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Abstract 
Two neural classifiers were developed for image recognition: PCNC (Permutation Coding Neural Classifier) and 
LIRA (Limited Receptive Area) neural classifiers. These neural classifiers are multipurpose neural classifiers. We 
applied them in micromechanics. Information about shape and texture of the micro workpiece can be used to 
improve precision of both assembly and manufacturing processes. The proposed neural classifiers were tested off-
line in the both tasks.   
Keywords: Computer vision, neural network, shape recognition, texture recognition, micromechanics. 

 
Resumen 
Dos clasificadores neuronales fueron desarrollados para el reconocimiento de imágenes: PCNC (clasificador 
neuronal con codificación con permutaciones) y LIRA (clasificador neuronal con área de recepción limitada). 
Estos clasificadores neuronales son clasificadores de diferentes aplicaciones. Nosotros usamos ellos en 
micromecánica. La información sobre la forma y textura del micro objeto se puede utilizar para mejorar la 
precisión de los procesos de ensamble y de fabricación. Los redes neuronales propuestos fueron probados fuera de 
línea en ambos tareas.  
Palabras clave: Visión computacional, redes neuronales, reconocimiento de forma, reconocimiento de 
textura, micromecánica. 

 
1 Introduction 
 
A computer vision system permits one to provide the feedback that can be used to increase the precision of the 
manufacturing and assembly processes [Baidyk, et al., 2004; Kussul, et al., 2002]. The structure of the computer 
vision system which consists of a camera and a computer is presented in Fig. 1. Such systems can be used in low cost 
micromachine tools [Baidyk, et al., 2004; Kussul, et al., 2002]. 

A method of sequential generations was proposed to create such microequipment [Kussul, et al., 1996; Kussul, 
et al., 2002; Kussul, Baidyk, Ruiz-Huerta, et al., 2006]. According to this method the microequipment of each 
generation has the sizes smaller than the sizes of the equipment of previous generations. This approach allows us to 
use low cost components for each microequipment generation and to create the microfactories capable to produce the 
low cost microdevices.  

To preserve a high precision of the microequipment it is necessary to use adaptive algorithms of micro 
workpiece production. The algorithms based on the contact sensors were tested and showed good results [Kussul, et 
al., 2002]. The neural network based vision system provides much more extensive possibilities to improve the 
manufacture and assembly processes [Baidyk, et al., 2004]. Specific projects on creation of a microfactory based on 
miniature micromachine tools were started in several counties including Japan [Okazaki, et al., 2000] and 
Switzerland [Bleuler, et al., 2000]. One of the main problems of such microfactories is the problem of their 
automation on the basis of vision systems. There are different approaches to construction of a computer vision 
system for this purpose [Baidyk, et al., 2008, Baidyk, et al., 2004; Wu, et al., 2001; Lee, et al., 2001, Kim and Cho, 
1999]. 

Computación y Sistemas Vol. 13 No.1, 2009, pp 61-74 
ISSN 1405-5546 

mailto:tbaidyk@aleph.cinstrum.unam.mx


62   Tatiana Baidyk, Ernst Kussul, Oleksandr Makeyev and Graciela Velasco 

 
Fig. 1. The structure of the computer vision system 

 
In this paper we propose two neural networks for computer vision system and present preliminary results of 

their off-line testing in two recognition tasks. These two systems differ in the type of neural classifier. The first 
system is based on the Permutation Coding Neural Classfier (PCNC) and the second one is based on the Limited 
Receptive Area (LIRA) neural classifier.  

We developed these neural classifiers and tested them in handwritten recognition task and face recognition task. 
The comparison of these neural classifiers was made with other methods of recognition, for example, with Support 
Vector Machine [Vapnik, 1995; Vapnik, et al., 2006]. The results of this comparison were published in our 
publications (for example, [Baidyk, et al., 2004; Kussul, et al., 2006; Makeyev, et al., 2008]). This article is devoted 
to the adaptation of the developed methods to micromechanics. 

The both neural classifiers were tested in other tasks of micromechanics, for example, in recognition of different 
work pieces and their positions [Toledo, et al., 2004; Toledo-Ramirez, et al., 2006]. Anabel Martín worked with 
shape recognition task [Martín, et al., 2006].  

The task of shape recognition can have different methods to be resolved. As the shape features, it is possible to 
select the characteristic parts of the objects, protrusions and cavities, and term them primary features [Baidyk et al., 
1999]. Below, we describe the algorithm of primary features extraction. The algorithm works with the binary image, 
i.e. the figure is represented on the image by the set of ones and on the background by the set of zeros. To extract 
primary features, it is necessary to create two additional figures: the first figure circumscribes the initial figure, and 
the second figure is inscribed to the initial figure. The primary features are a difference in the areas of the 
circumscribing figure and the initial one (in Fig.2, the initial figure of screw is presented in white and the 
circumscribing figure by dark-gray o deep-gray), and also a difference in the areas of the initial figure and the 
inscribed one (in the same figure, the inscribed figure is light gray in color).  

The construction of the inscribed and circumscribing figures is achieved by scanning the image by a circle of a 
specific radius. The circle of a radius r is defined by the uniformly distributed points (for example, r = 10 pixels, n = 
28, where n is a quantity of points). Fig.2 gives an example of several positions of this circle on the image of a screw. 
If the number of ones (points belonging to the initial figure) that fell into the circle is lower than the threshold P 
(experimentally established), then the circle center is excluded from the figure (Fig.2, case 1). Several such iterations 
lead to the truncation of all convex  parts. The figure remains as if it is inscribed into the initial image. Then the areas 
of initial and inscribed figures are calculated. The difference between them is used as the first feature for shape 
recognition.  

The extraction and the filling of cavities on the complex figure are done with the aid of the procedure of 
scanning by circle. The procedure must be repeated for the initial image. When a quantity of ones in the circle 
exceeds a certain threshold P, the center of the circle is included in the figure (Fig.2, case 2). Through several 
iterations, the initial image will be circumscribed by a certain figure whose points will fill its cavities. After 
calculating the areas of the initial and circumscribing figures and determining their difference, we will obtain the 
second feature for shape recognition. The processes of the truncation of protrusions and filling of cavities are 
invariant to the object position on the image.  
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Fig. 2. Initial figure (screw), described and inscribed figures (deep-gray and light-gray) 
 

The analysis of each protrusion and cavity of the figure can give additional information about the object shape. 
This method demands much time to realize it or demands especial device with parallel structure of information 
treatment. So we propose in this article another method of shape recognition. 

In the first task of shape recognition of micro workpieces we tested our system on the image database which 
contains images of four classes of 3mm screws manufactured with different positions of the cutter: one class with 
correct position and other three with different incorrect positions. Incorrect cutter position leads to the incorrect 
shape of the screw. The system had to recognize the class of the image. This information can be then send to the 
microfactory and used to correct the cutter position.  

In the second task of texture recognition of mechanically treated metal surfaces we tested our system on the 
image database which contains images of four texture types corresponding to metal surfaces after milling, polishing 
with sandpaper, turning with lathe and polishing with file. Due to the changes in viewpoint and illumination, the 
visual appearance of different surfaces can vary greatly, which makes their recognition difficult [Pietikäinen, et al., 
2004]. Different lighting conditions and viewing angles affect the grayscale properties of an image due to such 
effects as shading, shadowing, local occlusions, etc. The real images of metal surfaces obtained in industrial 
applications have all these problems. Moreover, industrial environments pose some additional problems. For 
example, a metal surface can have dust on it.  

Promising results were obtained in both mentioned tasks. 
 
2 Micro Workpiece Shape Recognition Task 
 
It is possible to use adaptive cutting process to increase the precision of micromachine tools[Kussul, et al, 2002]. Let 
us consider a lathe equipped with one TV camera (Fig.3).  
 

 
Fig. 3. Lathe equipped with TV camera 
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The images obtained by the TV camera can be used to evaluate the measurements of partially treated 
workpieces. Such evaluation can be used to make corrections to the cutting process, for example, to correct the 
position of the cutting tool relatively to the workpiece (Fig. 4). In this position TV camera can give useful 
information about the cutting process, for example, the chips formation, the contact of the cutter with the workpiece, 
etc. The images of workpieces are to be recognized with the image recognition system. We propose to create such 
recognition system on the basis of the neural network with permutation coding.  

 

 
 

Fig. 4. Position of the cutting tool relatively to the workpiece 
 

The task of shape recognition is well known [Grigorescu and Petkov, 2003]. In our case recognition of images 
of micro screw is based on the recognition of its shape or profile. The contours of the screw image are to be detected 
and this representation serves as input of the recognition system. The proposed vision system is based on the neural 
network with permutation coding technique described in [Kussul and Baidyk, 2003; Kussul, et al., 2004; Kussul, 
Baidyk, Wunsch, et al, 2006]. This type of neural networks showed good results in handwritten digit and face image 
recognition tasks. In this work we tested it in micromechanical applications. 
 
2.1. Permutation coding neural classifier 
A Permutation Coding Neural Classifier (PCNC) was developed as a general purpose image recognition system. It 
was tested on the MNIST image database of handwritten digits and ORL image database of faces, and showed good 
results [Kussul and Baidyk, 2003; Kussul, et al., 2004; Kussul, Baidyk, Wunsch, et al, 2006]. 

The structure of PCNC is presented in Fig. 5. The image is input to the feature extractor. The extracted features 
are applied to the encoder input. The encoder produces the output binary vector of large dimension, which is to be 
presented to the input of one-layer neural classifier. The classifier output represents the recognized class. 

 

 
Fig. 5. Structure of the Permutation Coding Neural Classifier (PCNC) 
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2.1.1. Feature extractor 
An initial image (Fig. 6) is to be input to the feature extractor. The feature extractor starts with selection of specific 
points on the image. Various methods of selection of specific points can be proposed. For example, contour points 
can be selected as specific points. 
 

 
Fig. 6. Example of the initial image 

 
We propose to select specific points in accordance with the following procedure. For each set of four 

neighboring pixels we calculate the following expressions: 
 

d1 = 11 ++− jiij brbr , 

d2 = jiij brbr 11 ++ − ,     

)d,dmax( 21=Δ , 

 (1) 

 
where brij is the brightness of the pixel (i,j). 

If ( >B), then pixel (i,j) is selected as specific point of the image, where B is the threshold for selection of 
specific points. 

Δ

Each feature is extracted from the rectangle of size wh ∗ , which is built around each specific point [Kussul, 
Baidyk, Wunsch, et al, 2006]. The p positive and the n negative points determine one feature. These points are 
randomly distributed in the rectangle . Each point Prs has the threshold Trs that is randomly selected from the 
range: 

wh∗

 
Tmin  ≤  Trs  ≤  Tmax, (2) 

 
where s stands for the feature number and  r stands for the point number. 

The positive point is active only if on the initial image it has brightness: 
 

brs  Trs. ≥ (3) 
 

The negative point is active only if on the initial image it has brightness: 
 

brs  ≤  Trs. (4) 
 

The feature under investigation exists in the rectangle if all its positive and negative points are active. In the 
opposite case the feature under investigation is absent in the rectangle. 
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2.1.2  Encoder 
The encoder transforms the extracted features to the binary vector: 
 

V = {vi} (i  = 1, …, N), 
 
where vi = 0 or 1. For each extracted feature Fs the encoder creates an auxiliary binary vector:  
 

U = {ui} (i  = 1, …, N), 
 

where ui  = 0 or 1.  
A special random procedure is used to obtain the positions of ones in the vector Us for each feature Fs. This 

procedure generates the list of the positions of ones for each feature and saves all such lists in the memory. We term 
vector Us as the “mask” of the feature Fs. To create this vector it is necessary to take the positions from the list and to 
fill them with ones filling the rest of positions with zeros. 

In the next stage of encoding process it is necessary to transform the auxiliary vector U to the new vector U* 
which corresponds to the feature location in the image. This transformation is to be performed with permutations of 
components of vector U (Fig. 7). 

The number of permutations depends on the feature location on the image. The permutations in horizontal (X) 
and vertical (Y) directions are different permutations. In Fig. 6 an example of permutation pattern for horizontal (X) 
direction is presented. 

 

 
Fig. 7. Permutation pattern for horizontal (X) direction 

 
Same feature can have different locations on the image. Such feature will have different binary code for each 

location. For two locations of the same feature the binary codes must be strongly correlated if the distance between 
the feature locations is small and must be weakly correlated if the distance is large. Such property can be obtained 
with the following procedure. 

To code the feature Fs location on the image it is necessary to select the correlation distance Dc and calculate 
the following values: 

 
X = j / Dc, 
E(X) = (int)X, (5) 

R(X) = j ─ E(X) • Dc, 
Y = i / Dc, 
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E(Y) = (int)Y (6) 
R(Y) = i ─ E(Y) • Dc, 
  

Px = 
cD

N)X(R • , 

 
(7) 

Py = 
cD

N)Y(R • , (8) 

 
where E(X) is the integer part of X; R(X) is the fraction part of X; i is the vertical coordinate of the detected feature; j 
is the horizontal coordinate of the detected feature, N is the number of neurons. 

The original mask of the feature Fs is considered as a code of this feature located at the left top corner of the 
image. To shift the feature’s location in the horizontal direction it is necessary to perform its permutations E(X) times 
and to make an additional permutation for Px components of the vector. After that, it is necessary to shift the code to 
the vertical direction performing its permutations E(Y) times and an additional permutation for Py components. 
 
2.1.3. Neural classifier 
The structure of the proposed recognition system is presented in Fig. 5. The system contains the sensor layer S, 
feature extractor, encoder, the associative neural layer A, and the reaction neural layer R. In the screw shape 
recognition task each neuron of the R-layer corresponds to one of the image classes. The sensor layer S corresponds 
to the initial image.  

The associative neural layer contains “binary” neurons that have outputs equal to either zero or one. The output 
values of associative neurons represent the result of encoder’s work. The neurons of the associative layer A are 
connected to the reaction layer R with trainable connections with weights wji. The excitations of the R-layer neurons 
are calculated in the following way: 

  

Ei =  ∑
=

n

j
jij w*a

1
(9) 

 
where Ei is the excitation of the i-th neuron of the R-layer; aj is the excitation of the j-th neuron of A-layer; wji is the 
weight of the connection between the j-th neuron of the A-layer and the i-th neuron of the R-layer. 

The winner neuron that has maximal excitation is selected after the calculation of excitations.   
We use the following training procedure. Denote the winner neuron number as iw, and the number of neuron that 

corresponds to the correct class of the input image as ic. If iw = ic, then nothing is to be done. If iw ≠ ic, then the 
weights are to be updated in the following way: 

 
( ) ( )( )
( ) ( )( )jjiwji

jjicji

atwtwj

atwtwj

w

c

−=+∀

+=+∀

)(1

)(1
 

if )0)1(( <+tw wji  )1( +tw wji = 0, 
(10) 

 
where wji(t) and wji(t + 1) are the weight of the connection between the j-neuron of the A-layer and i-neuron of the R-
layer before and after reinforcement correspondingly. 
 
2.2. Results 
To test the proposed system in shape recognition of micromechanical workpieces we have produced 40 screws of 
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3mm diameter with the CNC-lathe Boxford. Ten screws were produced with correct position of the thread cutter. 
Thirty screws were produced with erroneous positions of the cutter. Ten of them had distance between the cutter and 
screw axis 0.1mm smaller than necessary. Ten screws were produced with the distance 0.1mm larger than necessary 
and the remaining ten with the distance 0.2mm larger than necessary. We created an image database of these screws 
with the resolution of 440x200 pixels using web camera Samsung mounted on an optical microscope.  

Five randomly selected images from each group of screws were used for the neural classifier training and the 
other five were used for the neural classifier testing. 

The mean recognition rate of 92.5% was obtained for window wh ∗  width w = 25, height h = 25, 3 positive 
and 3 negative points for each specific point, threshold used in selection of specific points B = 60 and the total 
number of associative neurons N = 64000. 

This task was solved with another neural classifier: LIRA [Martín, et al., 2006]. It was obtained 98.9% of the 
recognition rate. This LIRA neural classifier we will describe in the next section. 
 
3 Mechanically treated metal surface texture recognition task 
 
3.1. Task description 
Texture recognition systems are widely used for industrial inspection in cases when the texture of a surface defines 
its quality and therefore affects the durability of the product, for example, in textile industry for inspection of fabric 
[Chan and Pang, 2000], in electronic industry for inspection of the surfaces of magnetic disks [Hepplewhite and 
Stonham, 1994], etc. Texture recognition is also used when it is necessary to distinguish automatically different types 
of textures, for example, in decorative and construction industry for classification of polished granite and ceramic 
titles [Sanchez-Yanez, et al., 2003]. 

In this paper we propose a texture recognition system based on the Limited Receptive Area (LIRA) [Baidyk, et 
al, 2004] neural classifier for recognition of mechanically treated metal surfaces. The proposed texture recognition 
system may be applied in systems that have to recognize position and orientation of complex work pieces in the task 
of assembly of micromechanical devices as well as in surface quality inspection systems. Four types of metal 
surfaces after mechanical treatment were used to test the texture recognition system. 

Different lighting conditions and viewing angles affect the grayscale properties of an image due to such effects 
as shading, shadowing, local occlusions, etc. The real images of metal surfaces obtained in industrial applications 
have all these problems. Moreover, industrial environments pose some additional problems. For example, a metal 
surface can have dust on it.  

Texture recognition of metal surfaces provides an important tool for automation of micromechanical device 
assembly [Kussul, et al, 2002]. The assembly process requires recognition of the position and orientation of the 
components to be assembled [Baidyk, et al, 2004]. It is useful to identify the surface texture of a component to 
recognize its position and orientation. For example, a shaft may have two polished cylinder surfaces for bearings, 
one of them milled with grooves for a dowel joint, and another surface turned with the lathe. It is easier to obtain the 
orientation of the shaft if both types of the surface textures can be recognized automatically. 

The only work on texture classification of mechanically treated metal surfaces known to us is published by 
[Brenner, et al., 1991]. The authors propose to use a vibration-induced tactile sensor that they call Dynamic Touch 
Sensor (DTS) in combination with one-layer Rosenblatt perceptron [Rosenblatt, 1962]. The DTS produces signals 
based on the vibration induced by a sensor needle sliding across a metal surface with fixed velocity and pressure. 
The motion path of the sensor is an arc of approximately 100 degrees. Such motion path permits to capture 
information about surface in two dimensions in one sweep; however, the system is very sensitive to the changes in 
texture position and orientation. Spectral energy of the sensor was used as an input to the neural classifier. Metal 
surfaces were characterized by two characteristics: surface type and surface roughness. Surface roughness is a 
measure of the average height of the surface irregularities given in microinches. Six types of surfaces and six values 
of surface roughness were used in testing. Obtained recognition rate varied from 74.16% in recognition of two types 
of metal surfaces with roughness of 8 microinches to 100% in recognition of three types of metal surfaces with 
roughness of 250 microinches. 
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 In our experiments we achieved the recognition rate of 99.8% in recognition of four types of metal surfaces 
with roughness of the order of 1 micro inch. In addition, our approach does not require a complex mechanical sensor 
and is robust to changes in texture position and orientation [Makeyev, et al., 2008]. 
 
3.2. Limited receptive area (LIRA) neural classifier 
The structure of the LIRA neural classifier is presented in Fig. 8. LIRA neural classifier differs from the PCNC 
neural classifier in the coding procedure that is performed by the set of connections between the S-layer and A-layer 
and not by separate feature extractor and encoder.  

As in case of the PCNC neural classifier the S-layer of the LIRA neural classifier corresponds to the input 
image. The associative neural layer A and the reaction neural layer R are the same as in the PCNC neural classifier. 
The training rules for connections between the layers A and R and the recognition procedure are also the same 
[Makeyev, et al., 2008].   
 

 
Fig. 8. Structure of the Limited Receptive Area (LIRA) neural classifier 

 
The coding procedure used in the LIRA neural classifier is the following. We connect an A-layer neuron to S-

layer neurons through the neurons of the intermediate neural layer I (Fig. 8). The input of each I-layer neuron is 
connected to one neuron of the S-layer and the output is connected to the input of one neuron of the A-layer. All the 
I-layer neurons connected to one A-layer neuron form the group of this A-layer neuron. There are two types of I-layer 
neurons: ON-neurons and OFF-neurons. The output of an ON-neuron i is equal to 1 if its input value is larger than 
the threshold iθ  and is equal to 0 in the opposite case. The output of an OFF-neuron j is equal to 1 if its input value 
is smaller than the threshold jθ  and is equal to 0 in the opposite case. For example, in Fig. 8 the group of eight I-

layer neurons, four ON-neurons and four OFF-neurons, corresponds to one A-layer neuron. The thresholds iθ  and 
 are selected randomly from the range [0, bmax], where bmax is maximal brightness of the image pixels. The i-th jθ
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neuron of the A-layer is active (ai = 1) only if outputs of all the neurons of its I-layer group are equal to 1 and is non-
active (ai = 0) in the opposite case. ON- and OFF-neurons of the I-layer in the structure of the LIRA neural classifier 
correspond to positive and negative points in the structure of the PCNC neural classifier. 

The procedure for setting connections between the S-layer and a group of I-layer neurons is the following. The 
input of each I-layer neuron of one A-layer neuron group is connected to one neuron of the S-layer randomly selected 
not from the entire S-layer, but from the window h*w that is located in the S-layer (Fig. 8). The distances dx and dy 
are random numbers selected from the ranges: dx from [0, wWS − ) and dy from [0, ), where  and  
stand for width and height of the S-layer. The procedure of random selection of connections starts with the selection 
of the upper left corner of the window  in which all connections that correspond to one associative neuron are 
located.  

hHS − SW SH

wh ∗

The following formulas are used: 
 

dxi = randomi ( wWS − ),      
dyi = randomi ( hHS − ), (11) 

 
where i is the position of a neuron in associative layer A, randomi (z) is a random number that is uniformly 
distributed in the range [0, z). After that position of each connection within the window  is defined by the pair 
of numbers:  

wh ∗

 
xij = randomij (w), 
yij = randomij (h), (12) 

 
where j is the number of the connection with the S-layer. 

Absolute coordinates of a connection to the S-layer are defined as:  
 

Xij = xij + dxi, 
Yij =yij + dyi. 

(13) 

 
Detailed description of the LIRA neural classifier is presented in [Baidyk, et al, 2004].   

 
3.3. Results 
To test our texture recognition system we created our own image database of metal surface images. Four texture 
classes correspond to metal surfaces after milling, polishing with sandpaper, turning with lathe and polishing with 
file (Fig. 9). Twenty grayscale images with resolution of 220x220 pixels were taken for each class. We randomly 
divided these 20 images into the training and test sets. Fig. 9 illustrates the fact that different lighting conditions 
greatly affect the grayscale properties of images. The textures may also be arbitrarily oriented and not centered 
perfectly. Metal surfaces may have minor defects and be covered with dust. All these image properties correspond to 
the conditions of a real industrial environment and make the texture recognition task more complicated.  

Images that correspond to each of four classes were randomly divided in half into the training and test sets.  
The mean recognition rate of 99.8% was obtained for window wh ∗  width w = 10, height h = 10, three ON-

neurons and five OFF-neurons in the I-layer neuron group and the total number of associative neurons N = 512000. 
We made these experiments with computer equipped with AMD Athlon 64 x2 4400+ dual core processor and 

2.00 GB of RAM. 
The amount of time needed for one run of classifier coding, training and recognition is approximated 1 min 40 

s (65 s for coding, 34 s for training and 1 s for recognition) for all images of database. 
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Fig. 9. Examples of metal surfaces after (columns): a) milling, b) polishing with sandpaper,  

c) turning with lathe, d) polishing with file 
 
4 Conclusion 
 
This paper continues the series of publications on automation of micro manufacturing and micro assembly processes 
[Baidyk, et al., 2004; Kussul, et al., 2002]. 

Neural network based computer vision systems are proposed and tested in micro workpiece shape recognition 
and mechanically treated metal surface texture recognition. In the task of micro assembly such systems can be used 
to recognize position and orientation of complex micro workpieces. In the task of micro manufacturing such systems 
can be used to evaluate the measurements of partially treated workpieces. Such evaluations can be used to make 
corrections to the manufacturing process. 

Promising results were obtained during the off-line testing of both systems. 
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