrary, if there was a fault detected
and the decision is to make a major revision, then the cost is high but the benefit is also very high. In this case, do
nothing can be cheap but the benefits can be negative, e.g., a major malfunctioning of the turbine.

Therefore, the utility function defined in these experiments consists on an equation depending on the parents of
the utility node, i.e., the decision made and the demand of power. The equation relates the cost of the decision made
and the gain obtained. Experiments are being carried out to find the best equation that produces the optimal results
according to controlled scenarios.

3.2.1. Experiments
Several tests were made with different discretization values in order to see the best result in the learning process.
Table 5 shows the results obtained when the program carries out ten different cycles of execution (at random).

Table 5. Results obtained in ten executions of the prototype

MWdem | Vgas | MW | TTXD1 | TTXD2 | TTXD3 Decision
Off —line In—line nothing
16 (5) 38(2) | 22(7) | 353(5) 331(5) | 503(8) 10.0 11.0 5.0
14 (4) 41(2) | 123) | 370(6) 224 (2) | 454(7) 8.0 9.0 4.0
15 (4) 59(5) | 13(4) | 217(2) 156 (1) | 433(7) 8.0 9.0 4.0
17 (5) 7709) | 12(3) | 183(1) 401 (6) | 435(7) 10.0 11.0 5.0
9(2) 473) | 4() 302 (4) 525 (9) | 234(3) 4.0 5.0 2.0
15 (4) 65(7) | 12(3) | 424(7) 107 (0) | 510(9) 8.0 9.0 4.0
2 (0) 48(4) | 19(6) | 141(1) 392 (6) | 180 (1) 0.0 1.0 0.0
2(0) 47(3) | 18(5) | 214(2) 268 (3) | 325(5) 0.0 1.0 0.0
11 (3) 60(6) | 8(2) 384 (6) 453 (7) | 417(7) 6.0 7.0 3.0
23 (7) 69 (7) | 16(5) | 284(4) 376 (6) | 417(7) 0.0 15.0 0.0

The first six columns describe the current value of the corresponding variables and their assigned interval. The
value at the left is the real value read by the system, and the value in parenthesis represents the number of
discretization interval corresponding to the value. For example, in the first cell, variable MWdem has a value of 16
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MW that corresponds to the interval 5 in the discretization. The last three columns correspond to the expected
utility values for each possible decision. For example, in the first row, the best decision to recommend is the
execution of an in-line revision (value of 11), and the worst decision is to do nothing (value of 5). The rest of the
rows also decide the in-line revision but with different levels of intensity. For example, the last row suggests in-line
revision with 15 to 0, in contrast to 11 to 10 units in the first row. In the last row case, in-line revision is mandatory.

These results of course depend on the knowledge captured by the experts in two aspects. First, the structure of
the influence diagram, and second the numerical parameters required in the reasoning. They are the a-priori and
conditional probabilities of the chance nodes, and the utility values stored in the utility node. These ten runs of the
prototype demonstrated the advantage of performing a state detection of the system and the in-line generation of the
optimal action recommendation in the current situation. All the decisions suggested by the system were discussed
with experts who analyzed the current situation and the suggestion. All they agree in the accuracy and opportunity of
the system recommendation.

4 Planning system

A planning system automatically chooses and organizes actions, by anticipating their expected outcomes, to achieve
some pre-established goals. In the case of the Markov Decision Process formalism, the planning system assumes that
the outcome of an action is probabilistic and the goals are specified as utility/cost functions. Our planning system, in
particular, provides to power plant operators with a set of suggested actions or operational recommendations to
optimize safety and power generation. Every time a recommendation is executed, the plant state process changes into
a new state which directly maps to another recommendation. The sequential concatenation of these recommendations
produces an optimal action plan that manages the process behavior to achieve a desired goal state. In this section, we
will set an example of a planning problem specification with the MDP methodology, and we will show the results
obtained in a thermal power plant simulator using a planning tool for learning and solving factored MDPs.

4.1. Problem specification

The set of states in a power plant domain are directly obtained from the relevant operation state variables, and
discretized according to the abstraction and refinement method detailed in [12]. The set of actions corresponds to the
commands that the operator can decide to execute, e.g. open/close a valve or start/stop a pump. The reward function
for the MDP is based on the optimal operation response, for example, one could optimize safety, utility or risk. The
transition function specifies a probability distribution over the effects on the process after a command execution. The
planning problem is to find a policy function that maps states to recommended actions to optimize an expected utility
function.

The planning system is based on SPI (“Planning under Uncertainty System™ in Spanish) a computational tool
that integrates capabilities for model approximation from data, e.g. transition and reward functions, and dynamic
programming methods for solving MDPS such as value iteration or policy iteration algorithms. In its general form
the SPI’s learning module builds a decision model from simulation data to produce a problem specification. The
problem specification is then entered to the SPI’s dynamic programming module for finding an optimal policy that
can later be queried. For complex problem specifications (more than 10,000 states), we use the SPUDD system [7],
which includes a more powerful version of the value iteration algorithm. The SPUDD’s power relies on its way to
represent transition, value and policy functions using algebraic decision diagrams. Since transition functions are
represented more compactly as two-stage Bayesian networks, SPI uses Elvira [5] to represent, infer and learn
transition functions. Similarly, since reward functions can be represented in its factored form as decision trees, SPI
uses Weka [15] to approximate a reward model from data in the case of a non-structured reward function.

4.2. Experiments

The planning system was tested in the steam generation subsystem of a thermal power plant simulator. The idea is to
obtain a control strategy that considers stochastic commands on the valves and, according to an experience-based
preference function, maximizes the security in the drum, and/or the power generation.
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For a first set of experiments, we specified a 5-action problem with 5 hybrid variables (Fys, Frw, P4, 9, d). We
also defined a simple binary preference function that rewarded safety parameters in the drum, Py and Fs The
relationship between their values and the reward received can be seen in figure 3 (left). Central black squares denote
safe states (desired operation regions), and white zones represent non-rewarded zones (indifferent regions). To learn
the model and the initial abstraction, samples of the system dynamics were gathered using simulation. Black dots in
figure 3 (right) represent sampled states with positive reward, red dots have no reward, and white zones were simply
not explored. Figure 3 (left) shows the state partition and policy found (green arrows) by the learning system. For
this simple example, although the resulting policy is not very detailed (states are quite large), it follows the idea of
going to the lower black regions. When analyzed by an expert operator, this control strategy is near optimal in most
of the abstract states. We solved the same problem but adding two extra variables, the position for valves msv and
fwv, and using 9 actions (all the combinations of open-close valves msv and fwv). We also redefined the reward
function to maximize power generation, g, under safe conditions in the drum. Although the problem increased

significantly in complexity, the policy obtained is "smoother" than the 5-action simple version presented above. To
give an idea about the computational saving, for a fine discretization (15,200 discrete states) this problem was solved
in 859.2350 seconds, while our abstract representation (40 gstates) took only 14.2970 seconds. In both cases, the
approximated models were found using the SPUDD system [7].
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Fig. 3. Process control problem. Left: reward distribution, state partition and policy found. Right: exploration trace

5 Conclusions

In this paper, we showed three different intelligent systems using probabilistic techniques for diagnosis, decision
support and planning tasks in a thermal power plant.

The first system is based on a probabilistic model over qualitative changes of the variables in the application.
The system demonstrates how a probabilistic diagnosis can be carried out utilizing common expert criteria over
signals increasing their value, decreasing or staying. The model was evaluated in a simulated environment for gas
turbines of a 350 MW thermal power plant. The second system utilizes influence diagrams that use probabilistic
reasoning and decision theory techniques. The system demonstrates that the use of decision theory together with
probabilistic modeling provide more robust diagnosis capabilities. Experiments on a gas turbine simulator have
shown the feasibility for the use of this technique in real applications. Finally, the planning system uses the
formalism of Markov Decision Processes (MDPs) which provide a powerful framework for solving sequential
decision problems under uncertainty. Given a problem specification, the objective of the MDP is to obtain the
optimal policy for getting the plant to a state under optimal operation. The experiments, developed in a combined
cycle power plant simulator, demonstrated that probabilistic automated planning can solve complex problems
successfully.
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We consider that the contributions of this work can be both scientific and technological. The scientific
contribution consists in that our work relies on the use of probabilistic techniques applied to real-world domains.
Technologically, we contribute to the safe and economic operation of power plants.

In the future, we plan to integrate these diagnoses and planning systems in the form of an intelligent support suite
(1SS) to aid human operators of real thermal power plants. This 1SS will be used to assist in the early diagnosis,
prediction and management of faults and disturbances that could lead the plant to a shutdown condition.
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