
Incompressibility and Lossless Data Compression: An Approach by Pattern
Discovery

Incompresibilidad y compresión de datos sin pérdidas: Un acercamiento con descubrimiento
de patrones

Oscar Herrera Alcántara and Francisco Javier Zaragoza Martínez

Universidad Autónoma Metropolitana Unidad Azcapotzalco
Departamento de Sistemas

Av. San Pablo No. 180, Col. Reynosa Tamaulipas
Del. Azcapotzalco, 02200, Mexico City, Mexico

Tel. 53 18 95 32, Fax 53 94 45 34
oha@correo.azc.uam.mx, franz@correo.azc.uam.mx

Article received on July 14, 2008; accepted on April 03, 2009

Abstract
We present a novel method for lossless data compression that aims to get a different performance to those
proposed in the last decades to tackle the underlying volume of data of the Information and Multimedia Ages.
These latter methods are called entropic or classic because they are based on the Classic Information Theory of
Claude E. Shannon and include Huffman [8], Arithmetic [14], Lempel-Ziv [15], Burrows Wheeler (BWT) [4],
Move To Front (MTF) [3] and Prediction by Partial Matching (PPM) [5] techniques. We review the
Incompressibility Theorem and its relation with classic methods and our method based on discovering symbol
patterns called metasymbols. Experimental results allow us to propose metasymbolic compression as a tool for
multimedia compression, sequence analysis and unsupervised clustering.
Keywords: Incompressibility, Data Compression, Information Theory, Pattern Discovery, Clustering.

Resumen
Presentamos un método novedoso para compresión de datos sin pérdidas que tiene por objetivo principal lograr un
desempeño distinto a los propuestos en las últimas décadas para tratar con los volúmenes de datos propios de la
Era de la Información y la Era Multimedia. Esos métodos llamados entrópicos o clásicos están basados en la
Teoría de la Información Clásica de Claude E. Shannon e incluye los métodos de codificación de Huffman [8],
Aritmético [14], Lempel-Ziv [15], Burrows Wheeler (BWT) [4], Move To Front (MTF) [3] y Prediction by Partial
Matching (PPM) [5]. Revisamos el Teorema de Incompresibilidad y su relación con los métodos clásicos y con
nuestro compresor basado en el descubrimiento de patrones llamados metasímbolos. Los resultados
experimentales nos permiten proponer la compresión metasimbólica como una herramienta de compresión de
archivos multimedios, útil en el análisis y el agrupamiento no supervisado de secuencias.
Palabras clave: Incompresibilidad, Compresión de Datos, Teoría de la Información, Descubrimiento de Patrones,
Agrupamiento.

1 Introduction

In the last decades several methods have been proposed for lossless data compression such as: Huffman [8],
Arithmetic [14], Lempel-Ziv (LZ) [15], Burrows Wheeler (BWT) [4], Move To Front (MTF) [3] and Prediction by
Partial Matching (PPM) [5]. These methods are based on the Classic Information Theory of Claude E. Shannon
where entropy is the measure of average information assigned to each symbol in a sequence with an associated

symbol distribution , where is the symbol probability for infinite sequences or symbol probability
estimator for finite sequences. Classic methods have a good performance with plain text, computer generated
graphics, and other files that: i) involve a reduced number of ASCII symbols, ii) their symbols follow a non-uniform
distribution, iii) their symbols follow predefined grammatical rules, or iv) have local correlation between neighbor
symbols. As classic methods have similar performance for this kind of files they are often compared with corpus

is

}{1 i
N

i pP == ip

Computación y Sistemas Vol. 13 No. 1, 2009, pp 45-60
ISSN 1405-5546

46 Oscar Herrera Alcántara and Francisco Javier Zaragoza Martínez

such as Calgary [17] and Canterbury [13]. However, those corpora are not representative of our current needs:
Internet traffic and storage systems involve other kind of files such as audio, image, video, biological sequences,
climatic, and astronomic data that cannot be successfully compressed with classic methods [11].

In Section 2 we review the Incompressibility Theorem (IT) which states the non-existence of any method that
compresses all sequences and we comment some consequences on lossless data compression, one of them is that all
methods converge to the same performance over a large set of files. As we typically do not compress a large set of
files1 we should have a variety of compressors that represent alternatives to face the challenge of compressing
different kinds of them, therefore it is more attractive for our research to create a compressor that aims for a different
performance to classic methods, that focuses on files with patterns with no local correlation between neighbor
symbols, that do not follow predefined grammatical rules, and that have quasi-uniform symbol distribution (high
entropy). Since classic corpora do not deal with these files we prefer to implement an algorithm to create files with
these characteristics and apply a statistical methodology (see Section 3.2) to measure the performance of our
compressor.

If a comparison with classic corpora were made, a lower performance than classic is expected since our method
does not focus on these benchmarks, however according to the IT we must have a better performance by focusing on
subsets of files with non-trivial patterns. Moreover, our compressor can be applied after a classic method (post-
compression) which does not occur with classic methods such as Huffman, LZ, and PPM methods because of their
similarity (see Section 2.1). Other methods can be applied afterwards, as is the case of MTF [3] that essentially
encodes a sequence by resorting to a last recent used memory (array) then it uses the index of the array
corresponding to the current symbol of the sequence and moves the symbol to the front of the array (index equals
zero). This method models the correlation of the immediate context and it applies successfully when a non-uniform
distribution of indices is generated, so other entropic method can be applied. The BWT [4] method resorts to MTF by
building sequence permutations that are expected to be well suited for MTF and then applies and entropic method.

Sections 2.1.1, 2.1.2, and 2.1.3 pretend to illustrate how Huffman, LZ, and PPM methods exploit the local
redundancy and correlations in the symbol neighborhood. A similar analysis can be done for the other classic
methods but it is not included here to save space.

In Section 3 we present a novel pattern-based lossless data compressor that aims to be different to the classic
methods by encoding groups of non-necessarily neighbor symbols called metasymbols instead of encoding single
symbols, subsequences, or modeling the local symbol correlation.

A simple example is presented by the sequence xyazbcxydze where we can see the metasymbol α=xy*z
repeated twice and a residual metasymbol called filler β=**a*bc**d*e; the corresponding mapped sequence looks
like αβα and the reconstruction is given by an ordered superposition: α=xy*z, αβ=xyazbc**d*e and finally
αβα=xyazbcxyde.

As we pointed out, we do not use a predefined and human selected corpus to test our compressor but a statistical
methodology (see Section 3.2) where a set of files with patterns is automatically generated and a probabilistic
interval confidence of its performance is provided. Note that this approach does not mean that the method is not
general for lossless compression, it can be applied to any finite sequence (file) what is assumed to be generated by a
non-ergodic information source. If the sequence has metasymbols, it would be compressed but there is no warranty
for this as with the rest of the compressors according to the IT.

In Sections 3.2 and 4 we present experimental results and comparisons with classic methods; the first goal is to
show (statistically) that our method has different and better performance than classic methods for files with patterns.

Finally, in Section 5 we present conclusions and comment about applications and future work.

n n21Given a file that stores a sequence of symbols, a large subset means ~ different files.

Computación y Sistemas Vol. 13 No. 1, 2009, pp 45-60
ISSN 1405-5546

Incompressibility and Lossless Data Compression: An Approach by Pattern Discovery 47

Fig. 1. Mapping function for compression f and decompression f −1

2 Incompressibility and compression

An information source generates infinite sequences with symbols taken from a finite alphabet

with an associated probability distribution . In this work we will use string, message, or
indexed symbol array to refer to a finite symbol sequence where each probability is estimated with its relative
frequency.

...321 iii sss

{1
N

iP ==

is
},...,,{ 21 Nsss=Σ }ip

Let be any sequence of bits, , and let be the set of all different sequences . Assume an
original sequence is mapped to other that uses i bits. If

nA n 1≥n

iA
nF n2 nA

nA ni < we say is compressed to , if nA iA ni = then we
say that there is no compression and if we say was expanded to . The compression rate ni > nA iA r (smaller is
better) is defined as:

.
n
ir = (1)

A lossless method achieves compression with a mapping function f that must be injective in order to warrant the

decompression through the inverse function f−1 (see Figure 1).
Classic methods focus on files with correlation between neighbor symbols and include plain text, computer

generated images and some other files with minimum entropy. The entropy is defined as

.)()(
1

∑ −=
=

N

i
ii sIpSH (2)

where is the associated information for the i -th symbol defined by Shannon; note that this definition
assumes that symbols are independent, consequently

)(log)(2 ii pSI =

)()()(11 ++ += iiii sIsIssI (3)

Huffman’s compression method achieves compression by building a binary tree and assigning Huffman codes

 for each of bits (in the exampleih is k ⎡ ⎤ 35log2 ==k), the mapping assigns short codes with khi < to the most

repeated symbols with frequency and large codes for those with fewer repetitions, i.e. if khi > . (see Figure 2)
The corresponding is assigned by concatenating a “0” for each left movement and a “1” for each right

movement in the tree. Figure 2 shows the Huffman codes for the string “aaaaaaaabbbbccde” and the mapping
, , ,

ih

100=→ aha =→ bhb 110=→ chc 1110=→ dhd and 1111=→ ehe .
Huffman’s mapping is optimal in the sense that it minimizes the average length for each symbol given by

Computación y Sistemas Vol. 13 No.1, 2009, pp 45-60
ISSN 1405-5546

48 Oscar Herrera Alcántara and Francisco Javier Zaragoza Martínez

∑
∑=

=

=
N
i i

N
i ii

f
hfl

1

1
_

 (4)

which means that there is no other coding that produces a lower average length assuming that symbols are
independent.

Fig. 2. Huffman Coding and Huffman Tree

Fig. 3. Mapping function for expansion (dashed arrows) and compression (non-dashed arrows)

The symbol independence assumption restricts the performance of Huffman’s technique because symbols are

typically correlated and have conditional probabilities. These conditions are exploited by the PPM technique where
the mapping considers conditional probabilities for the previous symbols called context. As the sequence has
conditional probabilities between and the context ..., PPM produces better results than the other classic
methods and is considered the state of the art in lossless data compression. We remark that this method applies
successfully to sequences with the already mentioned properties of using reduced number of ASCII symbols, follow
a non-uniform distribution, follow predefined grammatical rules, or have local correlation between neighbor
symbols. But this is not the case of multimedia, astronomical, and biological sequences, so we propose an alternative
lossless compressor based on the identification of patterns with non-contiguous context.

js 321 −−− jjj sss

At this point we consider important to recall the Incompressibility Theorem: For all n, there exists an
incompressible string of length n. Proof: There are strings of length n and fewer than descriptions that are
shorter than n. For it is obvious that each file is incompressible because both of them (0 and 1) have the
minimum one bit length and f can interchange 0 1 and 1 0 or keep them unchanged. Now consider the
restriction of not to expand any file, the elements of

n2

→

2

n2
}1,0{1 =F

→
11,10, }01,00{=F cannot be compressed because the only way

to do this is mapping to but they were already used; as the same occurs for n 2 we have shown that there is no
method that promises to compress at least once and never to expand. The only way to achieve compression is to

2F 1F ≥

Computación y Sistemas Vol. 13 No. 1, 2009, pp 45-60
ISSN 1405-5546

Incompressibility and Lossless Data Compression: An Approach by Pattern Discovery 49

allow some sequences to be expanded, so elements in can be assigned to elements of for nF jF 1,...,2,1 −= nj (see
Figure 3). Now let expand the families in order to compress , the average compression rate for

 compressed sequences of is
121 ,...,, −nFFF nF

22 −n
nF

22

21
1

−

∑
=

−
=

n

n
i

i

n
i

r (5)

which can be simplified to

n
nr n

n

)22(
2)2(2

−
+−

= (6)

for n>>2, →r 1 meaning that if we compress 22 −n different files of the average compression will always tend
to one in spite of the f we use. Note that in this approach some files of will be mapped to and achieve the
lowest compression rate but other files will be mapped to families which provide undesirable high compression rates.

nF
Fn 1F

The success of a compression method relies in the mapping of one sequence to another with minimum length.
But what is the best method? Does this method exist? What about random sequences? If a given method fails

then we should try another (different enough) method pretending to fit the data model but this is typically unknown;
at this point we pretend to provide an alternative to classic methods.

In the previous discussion we use a unique injective mapping function and we are restricted to assign a
compressed sequence for each original sequence, now we explore the possibility of assigning the same compressed
sequence to different original sequences through different mapping functions, for this purpose we use m bits to
identify each function and proceed to compress 22 −n sequences of n bits by assigning times the same
starting with those of minimum length and ending with . We require that

m2 iA

1A zA

∑=−
=

+z

i

imn

1
222 (7)

Then

1)2
2

22(log2 −+
−
m

n

, 1≥z , m ≥ 0 (8) =z

so the average compression rate for sequences is 2−n2

)22(

21

−

∑
+

=

+
=

n

miz
i n

mi

r

(9)

The minimum value for r =1 in (9) is achieved by m=0 which suggests to use only one function because

unfortunately the use of bits to identify the mapping functions increases the effective compression rate.
Because all compressor functions have the same average compression rate over a large set of files (~2n) and

typically we do not compress all of them, the mapping function must be chosen to fit the data model in order to
achieve low compression rates, for example n=1024 bits produce different files (more than a googol) so
we will not compress all of them but a subset. Classic methods focus on the same subset of files where high

2561024 162 =

Computación y Sistemas Vol. 13 No.1, 2009, pp 45-60
ISSN 1405-5546

50 Oscar Herrera Alcántara and Francisco Javier Zaragoza Martínez

correlation between neighbor symbols and non-uniform distribution are accomplished; in contrast we propose a
different model based on the identification of repeated patterns called metasymbols which group non-necessarily
adjacent symbols. The compressed sequence includes: i) the pattern description and ii) the sequence description
considering these patterns; with both of them it must be possible to express the sequence in the most compact way.

Of course, we assume that sequences have patterns but what if there are no patterns? We say that “they are
random” or “incompressible”.

2.1 Practical considerations
In the last decades, several implementations of classic compressors have been developed and typically they have
been modifications of older methods. Some of them are gzip that is a combination of LZ77 and Huffman coding;
compress that is a UNIX compression program based on LZ techniques; bzip-bzip2 that uses BWT and Huffman
coding, and so many more program implementations.

In practice, the length of the compressor program is assumed to be zero, that is, we transmit a compressed
sequence and assume that the receptor has a copy of the decompressor program. The mime type associated with the
file extension (.gz for gzip, etc.) represents the identifier of the applied method (mapping function) that was chosen.
The compressor program defines a format for the bits in the compressed file that allows the decompressor program to
recover the original file.

Table 1. Huffman Coding and Symbol Length Selection

n Huffman Coding Compressed sequence Length
1 0 01 0000000000000000 18
2 0 011 00000000 11
4 0 01111 0000 9
8 0 011111111 00 11
16 0 01111111111111111 0 18

Consider a compression mapping that represents the sequence 11 as 0 and the sequence 001 as 00, if we

transmit 000 the decoder will not be able to decompress it because it can be interpreted as 00,0; 0,00 or 0,0,0
consequently we need to include more bits for the “header” or “format” to indicate the start and end of a compressed
code. The format is not unique and in the last example we can use a bit set so 01001 indicates start-0-end start-00-
end. Note that the inclusion of header bits will increase the effective compression rate and it should be considered in
the encoding process, which does not occur for example in the Huffman encoding.

2.1.1 Huffman method: Now we review a mapping function for the Huffman encoding, as we will see the optimal
encoding will be assigned by neglecting the header size and encoding individual symbols without considering the
context.

For a given alphabet and a probability distribution, Huffman’s coding builds a prefix code where each mapped
is not a prefix of any other, for exampleih 11 =h , 012 =h , 0013 =h ,… have this property and allow to transmit

sequences without ambiguity. As we pointed out, for a given n we need to expand some sequences in order to
achieve compression and Huffman’s technique is not the exception as is shown in Figure 2, where a fixed length
encoding requires 3 bits for each symbol whereas Huffman’s encoding uses 1, 2, 3 or 4 bits.

In Shannon’s Information theory the symbol is an entity with an associated probability but does not define the
length of each symbol, the base of logarithms indicates the measure of information, refers to Bits,

 to Nats, and refers to Hartleys.
)(log)(2 ipsI =

)(log)(ie psI =)(log)(10 ipsI =
For example, in the sequence 00000000011011 we can choose two bits as symbols so the file looks like 00 00

00 00 01 10 11 and, although the Huffman symbol mapping may not be unique, the average length will be the same
for a fixed size or number of bits for each symbol.

Huffman’s technique assigns optimal codes in the sense that there is no better coding that reduces the length of
the mapped sequence assuming an ideal header (zero bits to describe the mapping itself) and symbol independence.

Computación y Sistemas Vol. 13 No. 1, 2009, pp 45-60
ISSN 1405-5546

Incompressibility and Lossless Data Compression: An Approach by Pattern Discovery 51

The selection for the number of bits n for each symbol is selected by the user. Better results can be achieved
by exploring different possibilities for n. Consider the next simple example B=1111111111111111, Table I shows
different values for n, the corresponding Huffman coding and the compressed sequence with the corresponding
length.

nA

From Table I it is clear that n=4 is the best choice and the encoded message B is given by 01111 0000 where the
header is formed by the associated Huffman code “0“ and 1111 means the selected symbol, therefore 0000 means
1111111111111111.

Huffman encoding typically predefines a symbol size (8 bits) but in fact it could offer better compression results
if we try other symbol sizes, and even more if the encoding considers the header size as we discuss in Section 3.

Of course, it will take a lot of additional time but that leads to the dilemma, how much do we invest in time,
how much do we compress.

Table 2. Mapping function for lz technique (x means don’t care)

Offset Matching substring length Next symbol Current position Partially encoded sequence
- - - 0 -

000 000 00 1 00
001 001 00 3 00 00 00
001 001 01 5 00 00 00 00 01
000 000 10 6 00 00 00 00 01 10
000 000 11 7 00 00 00 00 01 10 11
111 111 00x 15 00 00 00 00 01 10 11

00 00 00 00 01 10 11

2.1.2 Lempel Ziv-Dictionary Method: Now we review dictionary techniques, as we can see they are adequate to
compress text files that have a reduced set of ASCII symbols and a non-uniform symbol distribution. But this is not
the case for multimedia and other files characterized by a quasi-uniform distribution.

LZ techniques use adaptive mapping functions that change as the sequence is followed from left to right and the
symbols are indexed from positions 0 to 1−L . Consider an example with n=2 for the symbol length and the
sequence “00 00 00 00 01 10 11 00 00 00 00 01 10 11”, the compression is achieved by mapping to 3-tuples (Offset,
MatchingSubstringLength, NextSymbol) where the offset is the number of symbols of the immediate context that can
be reviewed, the MatchingSubstringLength represents the length of the largest substring that matches the context
with the symbols (window) to the right of the current symbol and the third element NextSymbol encodes the symbol
that breaks the matching in front of the current position. Suppose we use 3 bits for the offset that determines the
maximum length for the matching substring, we start to map the first symbol “00” as (0,0,00) because we have no
previous context and there is no matching substring, now the current position is 1; the next symbols “00 00” are
mapped as (1,1,00) because the previous context matches “00” and encode the next symbol “00”, now the current
position is 3; in Table II we describe the full encoding process for this sequence.

As we can see in Table II, the same subsequence has different codings depending on the immediate context and
the compression rate depends strongly on the possible high context correlation between neighbor symbols. In
practice the optimal number of bits for the offset is unknown and it defines the length of the context window, the
larger the offset length the larger the context window and the probability of matching increases but the effective
compression rate tends to increase; if the context window is reduced the matching probability will decrease.

2.1.3 Prediction by Partial Matching (PPM) Method: PPM uses an adaptive and sophisticated encoding where the
main idea is to estimate the conditional probabilities for the current symbol to be mapped considering contexts of
order 1, 2, 3 . . . , k expressed as , as the sequence is read from left to right the table is updated
for each symbol and order context. The length of the encoded sequence for decreases when the conditional
probability increases and the k-th order context is preferred to use, meaning a high correlation between neighbor
symbols, however it fails when is not in the table and the previous k 1 context is used. For this

0C

−

01321 ... CCCCCC kkkk −−−

01321 ... CCCCC kkk −−−

0C

Computación y Sistemas Vol. 13 No.1, 2009, pp 45-60
ISSN 1405-5546

52 Oscar Herrera Alcántara and Francisco Javier Zaragoza Martínez

purpose an escape sequence ESC must be included and it requires bits where is the probability
estimator for the escape sequence calculated for the corresponding order context. If the (1) order context fails it
uses the lower context and the worst case is to consider the 0-order context requiring (1) escape sequences with
no conditional probabilities (independent symbols) as Huffman’s coding does, so is encoded with

)/1(log2 ESCp

0C

ESCp
−k

−k
)1(log2 +Q bits,

where Q is the number of different subsequences in the sequence for a given order context. Because of the
penalization on escape sequences, in practice low order contexts are used (typically 1, 2, 3, 4 or 5).

When there exists high correlation between low order contexts, there are enough repeated subsequences in the
conditional probabilities table and it follows a non-uniform distribution, PPM achieves better compression rates than
the other classic methods and this explains why it is considered the state of the art in lossless data compression.

Fig. 4. A bi-dimensional representation of a message

We remark the condition of correlation between low order context that defines the kind of files that classic

methods are adequate to compress, but this is not satisfied by multimedia, astronomical, biological, and other
sequences.

An alternative to compress multimedia sequences has been the lossy compressors such as MP3 [7] and JPEG
[12]; MP3 creates a psychoacoustic model of the human ear and eliminates non-relevant information, after this a
classic compressor is applied; in the case of JPEG a visual model of the human vision is created to eliminate the non-
appreciable visual information of the original sequence and then a classic compressor is applied. In both cases there
is a strong dependence on the entropy of the intermediate and modified sequence that depends on the sequence itself
and the quality factor of the lossy step. Because PPM is the state of the art we may think that it could be widely used
but this is not true because of its relative high computational cost derived from the number of required calculations to
update the table of conditional probabilities when it is compared with other classic methods.

Classic methods are based on the principle of symmetry: the same time for compression and decompression.
But the web, as a client-server system, is not symmetric. The servers are powerful and have shared resources for the
clients, the clients are typically end user systems with low processing capacity and consequently we can compress a
single multimedia file at the server side without time priority (offline) but focused to lower compression ratios.
Fractal image compression [1][2][16] follows this approach and inverts a lot of time to compress an image, the
decompression time is lower than the compression time and is used by multiple clients of web and CD/DVD
encyclopedias.

In the next section we present a non-symmetric method for lossless data compression that is based on the
identification of symbol patterns.

3 Metasymbolic lossless data compression

Metasymbolic lossless data compression identifies symbol patterns called metasymbols that groups non-necessarily
neighbor symbols in a sequence S and have the next properties:

 1) Length iM . The number of symbols that the i-th metasymbol includes.

 2) Frequency if . The number of repetitions of the i-th metasymbol in S.

Computación y Sistemas Vol. 13 No. 1, 2009, pp 45-60
ISSN 1405-5546

Incompressibility and Lossless Data Compression: An Approach by Pattern Discovery 53

 3) Gaps . The spaces between the symbols of a metasymbol. }{ ig
 4) Offsets . The indices of the first symbol for all the instances of a metasymbol. }{ io

These properties define the metasymbol structure and they require bits to be encoded, so our goal is to minimize
the number of bits required to describe the metasymbols plus the number of bits of the encoded sequence using these
metasymbols.

Without loss of generality let n=8 and consider a hypothetical sequence S with extended ASCII symbols taken
from , ”A0a1D2b3E4c5F6d7e8B9f10g11C12h13i14j15k16D17l18E19m20F21n22ñ23o24A25p26A27q28r29s30t31u32v33B34

w35B36C37x38C39D40y41E42D43F44E45z46F47” then
}{ 88 AF = =S

=S 48. To ease visualization we include a two-dimensional matrix
for S shown in Figure 4.

We can appreciate a first metasymbol (“ABC”) at positions 0, 25 and 27 with gaps of size 9 and 3 respectively.
In what follows we will use the representation { }2,25,0:391 CBAM = which means: There is an “A” at position 0,

a “B” 9 positions away from “A” and a “C” 3 positions away from “B”; the metasymbol is repeated at position 25
and 2 away from 25 (25+2=27). A second metasymbol is { }3,23,15,2:222 FEDM = . The symbols that do not form
repeated patterns are lumped in a pseudo-metasymbol that we call the filler. One possible efficient encoding depends
on the fact that the filler is easily determined as the remaining space once the other metasymbols are known. Hence

M filler=abcdefghijklmnñopqrstuvwxyz

Metasymbolic search consists not only in the identification of repeated patterns but also in the selection of those

which imply the minimum number of bits to reexpress M. In the last example we assume, for simplicity, that
metasymbols M1, M2 and M filler satisfy this criterion but this problem is NP-hard.

We describe the proposed encoding scheme:
Let n be the number of bits of each symbol (in our example n=8). Let μ be the number of metasymbols (in our

example =μ 3). We use nibble2 ‘a’ to indicate the value of n in binary3 . In the example . We use nibble
‘b’ to indicate the number of bits required to code the value of

21000=a
μ in binary. In the example and 20010=b μ is

coded as 211=μ .
Likewise, the maximum gap for M1 is 9 and we need ⎡ ⎤ 319log21 =+=g bits to encode this value in binary.
The other gaps for M1 will be encoded with bits. We use nibble ‘ ’ to indicate the number of bits required

by the value. In the example
1g

2

1c

1g 1 0011=c . The maximum position for M1 is 25 and we need
bits to encode this value in binary. The positions of the other instances of M1 will be encoded

with bits. We use nibble ‘ ’ to indicate the number of bits required by the value. In the example
⎡25

2

⎤ 51log21 =+=p

1p

1 0101=c
1d 1p

=1M 3 and we need 3n bits to encode its content. The maximum gap for M2 is 2, and we need
bits to encode this value in binary. The other gaps for M2 will be encoded with bits. We use

nibble ‘ ’ to indicate the number of bits required by the value. In the example . The maximum
position for M2 is 23 and we need

⎡ ⎤1 =+ 322 =g

2

log2

c
2g

2g 20011=2c

⎡ ⎤1 52 23log2 =+=p to encode this value in binary. The positions of the other
instances of M2 will be encoded with p2 bits. We use nibble ‘ ’ to indicate the number of bits required by the

value. In the example .
1d

2p 201012 =c =2M 3 and we need 3n bits to encode this content. Also 30=fillerM and is
simply an enumeration of values, therefore we need 30n bits to encode it. The number of bits for S expressed as
metasymbols is given by

2 By “nibble” we mean 4 consecutive bits.

3 We simply write “binary” when we refer to weighted binary.

Computación y Sistemas Vol. 13 No.1, 2009, pp 45-60
ISSN 1405-5546

54 Oscar Herrera Alcántara and Francisco Javier Zaragoza Martínez

)()1(
1

1

1

1
i

i i
iiiiiiii fMMnpfnMdcgMbaC ∑ −+++++−+++=

−

=

−

=
∑

μ μ

μ (10)

We must minimize C by selecting the best metasymbols.

3.1 Metasymbolic search
Metasymbol discovery represents an NP-hard problem [9] and the minimization of C has the inconvenient that it
considers the bits required to encode the sequence whenever metasymbols are known, but to know the metasymbols
we need to have minimized C, this leads to a cyclical dependence whose way out is described next. We propose an
iterative method for metasymbol searching that neglects the first 3 terms a, b and μ of (10) since they represent a few
bits (in the previous example a and b use four bits and μ uses two bits) and we proceed with the fourth term that
represents the number of bits used by metasymbol descriptions and the bits of the encoded sequence with these
metasymbols; the fifth term refers to the bits required by the filler. Therefore it is possible to define a discriminant di
from the summation in the fourth term that corresponds to the number of bits required by all the μ −1 non-filler
metasymbols, so the fourth term can be expressed as

∑
−

=

−

=
=∑ ++++−

1

1

1

1
)1(

μμ

i
i

i
iiiiiii dpfnMdcgM (11)

where the number of bits required to encode the i-th metasymbol)11(−≤≤ μi is

iiiiiiii pfnMdcgMd ++++−= 1 . (12)

Note that just depends on the i-th metasymbol, consequently we can search metasymbols iteratively by

comparing their values and selecting the one with minimum value. Our method considers non-overlapped
metasymbols to reduce the search space then once a symbol is assigned it can not be used by any other metasymbol
but variants of this can be explored (see [9]).

id
di

Algorithm 1 called MSIM shows how to search metasymbols under this approach to compress a sequence S
with elements taken from an alphabet][iS },...,,{ 21 Nsss=Σ .

3.2 Experiments
A set of experiments was performed to:

1) Compare the performance of MSIM with classic compressors. In fact we expect to be different because we are
not interested on creating yet another lower context correlation compressor.

2) Measure the efficiency of MSIM as a compressor.
3) Set a confidence level for the expected lower bound of compression achieved with MSIM for files with patterns

and high entropy.
4) Measure the efficiency of MSIM as a tool to discover the metasymbols that allows us to reexpress a message in

the most compact way.
5) Measure the efficiency of MSIM as a tool to discover metasymbols in spite of the content of the messages.

To this effect we use Algorithm 2 to build a set of messages that contain metasymbols. Note that Algorithm 2
simply determines the structure of the metasymbols but does not assign their contents; the contents are determined
later in the process.

We define a compressor called REF that represents our theoretical limit of compression because it takes the
information stored in a database provided by Algorithm 2 to determine the number of bits C of the corresponding
compressed message that does not depend on the content of the metasymbols (see ec. (10)). So we can measure the

Computación y Sistemas Vol. 13 No. 1, 2009, pp 45-60
ISSN 1405-5546

Incompressibility and Lossless Data Compression: An Approach by Pattern Discovery 55
efficiency of MSIM relative to REF, if MSIM reaches a performance similar to the hypothetical one of REF we have
a statistical confidence level that MSIM is able to reach the “theoretical” limit of compression (goal 1) and it
identifies the hidden metasymbols (goal 2). The experiments include a comparison of MSIM against other classic
compressors LZ77, LZW, Arithmetic, and PPM running on the same machine and expecting to get a different
performance to show that MSIM focuses on sequences with patterns (goal 3).

The fourth goal reflects our interest on the search for structural patterns which are independent of the content of
the message. Hence, we generate messages with the same metasymbolic structure but different contents. First, we
store the properties of the sets of metasymbols (frequency, length, gaps, and offsets) then, for a given set of
metasymbols, we explore five variations of the same message by filling the metasymbols with contents determined
from experimental probabilistic distribution functions from a) Spanish text file, b) English text file, c) audio
compressed file, d) image compressed file and e) uniformly distributed data.

These file variations were compressed with classic methods (PPM, LZW, and Arithmetic) and MSIM, so we get
five compression ratios (SPA for Spanish, ENG for English, MP3 for Audio, JPG for image, and UNI for uniform)
that represent samples of five unknown probability distributions (call them “A” distributions).

Because the REF compressor is fully based on the structure of the metasymbols and is impervious to its
contents it was used to measure the performance of MSIM as a metasymbolic identification tool.

The statistical approach is used to estimate the worst case compression value achieved for each of the
compressors and for each of the five “B” distributions, as well as to estimate the mean (μ) and the standard deviation
(σ) values of “A” distributions of the compression rates for the messages with metasymbols. We will appeal to the
Central Limit

Computación y Sistemas Vol. 13 No.1, 2009, pp 45-60
ISSN 1405-5546

56 Oscar Herrera Alcántara and Francisco Javier Zaragoza Martínez

Table 3. Samples by sextil for b-distributions

Compressor Sequence Sextil1 Sextil2 Sextil3 Sextil4 Sextil5 Sextil6
REF ENG 13 10 12 16 23 10

 JPG 13 10 12 16 23 10
 MP3 13 10 12 16 23 10
 SPA 13 10 12 16 23 10
 UNI 13 10 12 16 23 10

MSIM ENG 12 9 16 19 14 14
 JPG 10 12 11 20 18 13
 MP3 10 11 12 20 18 13
 SPA 12 8 18 18 14 14
 UNI 10 14 12 15 19 14

PPM ENG 12 12 16 16 15 13
 JPG 11 20 18 14 9 12
 MP3 10 21 18 14 9 12
 SPA 13 9 16 19 14 13
 UNI 11 20 18 14 9 12

Theorem [6] by generating the corresponding distributions where each mean is the average of m=25 samples

from “A” distributions (call them “B” distributions). If X represents an object from one distribution A for a given
type of file (Spanish, for example) then

m
XX

m
i i

i
∑= =1 (13)

represents an object of the corresponding “B” distribution.

Computación y Sistemas Vol. 13 No. 1, 2009, pp 45-60
ISSN 1405-5546

Incompressibility and Lossless Data Compression: An Approach by Pattern Discovery 57

The mean xμ for any of the B distributions is given by:

m
XZ

i
x

∑= =1μ (14)

where Z is the number of objects of the “B” distributions.

The standard deviation xσ for “B” distribution is given by:

Z
XZ

i xi
x

2
1)(∑ −

= = μ
σ (15)

We generated as many messages (objects of “A” distributions) as were necessary until the next two conditions

were fulfilled:
1) For each “A” distribution we require that there are at least 16.6% of Z samples in at least one sextil for the

associated distribution B (see Table III). This approach allows comparing it with a normal distribution where each

sextil has %
16

100 of the total area, which is 1.

2) The mean values of both “A” and “B” distributions are similar enough and satisfy (16)

.95.0≥
−

x

x

μ
σμ

 (16)

In our experiments we needed 2,100 messages for each of the different distributions, that is, we analyzed a total

of 10,500 messages.

Table 4. Values for μ and σ parameters for “a” distributions and different compressors

 Parameter ENG JPG MP3 SPA UNI AVG
Compressor - - - - - - -

REF μ 0.52 0.52 0.52 0.52 0.52 0.52
 σ 0.19 0.19 0.19 0.19 0.19 0.19

MSIM μ 0.63 0.6 0.6 0.63 0.6 0.62
 σ 0.14 0.15 0.15 0.14 0.15 0.13

PPM μ 0.6 0.83 0.83 0.58 0.83 0.71
 σ 0.33 0.51 0.51 0.31 0.51 0.36

LZW μ 0.75 0.95 0.95 0.74 0.95 0.86
 σ 0.4 0.68 0.73 0.38 0.68 0.52

ARIT μ 0.65 0.8 0.8 0.64 0.8 0.73
 σ 0.25 0.22 0.22 0.24 0.22 0.24

Table 5. Values for the worst case compression rates

Compressor Parameter ENG JPG MP3 SPA UNI AVG
REF Xworst 0.99 0.99 0.99 0.99 0.99 0.99

MSIM Xworst 0.89 0.88 0.8 0.89 0.88 0.88
PPM Xworst 2.04 4.35 4.35 1.85 4.35 2.94
LZW Xworst 2.38 14.29 10.0 2.27 14.29 5
ARI Xworst 1.33 1.27 1.27 1.27 1.27 1.28

Computación y Sistemas Vol. 13 No.1, 2009, pp 45-60
ISSN 1405-5546

58 Oscar Herrera Alcántara and Francisco Javier Zaragoza Martínez

Then we may estimate the values of the mean xμμ = and the standard deviation σ for the “A” distributions
since:

xnσσ = (17)

4 Results

As we see in Table IV, MSIM provides consistent values of compression (see μ and σ) for the five explored types of
file and, as expected, regardless of the contents of the metasymbols.

Once we have estimated the values of the parameters for the five distributions A, we estimate the value of the
compression for the worst case of the different compressors appealing to Chebyshev’s Theorem: Suppose that
X is a random variable (discrete or continuous) having mean

worstX

xμ and variance σ2, which are finite. Then if kσ is any
positive number then

2
11)(
k

kXkP xx −≥+≤≤− σμσμ (18)

Assuming that the distributions A are symmetric we find, from (18) that

22
11)(
k

XkP x −≥≤− σμ (19)

and then it is possible to estimate the expected compression value for all distributions. It immediately follows
that

worstX
3.17.0)(=→≥≤− kXkP x σμ . Table V shows the experimental results where it is possible to appreciate a

similar performance between MSIM and REF which is not the case for classic compressors.
From Table V we know that in 70% of the cases MSIM achieves better performance than the other compressors

and that its behavior is not a function of the contents of the messages.

Table 6. χ2 values for 35 b- distributions

 ENG JPG MP3 SPA UNI
REF 0 0 0 0 0

MSIM 7.19 4.16 3.78 8.85 4.65
PPM 5.49 22.48 24.96 6.42 22.48

Finally, we analyze the likelihood between the distributions B of REF and the distributions B of MSIM.

Remember that REF does not depend on the metasymbol contents so its five B distributions are identical. In Table V
and Table IV we can appreciate how MSIM distributions display similar behavior as REF distributions. A direct
conclusion is that MSIM also does not depend on the contents. A goodness of fit test was used to test this hypothesis.
We can see, from Table VI, that the values for MSIM are small enough. In contrast see, for example, the cases of

PPM (>22) for JPG, MP3 and UNI. They reveal strong dependency between their performance and the content of
the messages. Other compressors (LZW, LZ77, Arithmetic, Huffman, etc.) behave similarly (data is available under
request).

2χ
2χ

5 Conclusions

Based on the Incompressibility Theorem is possible to show the non-existence of any method that compresses all
files and that the average compression ratio for a large set of files is the same (n2~ →r 1) for all the lossless

Computación y Sistemas Vol. 13 No. 1, 2009, pp 45-60
ISSN 1405-5546

Incompressibility and Lossless Data Compression: An Approach by Pattern Discovery 59
compression methods, then we should have different methods to face the challenge of compressing different kinds of
files (subsets). Classic compressors focus on compressing files with local context correlation between neighbor
symbols what may not be representative of the files we currently use so we present MSIM, a novel method for
lossless data compression based on the identification of patterns called metasymbols that allows identifying high
context correlation between symbols in sequences.

MSIM implies the identification of metasymbols and their search is guided by the minimization of a
compression function that joins the bits required to encode the metasymbols as well as the encoded message. Since
metasymbol’s structure is not predefined (frequency, length, gaps and offsets) and symbols are grouped in
metasymbols by minimizing the compression function we call this process unsupervised clustering. Correlated
symbols belong to the same metasymbol (class) and non-correlated symbols belong to different metasymbols.

For our experiments we propose not to use a human selected benchmark but an algorithmically generated set of
files with patterns and a statistical methodology where a goodness of fit test to show that MSIM reaches similar
performance to REF, the hypothetical compressor used as reference (goal 1). Statistical results show that MSIM is
able to discover the metasymbols embedded in a large enough set of sequences (goal 2), that MSIM has unsimilar
performance to classic compressors (goal 3) and that if there are patterns in the sequences we have statistical
evidence that MSIM will discover them (goal 4). The last goal is particularly interesting because it allows us to
explore sequences where it is not known whether there are patterns.

Considering the above, future work includes multimedia, biological and astronomical sequences analysis as well
as to develop parallel algorithms for metasymbol’s search and to implement client-server and distributed applications
for data mining.

References

1. Barnsley, M. (1993) “Fractals Everywhere”, Morgan Kaufmann Pub; 2nd. Sub edition.
2. Barnsley, M. and Hurd, L. (1992) “Fractal Image Compression”, AK Petters, Ltd., Wellesley, Ma.
3. Bentley, J., Sleator, et. al. (1986) “A locally adaptive data compression algorithm”, Communications of the

ACM, Vol. 29, No. 4, pp 320-330.
4. Burrows, M. and Wheeler, D. (1994) “A block-sorting lossless data compression algorithm”, Digital Syst. Res.

Ctr., Palo Alto, CA, Tech. Rep. SRC 124.
5. Cleary, J. and Witten, I. (1984) “Data compression using adaptive coding and partial string matching”, IEEE

Transactions on Communications, Vol. 32, No. 4, pp 396-402.
6. Feller, W. (1968) “An Introduction to Probability Theory and Its Applications”, John Wiley, 2nd. Edition, pp

233–234.
7. Hacker, S. (2000) “MP3: The definitive guide, Sebastopol Calif., O’Reilly.
8. Huffman, D. (1952) “A method for the construction of minimum-redundancy codes”, Proc. Inst. Radio Eng. 40,

9 (.), pp 1098–1101.
9. Kuri, A. and Galaviz, J. (2004) “Pattern-based data compression”, Lecture Notes in Artificial Intelligence

LNAI 2972, pp 1–10.
10. Nelson, M. and Gailly, J. (1995) The “Data Compression Book”, Second Edition, MT Books Redwood City,

CA.
11. Nevill-Manning, C. G. and Witten, I. (1999) “Protein is incompressible”, Data Compression Conference (DCC

’99). p. 257
12. Pennebaker, W.B. and Mitchell, J. (1993) “JPEG: Still Image Data Compression Standard”, ITP Inc.
13. Ross, A. and Tim, B. (1997) “A Corpus for the Evaluation of Lossless Compression Algorithms”, Proceedings

of the Conference on Data Compression, IEEE Computer Society, Washington, DC, USA.
14. Witten, I., Neal, R. and Cleary J. (1987) “Arithmetic coding for data compression”, Communications of the

ACM 30(6) pp 520–540.
15. Ziv, J., and Lempel, A. (1977) “A Universal Algorithm for Sequential Data Compression”, IEEE Trans. on Inf.

Theory IT-23, v3, pp 337–343.

Computación y Sistemas Vol. 13 No.1, 2009, pp 45-60
ISSN 1405-5546

60 Oscar Herrera Alcántara and Francisco Javier Zaragoza Martínez

Computación y Sistemas Vol. 13 No. 1, 2009, pp 45-60
ISSN 1405-5546

16. Microsoft Encarta, fractal image compression (2008)
http://encarta.msn.com/encyclopedia_761568021/fractal.html (accessed July 14, 2008).

17. Calgary Corpus (2008) http://links.uwaterloo.ca/calgary.corpus.html (accessed July 14, 2008).

Oscar Herrera Alcántara. He received a Ph. D. and M. S. degree in Computer Science from CIC at Instituto
Politécnico Nacional in Mexico. He received, in 2001 from the President of Mexico, the Lázaro Cardenas award and
in 1997 the Merit Medal award from the Universidad Autónoma Metropolitana Azcapotzalco as electronics
engineer, where he is professor and researcher since 2007. His research focuses on lossless data compression,
clustering, optimization, heuristics, genetic algorithms and neural networks applications.

Francisco Javier Zaragoza Martínez. He received a Ph. D. in Combinatorics and Optimization from the University
of Waterloo, Canada and a M. S. degree from CINVESTAV at Instituto Politécnico Nacional, Mexico. He obtained
his bachelor degree in Electronics Engineering from the Universidad Autónoma Metropolitana Azcapotzalco, where
he obtained the Merit Medal in 1994. He is currently a full professor at the same institution, where he also is the
Undergraduate Coordinator of Computer Engineering. He is a member of the National System of Researchers (SNI
1) and has the PROMEP profile. His research focuses on algorithms for discrete optimization problems.

