
G’3-Stable Semantics and Inconsistency
Semantica G3'-Estable e Inconsistencia

Mauricio Osorio1, Claudia Zepeda2, Juan Carlos Nieves3 and José Luis Carballido2

1Universidad de las Américas – Puebla, CENTIA
Email: osoriomauri@gmail.com

2Benemérita Universidad Autónoma de Puebla
Facultad de Ciencias de la Computación

Email: {czepedac, jlcarballido7}@gmail.com
3Universitat Politècnica de Catalunya

Software Department (LSI)
Email: jcnieves@lsi.upc.edu

Article received on July 19, 2008; accepted on April 03, 2009

Abstract
We present an overview on how to perform non-monotonic reasoning based on paraconsistent logics. In
particular, we show that one can define a logic programming semantics based on the paraconsistent logic G’3
which is called G’3-stable semantics. This semantics defines a frame for performing non-monotonic reasoning in
domains which are pervaded with vagueness and inconsistencies. In fact, we show that, by considering also a
possibilistic logic point of view, one can use this extended framework for defining a possibilistic logic
programming approach able to deal with reasoning, which is at the same time non-monotonic and uncertain.
Keywords: G’3-stable semantics, Logic Programming, Non-Monotonic Reasoning.

Resumen
Presentamos un resumen acerca de cómo realizar razonamiento no-monótono basado en lógicas paraconsistentes.
En particular, mostramos que es posible definir una semántica de programación lógica basada en la lógica
paraconsistente G’3, la cual es llamada semántica G’3-estable. Esta semántica define un marco para realizar
razonamiento no-monótono en dominios los cuales están plagados de vaguedades e inconsistencias. De hecho,
mostramos que al considerar también un punto de vista lógico posibilista, es posible usar la extensión de este
marco de trabajo para definir un enfoque de programación lógica posibilístico que puede tratar con razonamiento
que es al mismo tiempo no monótono e incierto.
Palabras Clave: Semántica : G’3-estable, Programación lógica, Razonamiento No-Monótono.

1 Introduction

Most logics (at least classical logic and all the constructive intermediate logics) share the property: Assuming a, ¬ a
one can conclude b, meaning that in the presence of inconsistent information one can prove anything (such as the
unrelated formula b in this example). Paraconsistent logics reject this principle; they are not explosive in the
presence of inconsistent information. Recall that Minsky's “Frame paper” (1975) in its original form had an
appendix entitled “Criticism of the Logistic approach” which states: “But I do not believe that consistency is
necessary or even desirable in a developing intelligent system. No one is ever completely consistent. What is
important is how one handles paradox or conflict, how one learns from mistakes, how one turns aside from
suspected inconsistencies” (Minsky, 1975).

We think that paraconsistent logic could help to give an answer to this important issue addressed by Minsky. In
fact, in (Osorio et al, 2008) an interesting approach for Knowledge Representation (KR) was proposed. This
approach can be supported by any paraconsistent logic stronger than or equal to Cω, the weakest paraconsistent logic
introduced by da Costa.

A second criticism that Minsky gave to the logistic approach is that logic is monotonic: “Because Logicians are
not concerned with systems that will later be enlarged, they can design axioms that permit only the conclusions they

Computación y Sistemas Vol. 13 No.1, 2009, pp 75-86
ISSN 1405-5546

76 Mauricio Osorio, Claudia Zepeda, Juan Carlos Nieves and José Luis Carballido

want. In the development of Intelligence the situation is different. One has to learn which features of situations are
important, and which kinds of deductions are not to be regarded seriously” (Minsky, 1975).

Non-monotonic logics were developed as an attempt to solve this problem. Actually the research community
has long recognized the study of Non-Monotonic Reasoning (NMR) as a promising approach to model features of
commonsense reasoning. On the other hand, monotonic logics have been successfully applied as a basic building
block in the formalization of non-monotonic reasoning. The original idea, suggested by McDermott and Doyle
(McDermott and Doyle, 1980), was to use well known modal logics. McDermott, in (McDermott, 1982), attempted
to define non-monotonic logics based on the standard T, S4 and S5 logics. But he observed that, unfortunately, the
non-monotonic version of S5 collapses to the ordinary logic S5. Grounded non-monotonic logic is a proposed
solution to this problem. The term grounded in non-monotonic logics refers to the idea of enabling the agent to make
only assumptions that are “grounded” in the world's knowledge. According to (Donini et al, 1997), the notion of
groundedness was actually introduced by Konolige (Konolige, 1987). It is worth mentioning that groundedness has a
rather intuitive motivation: “it corresponds to discarding the reasoning based on epistemic assumptions, which
would enable, for example, to conclude that something is true in the world just by assuming to know it” (Donini et al,
1997). Domini et al. (Donini et al, 1997) renewed the interest in non-monotonic S5 (and other normal modal logics)
by studying their grounded versions. They showed, in particular, that grounded non-monotonic S5 does not collapse
with S5. The authors in (Osorio and Navarro, 2003) observed that an expressive fragment of a grounded version of
S5 can be captured by a 4-valued logic that later was called MFOUR (the commented fragment consists of sentences
with modalities applied only to literals). Gelfond proposes the interpretation of not a as ¬�a. In fact, (Baral, 2003)
explains that the definition of stable models by Gelfond and Lifschitz (Gelfond and Lifschitz, 1988) was inspired by
this transformation. This line of research was continued and developed in further detail in (Osorio et al, 2005). It has
been observed that logics for which their negation operator is constructed by some modal logics (as S5 or MFOUR)
using Gelfond's idea correspond to paraconsistent logics (Béziau, 2005). This means that by considering standard
monotonic paraconsistent logics one can construct non-monotonic logics, see (Osorio et al, 2006; Osorio et al.,
2008).

Recently, in (Osorio et al., 2008) an approach for KR was proposed. It can be used with any paraconsistent logic
stronger or equal to Cω, the weakest paraconsistent logic introduced by da Costa himself. In particular, the authors
have made a deep study of the paraconsistent logic G’3 which is a 3-valued and very expressive logic. G’3 can define
the same class of functions as Lukasiewicz 3-valued logic. In G’3 we can express very directly the strongest
intermediate logic (also known as the Gödel's 3-valued logic G3). With G’3 (which is monotonic) one can construct
non-monotonic semantics such as the G’3-stable semantics (Osorio et al, 2006; Osorio et al., 2008). This approach is
not restricted to a particular fragment of propositional logics, it is defined for any type of propositional theory. It is
important to point out that with the G’3 semantics, one can express the well known stable semantics (Osorio et al.,
2008) (see (Gelfond and Lifschitz, 1988; Gelfond and Lifschitz, 1990) to learn about the stable semantics). G’3 can
also be used to model the well known preferred semantics of argumentation (Nieves et al, 2008). A preliminary
implementation of the G’3 semantics has already been developed (López, 2006). One problem with G’3-stable
semantics is that it can not deal with inconsistent information. This is because G’3-stable semantics does not take
advantage of the paraconsistent nature of G’3.

This paper can be regarded in two parts.
In the first part, we shall present an overview on how to perform non-monotonic reasoning based on

paraconsistent logics. In particular, we concentrate our attention on the G’3-stable semantics, which is based on
paraconsistent logics. We will see that the G’3-stable semantics is a prominent non-monotonic semantic able to
capture the stable model semantics, one of the most successful logic programming semantics of the last years. One
interesting result w.r.t. the G’3-stable semantics is that it is able to capture the preferred semantics which is one of
the most accepted argumentation semantics in argumentation theory. It is worth to comment that argumentation
theory is another prominent approach for performing NMR.

In the second part of this paper, we explore two approaches about how to construct non-monotonic semantics
based on G’3 that can deal with inconsistent information. The first approach is based on borrowing ideas from
possibilistic logic (Dubois et al., 1994). In particular, we will describe how one can discriminate possibilistic G’3-
stable models by considering their possibilistic degrees. It is worth to comment that, since possibilistic logic is a

Computación y Sistemas Vol. 13 No.1, 2009, pp 75-86
ISSN 1405-5546

G’3-Stable Semantics and Inconsistency 77

suitable approach for capturing uncertain information, we will see that, by considering a possibilistic version of the
G’3-stable semantics, one can perform NMR under uncertain information. The second approach stays with G’3 and
works with extensions, but takes care of not becoming more inconsistent (so to speak) than the original theory.
The structure of our paper is as follows. In section 2, we summarize some basic concepts and definitions used to
understand this paper; we present an overview on how to perform non-monotonic reasoning based on paraconsistent
logics; we also present the characterization of a semantics for disjunctive programs, called the p-stable semantics, in
terms of the paraconsistent logic G’3; we review a fixed point characterization of p-stable semantics for disjunctive
programs using classical logic; and finally we review how G’3-stable semantics is useful to model different
approaches. In section 3, we review some results around the p-stable semantics in order to represent uncertain,
inconsistent and incomplete information and perform reasoning with it. In section 4, we explore two approaches
about how to construct non-monotonic semantics based on G’3 that can deal with inconsistent information. Finally
in section 5, we present the conclusions.

We assume that the reader has some familiarity with basic logic such as chapter one in (Mendelson, 1987).

2 G’3-stable semantics

This section starts summarizing some basic concepts and definitions used to understand this paper; we review two
paraconsistent logics; we also present two characterizations of the G’3-stable semantics for disjunctive programs, the
former is a fixed point characterization using classical logic and the latter is in terms of the paraconsistent logic G’3.
We also include a theorem that establishes an equivalence between the G’3-stable semantics and the p-stable
semantics, only for disjunctive programs. So, we shall use any of the two terminologies when dealing with
disjunctive programs. Finally, in this section, we review the expressivity of p-stable
semantics.

2.1 Background
A signature L is a finite set of elements that we call atoms, or propositional symbols. The language of a
propositional logic has an alphabet consisting of proposition symbols: p0, p1, …; connectives: ∧, ∨, , ¬; and
auxiliary symbols: (,), where ∧, ∨, are 2-place connectives and ¬ is a 1-place connective. Formulas are built up as
usual in logic. If F is a formula we will refer to its signature LF as the set of atoms that occur in F. A literal is either
an atom a, called positive literal; or the negation of an atom ¬ a, called negative literal.

A clause is a formula of the form H B (also written as B H), where H and B, arbitrary formulas in
principle, are known as the head and the body of the clause respectively. The body of a clause could be empty, in
which case the clause is known as a fact and can be noted just by H . We define a disjunctive clause, as a clause of
the form a1 ∨…∨ ak b1 ∧ … ∧ bn ∧ ¬bn+1 ∧ …∧ ¬bn+m where ai and bi are atoms, and k ≥ 1. The size of such a
clause is k+n+m. In the case k=1 such a clause is a normal clause. We will abbreviate a disjunctive clause with the
expression A B+ ∧ ¬ B -, where A is the set of atoms in the head of the clause, B+ is the set of atoms that appear
without negation in the body of the clause, and B - is the set of atoms that appear negated in the body of the clause,
that is to say: A = {a1,…, ak}, B+ ={ b1,…, bn}, B - = {bn+1,…,bn+m }. The symbol ¬ before a set of atoms, denotes
the conjunction of the negations of the atoms belonging to the set. Given a set of atoms M and a signature L , ¬ M’=
{¬a | a∈ L \ M}.

Finally, a program is a finite set of clauses. If all the clauses in a program are of a certain type, we say the
program is also of that type. For instance, a set of arbitrary clauses is an arbitrary program, a set of disjunctive
clauses is a disjunctive program. The size of a disjunctive program is the sum of the sizes of the clauses in the
program.

Computación y Sistemas Vol. 13 No.1, 2009, pp 75-86
ISSN 1405-5546

78 Mauricio Osorio, Claudia Zepeda, Juan Carlos Nieves and José Luis Carballido

2.2 Motivation and logical foundations of the G’3-stable semantics
In (Osorio et al., 2008) the authors discuss and illustrate why paraconsistent logics are also interesting for logic
programming semantics. They use an example for that purpose and consider the normal program P1 :{a ¬ b}. The
well known stable semantics (Gelfond and Lifschitz, 1988) of P1 gives {a} as the unique intended model of this
program. If we use classical logic we obtain {b} as a second model, but this is against the spirit of logic
programming. However, it would be convenient to have some semantics, which share several properties with the
stable semantics, but are closer to classical logic. For example, let us consider the following program P2:{a ¬ b, a

 b, b a}.
P2 does not have stable models, but the set {a,b} could be considered the intended model for P in classical logic.

So, we need logics weaker than classical logic in order to be able to model logic programming. A major
mathematical question then arises: Are there other well known semantics such that the unique intended model of
program P1 is {a} and the unique intended model of program P2 is {a,b}? The answer is “yes” when we consider
semantics defined by some paraconsistent logics, at least, the two logics that we consider in this paper: the Cω logic
and the G’3 logic.

The Cω logic (da Costa, 1963) is defined as positive logic1 plus the following two axioms: Cω 1: a ∨ ¬ a and Cω 2:
¬¬ a a.

Table 1. Truth tables of connectives in G’3

x ¬x 0 1 2
0 2 0 2 2 2
1 2 1 0 2 2
2 0 2 0 1 2

The G’3 logic is defined as a 3-valued logic with truth values in the domain D ={0,1,2} where 2 is the designated
value. The evaluation functions of the logic connectives are then defined as follows: x ∧ y = min(x, y); x ∨ y = max(x,
y); and the ¬ and connectives are defined according to the truth tables given in Table 1. (Osorio and Carballido,
2008) present an axiomatization of G’3 that consists of all the axioms of Cω plus the following four axioms:

E1: (¬A ¬B) ↔ (¬¬B ¬¬A) where F ↔ G := (F G) ∧ (G F) E2: ¬¬(A B) ↔ ((A B) ∧ (¬¬A ¬¬B))
 E3: ((B∧¬B) ∧ (~~A ∧ ¬A)) A where ~A := (A (¬A ∧¬¬A)) E4: ¬¬(A ∧ B) ↔ (¬¬A ∧ ¬¬B)

(Osorio and Carballido, 2008) also present a soundness and completeness theorem: a formula can be inferred
from the axioms and using modus ponens, if and only if, it takes the designated value 2 for any choice of truth values
taken by the atoms in the formula. In other words a formula is a theorem if and only if it is a tautology.

We observe that one of the important features of Cω and G’3 is that the formula (¬a ∧ a) b is not a theorem.
This fact, a formula and its negation do not entail any arbitrary formula, is what makes these logics paraconsistent.

It turns out that the two paraconsistent logics mentioned in this section are related to a semantics which is an
alternative answer to the question posed above. We now turn our attention to this semantics: the p-stable semantics.
The p-stable semantics is based on the following definition of X-stable model of an arbitrary program given an
arbitrary logic X. We use the notation Q╟─X M to denote that M is a classical model of Q and Q proves, in logic X,
each atom in M.

Definition 1 (Osorio et al, 2006) Given any logic X and an arbitrary program P, a set of atoms M ⊆ LP is a X-stable
model of P if P ∪¬M’╟─X M. The semantics defined by these models is called the X-stable semantics.

1 A logic whose connectives do not include any negation (Osorio et al., 2008).

Computación y Sistemas Vol. 13 No.1, 2009, pp 75-86
ISSN 1405-5546

G’3-Stable Semantics and Inconsistency 79

Example 1 Let X be the G’3 logic. Let P be the following program {b ¬ a, a ¬ b, p ¬ a, p ¬ p}. It is easy
to verify that {a, p} and {b, p} are G’3-stable models of P. Let us observe that the formula (¬a a) a is a
tautology in G’3.

Now, we review a fixed point characterization of the p-stable semantics for disjunctive programs using classical
logic, since this kind of characterizations is commonly useful for implementations of a semantics. A preliminary
implementation of the p-stable semantics based on this characterization is presented in (López, 2006). Following a
similar approach to (Gelfond and Lifschitz, 1988) for the stable semantics, the p-stable semantics uses the RED(P,M)
reduction defined below. It also uses a fixed-point operator in terms of classical logic. From now on, we shall use the
symbol ╞═C to denote the consequence relation in classical logic.

Definition 2 (Osorio et al, 2006) Let P be a disjunctive program and M be a set of atoms. We define RED(P,M) :=
{A B+ ∧ ¬(B - ∩ M) | A B+∧ ¬ B - ∈ P}.

Example 2 (Osorio et al, 2006) Take the following disjunctive program P: {b ¬ a, a ¬ b, p ¬ a, p ¬ p, c
∨ a p}. Given M = {a, p}, it follows that RED(P,M) is the program: { b ¬ a, a, p ¬ a, p ¬ p, c ∨ a p}.

Definition 3 (Osorio et al, 2006) Let P be a disjunctive program, and M be a set of atoms. We say that M is a p-
stable model of P if M is a classical model of P and RED(P,M)╟─C M.

Example 3 (Osorio et al, 2006) }Let us consider the disjunctive program P of Example 2. We know that given M =
{a, p}, it follows that RED(P,M) is the program: { b ¬ a, a, p ¬ a, p ¬ p, c ∨ a p}. Hence, since
RED(P,M)╟─C M, M is a p-stable model of P, and it is the only one.

Now we present the characterization of the p-stable semantics for disjunctive programs in terms of the
paraconsistent logic G’3. This characterization is based on the definition of X-stable model of an arbitrary program
given an arbitrary logic X. In particular, when the logic X corresponds to the logic G’3 in the Definition 1, we obtain
G’3-stable models and the G’3-stable semantics. Let us observe that the condition that P ∪¬M’ proves, in logic X,
each atom in M in Definition 1, is strictly stronger than the condition that every model of P ∪¬M’ in the G’3 logic is
a model of M. To see this, let us look at an example. Let P be the program {a ¬ b, b b}. Any G’3 valuation of a
and b that makes true the rules of P∪{¬ a}, gives b the designated value 2; however {b} is not a G’3-stable model of
P. The characterization of the p-stable semantics for disjunctive programs in terms of the paraconsistent logic G’3 is
described in the following theorem.

Theorem 1 (Osorio et al, 2006) Let P be a disjunctive program. Let M be a set of atoms. M is a p-stable model of P
iff M is a G’3-stable model of P.

Let us stress the fact that this theorem establishes an equivalence between the p-stable semantics and the G’3-
stable semantics, only for disjunctive programs. From now on, we shall use any of the two terminologies when
dealing with disjunctive programs.

It is worth to mention that the only p-stable model of program P2, at the beginning of this subsection 2.2, is
{a,b}, which is also the intended model of this program P2 in classical logic.

We want to mention that in (Pearce, 1999), Pearce characterized the well known stable semantics defined in
(Gelfond and Lifschitz, 1988) for disjunctive programs in terms of an arbitrary intermediate logic2 X and the
definition of the X-stable model. This characterization is described in the following theorem.

2 A logic stronger than or equal to Intuitionistic logic and strictly weaker than Classical logic, such as logic G3.

Computación y Sistemas Vol. 13 No.1, 2009, pp 75-86
ISSN 1405-5546

80 Mauricio Osorio, Claudia Zepeda, Juan Carlos Nieves and José Luis Carballido

Theorem 2 (Pearce, 1999) Let X be an intermediate logic. Let P be a disjunctive program. Let M be a set of atoms.
M is a stable model of P iff M is a X-stable model of P.

We also remark that the authors of (Osorio et al., 2008) present some results that give conditions under which
the concepts of stable and p-stable models agree. They present a translation of a disjunctive program D into a normal
program N, such that the p-stable model semantics of N corresponds to the stable semantics of D when restricted to
the common language of the theories. Besides, they show that if the size of the program D is n then the size of the
program N is bounded by An2 for a constant A. The relevance of this last result is that it shows that the p-stable
model semantics for normal programs is powerful enough to express any problem that can be expressed with the
stable model semantics for disjunctive programs.

In order to finish this section, we consider the expressivity of the p-stable semantics. We mention three different
approaches for knowledge representation based on this semantics: updates, preferences and argumentation.

In case intelligent agents get new knowledge and this knowledge must be added or updated to their knowledge
base, it is important to avoid inconsistencies. An update semantics for update sequences of programs based on p-
stable semantics is proposed in (Osorio and Zepeda, 2007).

The concept of preferences is considered a vital component of reasoning with real-world knowledge. In (Osorio
and Zepeda, 2008), the authors introduce preference rules which allow us to specify preferences as an ordering
among the possible solutions of a problem. Their approach allow us to express preferences for arbitrary programs.
They also define a semantics for those programs. The formalism used to develop their work is the p-stable semantics.

The main purpose of argumentation theory is to study the fundamental mechanism humans use in
argumentation, and to explore ways to implement this mechanism on computers. Recently, in (Carballido et al.,
2009) it was shown that given an argumentation framework, its preferred semantics3 can be characterized by means
of a normal program, such that the preferred extensions of the argumentation framework correspond exactly to the
G’3-stable models of the normal program. This kind of result helps to understand the close relationship between two
successful approaches of non-monotonic reasoning: argumentation theory and logic programming with negation as
failure.

3 G’3-stable extensions to handle uncertainty

Uncertain, inconsistent and incomplete information is an unavoidable feature of daily decision-making. In order to
deal with uncertain, inconsistent and incomplete information intelligently, we need to be able to represent it and to
reason about it. Currently, several proposals for dealing with inconsistent programs have been suggested. One of
particular interest is proposed in (de Amo et al., 2002). This approach is based on a family of the so called Logics of
Formal Inconsistency (LFIs). A major point of about these logics consists in the internalization of the concepts of
consistency and inconsistency inside the object language, see (de Amo et al., 2002; de Amo et al. 2000; Carnielli et
al. 2007). These logics are used in (de Amo et al., 2002) as a logical framework to model integrated databases. (de
Amo et al., 2002) also presents a method that consists basically in constructing a repaired version of the integrated
database where inconsistent information could appear. More closer to our work is the research presented in (Sakama,
1995). Here, the stable semantics was generalized to deal with inconsistent programs. However this approach only
allows disjunctive programs. In the approach by (Sakama, 1995) it is not clear which proof theory supports their
proposal.

In this section, we will outline some results around the p-stable semantics in order to represent uncertain,
inconsistent and incomplete information and perform reasoning with it.

Although the G’3-stable models semantics (see Definition 1) is interesting, it is explosive and can not handle
contradictions. The problem is that in Definition 1, we require M to be a classical 2-valued model of the given
theory. We suggest a simple solution to this problem. Our idea is to substitute this condition for a weaker form, one

3 It is worth mentioning that the preferred semantics is one of the most accepted argumentation semantics in argumentation theory (Bench-Capon
and Dunne, 2007)

Computación y Sistemas Vol. 13 No.1, 2009, pp 75-86
ISSN 1405-5546

G’3-Stable Semantics and Inconsistency 81

that avoids making the program more inconsistent (so to speak). As we recognize in the conclusions, we need further
research to obtain something more valuable.

In the rest of this subsection we present the details of our construction, which is a revised version of the one
presented in (Osorio and Carballido, 2008). First, we will review some basic notions that we will need later.

For a given set L of literals and a program P, we say that L is complete w.r.t P if every atom that appears in P,
either belongs to L or its negation belongs to L. For a given set of negative literals N, we write PN to denote the
program P∪N. For a given program P, we say that it is literal complete if for every atom x in the language of P,
either P ├─ G’3 x or P ├─ G’3 ¬x.

Let us consider an example to explain what we have in mind w.r.t a nonmonotic semantics that can deal with
inconsistent programs. Suppose that we have a program P consisting of 3 formulas: ¬ a b, ¬ c, and c. Then P does
not have G’3-stable models.

We are interested in the definition of a semantics that can give the following set of literals as the unique output
of P, namely {¬a, b, ¬c, c}. For a given program P, let li be a function that counts basic inconsistencies as follows:
li(P) := |{x ∈ LP : P ├─ G’3 x , P ├─ G’3 ¬x.}|.

Definition 4 Let P be any program and let N be a set of negative literals. We said that PN is a suitable extension of P
if PN is literal complete and li(P)=li(PN). Let L be a set of literals that is complete w.r.t. P and let N := {¬ x : ¬ x ∈
L}. We say that L is a semi-G’3 stable model of P if PN is a suitable extension of P and PN ├─ G’3 ¬L.

Following this approach, it turns out that {¬a, b, ¬ c, c} is the unique semi-G’3 stable model of our example
program given before.

The following result is new and important, because it shows that our semantics is indeed a reasonable
generalization of the G’3-stable semantics with respect to normal programs. Informally speaking it says that both the
G’3-stable semantics and the semi- G’3 stable agree for normal programs.

Theorem 3 Let P be a normal program and M be a set of atoms. Then the following two properties hold:
(a) if M is a G’3-Stable model of P then ¬(LP \ M) ∪ M is a semi-G’3 stable model of P.
(b) if L is a semi-G’3 stable model of P then At(L) is a G’3-Stable model of P, where At(L) denotes the set of atoms in
L.
Proof.
First, note that li(P)=0.
We first prove (a). Let M be a G’3-Stable model of P. Let N be the set ¬(LP\ M). Observe that PN is literal complete
and li(PN)=0. Hence, PN is a suitable extension of P. (*)
Let L be N∪M. Note that L is a set of literals that is complete w.r.t. P. Moreover, PN ├─ G’3 ¬L. (**)
By (*) and (**) L is a semi- G’3 stable model of P. So, ¬(LL\ M) ∪ M is a semi- G’3 stable model of P, as desired.

We now prove (b). Suppose that L is a semi- G’3 stable model of P. L is of the form N∪M, where N is the set of
negative literals in L and M is the set of positive literals in L. It is immediate that PN is a suitable extension of P.

To prove that M (also At(L)) is a G’3-Stable model of P we need to show that PN ├─ G’3 M and that M is a
standard 2-valued model of P. The first condition follows immediately. Hence, we concentrate on proving the second
condition. Note that for every atom x, x∈ M iff PN ├─ G’3 x. In addition, since PN is literal complete, we also have that
for every atom x, x∉M iff PN ├─ G’3 ¬ x. Suppose (in order to obtain a proof by contradiction) that M is not a model
of P. Then there exists an atom or a rule r in P that is not modeled by M. If r is an atom (say x) then one can easily
verify that PN ├─ G’3 x and PN ├─ G’3 ¬ x. Hence, li(PN) > 0 and so PN is not a suitable extension of P, but this is a
contradiction. Suppose then that r is rule of the form α x. Then M models α but M does not model x. By the
second condition, we know that PN ├─ G’3 ¬x. Now, since M models α, M models every literal l that appears in α and
hence PN ├─ G’3 l, so PN ├─ G’3 α. Since PN ├─ G’3 r, by modus ponens: PN ├─ G’3 x. Hence, li(PN) > 0 and so PN is not a

Computación y Sistemas Vol. 13 No.1, 2009, pp 75-86
ISSN 1405-5546

82 Mauricio Osorio, Claudia Zepeda, Juan Carlos Nieves and José Luis Carballido

suitable extension of P, but this is a contradiction. Hence, M is a model of P. Thus, At(L) is a G’3-stable model of P,
as desired.

Not much has been done with respect to extending a non-monotonic semantics to deal with inconsistent
programs. The semi- G’3 stable semantics is one proposal in this line of research. It has two basic but appealing
properties that we claim makes it a reasonable proposal. First, as Theorem 3 shows, it properly generalizes the
original G’3-stable semantics, namely, for normal programs both semantics agree. Second, as our example illustrates,
the semantics has the non-interference property, namely if a program P is made up of two programs P1, P2 that have
disjoint languages, then the semantics of P with respect to the language of P1 corresponds exactly with the semantics
of P1.

4 Uncertain reasoning and p-stable semantics

In this selection, we will outline some results around the p-stable semantics in order to represent uncertain,
inconsistent and incomplete information and perform reasoning with it.

Possibilistic logic (Dubois, et al. 1994) is a logic of uncertainty tailored for reasoning under incomplete
evidence and partially inconsistent knowledge. In this logic all the formulas are attached by degrees of uncertainty;
where, these degrees are quantifications of necessity or possibility of the corresponding possibilistic formulas. Based
on ideas of possibilistic logic and stable semantics, in (Nicolas et al., 2006; Nieves et al., 2007), the authors defined a
possibilistic logic programming approach which is able to deal with reasoning that is at the same time non-
monotonic and uncertain. In this approach, a possibilistic logic normal program P is a finite set of possibilistic
normal clauses such that a possibilistic normal clause is a standard normal clause attached by a degree of uncertainty
α (α belongs to a complete lattice).

In (Nieves et al., 2007), the authors proposed an alternative approach for capturing the semantics of possibilistic
normal logic programs. Since this approach is based on the p-stable semantics (the so called possibilistic p-stable
semantics), it is less sensitive (in the sense of inconsistency) than the possibilistic logic programming approach based
on the stable semantics.

Like the p-stable semantics, the definition of the possibilistic p-stable considers a reduction which is defined as
follows:

Definition 5 (Nieves et al., 2007; Nieves, 2008) Let P be a possibilistic normal program and M a set of atoms. We
define PRED(P,M) := {(α : a B+ ∧ ¬(B - ∩ M))| (α : a B+ ∧ ¬B - ∈ P}.

Observe that the reduction PRED is a straightforward generation of the reduction of the p-stable semantics (see
Definition 2).

Now by considering the reduction PRED and the proof theory of possibilistic logic, the possibilistic p-stable
semantics is defined. In order to define it, we use the projection * which removes either the uncertain degrees
attached to a possibilistic atom or to a possibilistic clause, and also the operator ≤ which defines a partial order
between sets of possibilistic atoms4.

Definition 6 (Nieves et al., 2007; Nieves, 2008) Let P be a possibilistic normal logic program and M be a set of
possibilistic atoms such that M* is a p-stable model of P*. We say that M is a possibilistic p-stable model of P if and
only if PRED(P,M*) ├─ PL M and there does not exist a set M' such that the following three conditions holds: M' ≠M,
PRED(P,M*) ├─ PL M' and M ≤ M'.

In this definition, ├─ PL denotes the inference in possibilistic logic. Observe that the definition of the
possibilistic p-stable semantics is close related to the p-stable semantics. In fact, M is a possibilistic p-stable model of

4 A ≤ B ⇔ A* ⊆ B*, and ∀x, q1, q2, (x, q1) ∈ A ∧ (x, q2) ∈B then q1≤ q2

Computación y Sistemas Vol. 13 No.1, 2009, pp 75-86
ISSN 1405-5546

G’3-Stable Semantics and Inconsistency 83

the possibilistic logic program P if and only if M* is a p-stable model of the logic program P* (* denotes a projection
which removes the possibilistic degrees of any set of possibilistic atoms or a set of possibilistic logic clauses).

Just as the p-stable semantics is related to stable semantics (also called answer set semantics), the possibilistic p-
stable semantics is closely related to the possibilistic semantics defined in (Nicolas et al., 2006; Nieves et al., 2007).
For instance, the following proposition shows a relationship between the possibilistic answer set semantics (Nieves
et al., 2007) and the possibilistic p-stable semantics.
Proposition 1 (Nieves, 2008) Let P be a possibilistic normal program. If M is a possibilistic answer set of P, then the
two following conditions hold: (a) M* is a p-stable model of P*. (b) there exists a possibilistic p-stable mode M' of
P such that M ≤ M' and M* = M'*.

An interesting property of the possibilistic p-stable semantics is that this semantics supports a kind of monotony
w.r.t. the inference under possibilistic logic. In order to enunciate this property, we say that P is equivalent to P'
under the possibilistic p-stable semantics if and only if any possibilistic p-stable model of P is also a possibilistic p-
stable model of P' and vice versa.

Proposition 2 (Nieves, 2008) Let P be a possibilistic normal program. If P├─PL (x,α) then P is equivalent to P ∪{(x,
α)} under the possibilistic p-stable semantics.

Prioritizing logic clauses, as it is done in possibilistic logic programming, can be also regarded as a preference
relation between rules. In fact, by considering the certainty degrees as preferences, two criteria for restoring
inconsistent possibilistic knowledge bases were defined in (Nieves, 2008). These criteria are based on the notion of
maximal consistent subsets of premises. In other words, one tries to recover the maximal consistent subset of
possibilistic clauses from an inconsistent possibilistic program to infer consistent information. For instance, let us
consider the following possibilistic logic program P: {0.3: a ¬b, 0.5: b ¬c, 0.6: c ¬ a}. Observe that P*
has no answer sets, neither p-stable models; hence, P has no possibilistic answer sets neither possibilistic p-stable
models. However, an important property of possibilistic logic, that was proved in (Dubois et al., 1994), is that P├─PL
(x,α) if and only if Pα ├─PL (x,α), where Pα = {c | c∈P and n(c)≥α}. This property is a key point to restore
consistency of an inconsistent possibilistic knowledge base. In fact, in (Dubois et al., 1994), it was introduced the
concept of α-cut. Essentially, possibilistic logic, by using α-cut, deletes the set of possibilistic formulae which are
lower than the inconsistent degree of the inconsistent knowledge base. In order to illustrate these ideas, let us
consider again the program P, specially let us consider the subprogram P3 : {0.5: b ¬c, 0.6: c ¬a}. All we
want to point out is that 3 is the inconsistent degree of P (see (Nieves, 2008) for a formal definition of this degree).
Now observe that P3 has a possibilistic answer set which is {(c, 0.6)}. Observe that by removing the possibilistic
clause 0.3: a ¬b, one can recover a consistent subprogram of P. By lack of space, we do not present the formal
details of the α-cut w.r.t. possibilistic logic program; however, the interested reader can find in (Nieves, 2008) all the
technical details.

As we can see, by considering prioritized logic clauses, as it is done in possibilistic logic programming, one can
restore the consistency of possibilistic logic programs.

5 Conclusions

In this paper, we have presented an overview of how to perform non-monotonic reasoning based on paraconsistent
logics. In particular, we concentrate our attention on a logic programming semantics, called G’3-stable, which is
based on paraconsistent logics. We have seen that the scope of the G’3-stable semantics is at least the same as that of
the stable models semantics (Gelfond and Lifschitz, 1988). In fact, we have pointed out that this semantics is able to
capture the preferred argumentation semantics which is one of the most accepted argumentation semantics in
argumentation theory. It is worth to comment that by considering the relationship between argumentation and logic
programming semantics, we can explore the non-monotonic reasoning properties of the argumentation semantics.
For instance, since the G’3-stable semantics can be constructed by some paraconsistent logic (Osorio et al. 2006;

Computación y Sistemas Vol. 13 No.1, 2009, pp 75-86
ISSN 1405-5546

84 Mauricio Osorio, Claudia Zepeda, Juan Carlos Nieves and José Luis Carballido

Osorio et al., 2008), one can study the non-monotonic reasoning properties of the preferred semantics in terms of
these logics.

Also we have described an approach for managing uncertain, incomplete and inconsistent information. This
approach has features of possibilistic logic. These features allow restoring consistency from an inconsistent
possibilistic knowledge base.

The issue of non-monotonic reasoning in the context of inconsistent knowledge bases is still open; however, we
have presented enough evidence that suggests that paraconsistent logics could support the definition of robust non-
monotonic approaches in order to deal with inconsistent knowledge bases. In fact, we have introduced a
generalization of the G’3 stable semantics in order to deal with inconsistent programs.

Acknowledgement

We are grateful to anonymous referees for their useful comments.

References

1. Baral C., Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University

Press, Cambridge, 2003
2. Bench-Capon T. J. M. and Dunne P. E., Argumentation in artificial intelligence. Artificial Intelligence, 171

(10-15): 619-641 (2007).
3. Béziau J., Paraconsistent logic from a modal viewpoint. Journal of Applied Logic, 3:7-14 (2005).
4. Carballido J. L., Nieves J. C., and Osorio M., Inferring Preferred Extensions by Pstable Semantics.

Iberoamerican Journal of Artificial Intelligence (Inteligencia Artificial), 13(41): 38-53 (2009).
5. Carnielli W. A., Coniglio M., and Marcos J., Logics of formal inconsistency. Handbook of Philosophical

Logic, 14:(15-107), Springer, 2007.
6. da Costa N. C. A., On the theory of inconsistent formal systems (in Portuguese). PhD thesis, UFPR Curitiva,

1963.
7. de Amo S., Carnielli W. A., and Marcos J., Formal inconsistency and evolutionary databases. Logic and

Logical Philosophy, 8(1):115-152 (2000).
8. de Amo S., Carnielli W. A., and Marcos J., A logical framework for integrating inconsistent information in

multiple databases. Paper presented at FOIKS, Vol.2284 of Lecture Notes in Computer Science, Springer, 2002,
67-84.

9. Donini F. M., Nardi D., and Rosati R., Ground nonmonotonic modal logics. Logic and Computation, 7(4)
(1997).

10. Dubois D., Lang J., and Prade H., Possibilistic logic. In D. Gabbay, C. J. Hogger, and J. A. Robinson, editors,
Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 3 of Nonmonotonic Reasoning and
Uncertain Reasoning, Oxford University Press, 1994, 439-513.

11. Gelfond M. and Lifschitz V., The Stable Model Semantics for Logic Programming. In Kowalski R. and
Bowen K., editors. Paper presented at 5th Conference on Logic Programming, MIT Press, 1988, 1070-1080.

12. Gelfond M. and Lifschitz V., Logic Programs with Classical Negation. In D. Warren and P. Szeredi,
Editors. Paper presented at 7th Int. Conf. on Logic Programming, Jerusalem, Israel, MIT Press, 1990, 579-597.

13. Konolige K., On the relation between default and autoepistemic logic. In M. L. Ginsberg, editor, Readings in
Nonmonotonic Reasoning,. Kaufmann, Los Altos, CA, 1987, 195-226.

14. López A., Implementing pstable. Paper presented at LoLaCOM, CEUR Vol 220, on line:
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-220/, Apizaco, Tlaxcala, 2006.

15. McDermott D., Nonmonotonic logic II: Nonmonotonic modal theories. ACM Transactions on Computer
Systems, 29: 33-57 (1982).

16. McDermott D. and Doyle J., Non-monotonic logic I. Artificial Intelligence, 13:41-72 (1980).
17. Mendelson E., Introduction to Mathematical Logic. Wadsworth, Belmont, CA, third edition, 1987.

Computación y Sistemas Vol. 13 No.1, 2009, pp 75-86
ISSN 1405-5546

G’3-Stable Semantics and Inconsistency 85

18. Minsky M., A framework for representing knowledge. In P. Winston, editor, The Psychology of Computer

Vision, Mcgraw-Hill, New York, 1975.
19. Nicolas P., Garcia L., Stéphan I., and Lafèvre C., Possibilistic Uncertainty Handling for Answer Set

Programming. Annal of Mathematics and Artificial Intelligence, 47(1-2):139-181 (2006).
20. Nieves J. C., Modeling arguments and uncertain information --- A non-monotonic reasoning approach. PhD

thesis, Software Department (LSI), Technical University of Catalonia, 2008.
21. Nieves J. C., Osorio M., and Cortés U., Semantics for possibilistic disjunctive programs. In S. Costantini and

R. Watson, editors. Paper presented at Answer Set Programming: Advances in Theory and Implementation
(ICLP-07 Workshop), 2007, 271-284.

22. J. C. Nieves, M. Osorio, and U. Cortés., Preferred extensions as stable models. Theory and Practice of Logic
Programming (TPLP), 8(4):527-543 (2008).

23. Osorio M., Arrazola J. R., and Carballido J. L., Logical Weak Completions of Paraconsistent Logics.
Journal of Logic and Computation, doi: 10.1093/log-com/exn015 (2008).

24. Osorio M. and Carballido J., Brief study of G’3 logic. Journal of Applied Non-Classical Logics, 18(4):475-499
(2008).

25. Osorio M. and Navarro J. A., Modal logic S52 and FOUR (abstract). In Proceedings of Annual Meeting of the
Association for Symbolic Logic, 2003.

26. Osorio M., Navarro J. A., Arrazola J., and Borja V., Ground nonmonotonic modal logic S5: New results.
Journal of Logic and Computation, 15(5):787-813 (2005).

27. Osorio M., Navarro J. A., Arrazola J. R., and Borja V., Logics with Common Weak Completions. Journal of
Logic and Computation, 16(6):867-890 (2006).

28. Osorio M. and Zepeda C., Update sequences based on minimal generalized pstable models. Paper presented at
MICAI 2007: Advances in Artificial Intelligence, 6th Mexican International Conference on Artificial
Intelligence, Vol. 4827 of Lecture Notes in Computer Science, Springer, 2007, 283-293.

29. Osorio M. and. Zepeda C., Pstable theories and preferences. In Electronic Proceedings of the 18th International
Conference on Electronics, Communications, and Computers (CONIELECOMP 2008), March, 2008.

30. Pearce D., Stable inference as intuitionistic validity. Journal of Logic Programming, 38, 79–91 (1999).
31. Sakama C. and Inoue K., Paraconsistent stable semantics for extended disjunctive programs. Journal of Logic

and Computation, 5:265-285 (1995).

Mauricio Osorio He is a titular professor in the Departamento de Computación, Electrónica y Mecatrónica at the
Universidad de las Americas Puebla. He belongs to the Sistema Nacional de Investigadores in Mexico. He is co-
author of more than 100 papers in Workshops/Conferences/Journals. He has a google page at:
http://osoriomauri.googlepages.com/

Computación y Sistemas Vol. 13 No.1, 2009, pp 75-86
ISSN 1405-5546

86 Mauricio Osorio, Claudia Zepeda, Juan Carlos Nieves and José Luis Carballido

Computación y Sistemas Vol. 13 No.1, 2009, pp 75-86
ISSN 1405-5546

Claudia Zepeda She is professor in the Facultad de Computación, at the Benemérita Universidad Autónoma de
Puebla. She belongs to the Sistema Nacional de Invesigadores in Mexico. She has a google page at:
http://czepedac.googlepages.com/

Juan Carlos Nieves He is a researcher in the Knowledge Engineering and Machine Learning Group in the
department of Llenguatges i Sistemes Informàtics (LSI) at the Technical University of Catalonia (UPC). Until today,
he has published more than 30 research papers in the computer science area. He has participated as reviewer in
several international congresses in Artificial Intelligence and Computer Science.

José Luis Carballido He obtained his Doctorate degree in 2009 at the Benemérita Universidad Autónoma de
Puebla. He has a Master´sdegree in mathematics from MIT, USA. Since 2007 year, he is part time professor at the
Facultad de Computación, at the Benemérita Universidad Autónoma de Puebla and also at the Universidad
Politecnica de Puebla in the area of informatics.

