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Abstract 
This article presents the use of the Simulated Annealing algorithm with a heuristic to solve the waste minimization 
problem in roll cutting programming, in this case, paper. Client orders, which vary in weight, width, and external 
and internal diameter, are fully satisfied.  Several tests were performed with real data from a paper company in 
which an average of 30% waste reduction and 100% reduction in production to inventory are obtained compare to 
the previous procedure. 
Keywords: Simulated Annealing, optimization, heuristics, cutting, paper rolls. 
 
Resumen 
Este artículo presenta el uso del algoritmo de Recocido Simulado con una heurística para resolver el problema de 
minimización de desperdicio en la programación de cortes en rollos, en este caso de papel. Las órdenes de los 
clients, que varían en peso, ancho, y diámetro interno y externo, se satisfacen al 100%.  Se realizan varias pruebas 
con datos reales de una compañía en donde en promedio se obtiene un ahorro del 30% de desperdicio y 100% de 
producción a inventario comparado con el procedimiento anterior. 
Palabras clave: Recocido simulado, optimización, heurísticas, corte, rollos de papel. 

 
1 Introduction 
 
Paper industry has a great product variety which can be classified in four manufacturing segments: packaging, 
hygienic, writing and printing, and specialties.  Every segment use paper rolls as basic input for their processes. 
These rolls are called master rolls and they vary in their internal diameter or center, Di , external diameter or simply 
diameter, De, and width, w, depending on the paper type and the process it will undertake.  Figure-1(a) shows these 
characteristics. 

Although there are several paper manufacturing segments for paper, in a same segment there are several paper 
types which basic difference is density, G. 

Client orders received by a paper manufacturing company are classified by paper type, then by their diameter, 
and then by their center.  Although, each order varies in width (cm) and weight (kg), the paper manufacturing 
company delivers to each client a certain number of rolls (with the diameter, center, and width requested) that satisfy 
the order. 

Once the orders are classified into groups by paper type (paper density), diameter, and center, each group is 
processed in a cutting machine with a maximum fixed width, WMR combining the order widths (wi) to satisfy each 
order weight having as objective to minimize the unused width of the master roll (M in Figure-1(b)).  The previous 
described minimization problem is a combinatorial one since we are interested in finding the best widths 
combination to cut in a master roll satisfying all orders.  All cutting combinations are grouped in a production cutting 
schedule (PCS), as shown in Figure 1(b), having a total weight or, equivalently, a total number of rolls to 
manufacture for each combination or item in the cutting schedule.  
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(a) Master roll characteristics (b) A cutting combination 

Fig. 1. Master roll characteristics 
 
These are the characteristics/steps of the procedure performed in the paper manufacturing company where this 

research was carried out: 
• Two or more people using a spreadsheet type application, i.e. MS Excel, perform the task.  
• The process takes about 3 hours to obtain an acceptable total waste, which in this company was less than 10% 

of the total production weight, for four different width cutting machines using a very simple approximation 
iterative scheme. 

• The smallest total waste achieved with this procedure is due to the production of some roll widths that go 
directly to inventory, i.e., certain commonly used roll widths are assigned to a “virtual” client’s order and 
created “on the fly.” 

 
By performing a deep analysis of the problem, we found the main problem was in this last step of the procedure 

since the person in charge of generating the cutting schedule in the company was generating about 30% more of the 
total waste as inventory production. This means that if the total waste was 9,000 ton, additionally 12,000 ton were to 
inventory. 

 
The process to obtain a cutting schedule has other characteristics: 
• The required time of the procedure limits the number of times (two or three) it can be performed before 

deciding which cutting schedule is going to be used for production.  
• The process considers a ±10% of the order weight (rarely, more) to help in generating the cutting schedule. 
• The same person that generates the cutting schedule decides the order of each combination before sending it 

for production.  
• Cutting blade movement is not considered in the process and it is performed by the cutting machine operator. 
 
This article shows the development of an application that: 
• automates a new generating procedure to obtain a cutting schedule,  
• the objective function is total waste width, and  
• eliminates the need of generating cuts to inventory  

 
by using the simulated annealing algorithm (Laarhoven & Aarts, 1987; Malhotra, Oliver, & Tu, 1991; Martínez-
Alfaro & Valenzuela-Rendón, 2004; Martínez-Alfaro & Flugrad, 1994; Martínez-Alfaro & Ulloa-Pérez, 1996; 
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Martínez-Alfaro & Flores-Terán, 1998; Martínez-Alfaro, Valdez & Ortega, 1998a, 1998b) and a very simple 
heuristic that simplifies work by Martínez-Alfaro & Valenzuela-Rendón-(2004) in the generation of a new 
state/solution for the simulated annealing algorithm. 
 
2 Methodology 
 
Knowing that the paper manufacturing company delivers paper rolls, first we compute the number of rolls that are 
equivalent to the each weight order. Master roll weight is given by the following equation (Martínez-Alfaro & 
Valenzuela-Rendón, 2004):  
 pr = (De

2 − Di
2)πWMRG  (1) 

where pr is the master roll weight (in kg), De is the external diameter (in m), Di is the center (internal diameter in m), 
WMR is the master roll width (in m), and G is the paper density (in kg/m3 ).  With this, we can compute the number of 
rolls for an order: 

 nr =
pi /wi

pr /WMR

⎡ 

⎢ 
⎢ 

⎤ 

⎥ 
⎥ =

piWMR

prwi

⎡ 

⎢ 
⎢ 

⎤ 

⎥ 
⎥  (2) 

 
where nr is the number of rolls for the i-th order, pi (in kg) is the weight for the i-th order, wi (in m) is the width of 
the -th order, (in kg) is the master roll weight , and (in m) is the master roll width. 
 
2.1 Waste Optimization 
The initial cutting schedule procedure is performed by selecting a random order width wi from the order set to 
include in a combination, and it will continue until the sum of the included widths is greater or equal to the master 
roll width or the number of them is equal or greater to the maximum number of cuts, Cb (Figure-1(b) shows a six-cut 
combination), allowed for that cutting machine.  Once one of these conditions is satisfied, another cutting 
combination is initiated.  The process continues until all widths in the order set are included in a combination.  
Table-1 shows a set of orders where R is the equivalent number of rolls for the required width.  This set of orders 
were processed on a cutting machine of W= 202.5. 
 

Table 1. Cutting orders (widths in cm) 
ID Width R 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

55.0 
145.0 

50.0 
150.0 
135.0 

80.0 
105.0 

90.0 
100.0 

55.0 

6 
6 
8 
2 
6 

11 
6 
5 
5 

24 
 

ID Width R

10
11
12
13
14
15
16
17
18
19

51.0
70.0
70.0
69.0
72.0
59.5
87.0
87.0
64.5
83.0

105
8
8
5
5

16
4
6

24
4

ID Width R

20
21
22
23
24
25
26
27
28
29

68.5
79.0
69.0
79.0
83.0
91.5
85.0
81.0
24.0

100.0

47
8
8
8
7

23
11
30
12
13

ID Width R 

30
31
32
33
34
35
36
37

64.0
181.0
181.0
201.0
195.6
200.0
201.0
181.0

37 
5 

18 
14 
16 

117 
63 
35 

 

 
Table 2 shows a list of cutting combinations or cutting schedule for a cutting machine that allows a maximum of 
Cb-=-3 cuts. wpk is the total width for that combination, wi, i-=-1,...,-Cb are the widths included for that combination. 
Figure-2 shows a plot of the combinations and its totals widths.  Once the cutting schedule is generated, the waste for 
each combination is computed as follows: first, compute the unused width part of the master roll: 
 

Mk WMR wpk  (3) = − 
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with 

 wpk = wi
i=1

Cb

∑  (4) 

and then in weight 
 

 mk = Mk
pr

WMR

 (5) 

 
Table-2. A set of possible cutting combinations for a three-cut machine using set of oders shown in Table-1 

k wp w1 w2 w3 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

100.0 
100.0 
100.0 
100.0 
181.0 
100.0 
100.0 
100.0 
201.0 
100.0 
100.0 
200.0 
100.0 
 79.0 
200.0 
100.0 
181.0 
 79.0 
 83.0 
 69.0 

100.0 
100.0 
100.0 
100.0 
181.0 
100.0 
100.0 
100.0 
201.0 
100.0 
100.0 
200.0 
100.0 
 79.0 
200.0 
100.0 
181.0 
 79.0 
 83.0 
 69.0 

100.0 
100.0 
100.0 
100.0 

 
100.0 
100.0 
100.0 

 
100.0 
100.0 

 
100.0 
 68.5 

 
100.0 

 
 79.0 
 64.5 
 69.0 

 
 
 
 
 
 
 
 
 
 
 
 
 

55.0 
 
 
 
 

55.0 
64.5 

 

k wp w1 w2 w3 
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 

200.0
181.0
200.5
195.0
202.5
200.0
201.0
181.0
200.0
181.0
200.0
201.0
200.5
201.0
200.0
200.0
181.0
201.0
201.0
200.0 

200.0 
100.0 
 81.0 
 81.0 
 83.0 
200.0 
201.0 
181.0 
200.0 
181.0 
100.0 
201.0 
 91.5 
201.0 
200.0 
200.0 
181.0 
201.0 
201.0 
200.0 

 
81.0 
64.5 
64.0 
68.5 

 
 
 
 
 

100.0 
 

85.0 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

55.0 
 
 
 
 

55.0 
64.5 

 
where mk is the waste for the k-th cutting combination, Mk is the master roll unused part for combination k, pr is the 
master roll weight, and WMR is the master roll width.  The total waste MT is the sum of each combination waste mk: 
 
 MT = mk

k
∑  (6) 

 
which is the objective function for our optimization problem. 
 

Optimization is performed only with order widths which are feasible to combine, i.e., if there is an order width 
that satisfies: 

 
 wi + wmin > WMR  (7) 
 
where wmin is the smallest order width, then, it is not considered for optimization since the waste generated by these 
orders is fixed with or without optimization.  Once an initial cutting schedule is generated, the Simulated Annealing 
algorithm is used to perform the optimization. 
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Fig. 2. A set of possible cutting combinations for a three-cut machine using set of oders shown in Table-1 

 
The following section describes how to generate a new cutting schedule from this initial one by defining a 

neighborhood part.  Simulated annealing algorithm has been successfully used in robotics (Martínez-Alfaro & 
Flugrad, 1994; Martínez-Alfaro & Ulloa-Pérez, 1996; Martínez-Alfaro & Valenzuela-Rendón, 2004) and scheduling 
(Martínez-Alfaro & Flores-Terán, 1998; Martínez-Alfaro et al., 1998a, 1998b) applications.  The following section 
the algorithm is described and its requirements for implementation in our problem.  
 
2.2 Simulated Annealing Algorithm 
Simulated annealing is basically an iterative improvement strategy augmented by a criterion for occasionally 
accepting higher cost configurations (Rutenbar, 1989; Malhotra et al., 1991).  Given a cost function C(z) (analog to 
energy) and an initial solution or state z0, the iterative improvement approach seeks to improve the current solution 
by randomly perturbing z0.  The Metropolis algorithm (Malhotra et al., 1991) was used for acceptance/rejection of 
the new state z′ at a given temperature T, i.e.,  

• randomly perturb z to obtain z′ , and calculate the corresponding change in cost δC = z′ − z 
• if δC < 0, accept the state 
• if δC > 0, accept the state with probability 

 

 P(δC) = exp(−δC /T)  (8) 
 
this represents the acceptance-rejection loop or Markov chain of the SA algorithm.  The acceptance criterion is 

implemented by generating a random number, ρ � [0, 1] and comparing it to P(δC); if ρ < P(δC), then the new state 
is accepted.  The outer loop of the algorithm is referred to as the cooling schedule, and specifies the equation by 
which the temperature is decreased.  The algorithm terminates when the cost function remains approximately 
unchanged, i.e., for nno consecutive outer loop iterations. 

Any implementation of simulated annealing generally requires four components: 
1. Problem configuration - domain over which the solution will be sought.  
2. Neighborhood definition - which governs the nature and magnitude of allowable perturbations.  
3. Cost function. 
4. Cooling schedule - which controls both the rate of temperature decrement and the number of inner loop 

iterations. 
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The domain for our problem is the set of cutting combinations. The objective or cost function is describe in the 
previous Section.  The neighborhood function used for this implementation is the same used by Martínez-Alfaro & 
Flugrad-(1994) with the addition of a very simple heuristic.  
 
Neighboring heuristic  
Two cutting combinations, cn1 and cn2 , are randomly selected with the distance between them cooled, i.e. distance 
between them is decreased as the temperature decreases.  Once selected the two cutting combinations, the heuristic 
consist of testing widths exchanges between them trying to decrease the average unused part of the master roll for 
both cutting combinations. This implies testing an exchange between width wi in cutting combination cn1 with 
width-wj in cutting combination-cn2 as shown in Figure-3.  Cutting combinations may have at most Cb widths and, 
therefore, the exchange could be between an empty width in one combination and a non empty width in the other 
combination.  Trivial exchanges (empty widths or equal widths in both combinations) are not performed.  

The allowable perturbations are reduced by the following limiting function 
 

 ε = εmax

log(T − Tf )
log(T0 − Tf )

 (9) 

 
where εmax is an input parameter and specifies the maximum distance between two elements in a list, and T, T0, Tf are 
the current, initial, and final temperatures, respectively. 

The cooling schedule in this implementation is the same hybrid one introduced by Martínez-Alfaro & 
Flugrad-(1994) in which both the temperature and the inner loop criterion vary continuously through the annealing 
process (Elperin,-1988).  The outer loop behaves nominally as a constant decrement factor: 

 
 Ti+1 = αTi  (10) 
 
where α = 0.9 for this paper.  The temperature throughout the inner loop is allowed to vary proportionally with the 
current optimal value of the cost function.  So, denoting the inner loop index as j, the temperature is modified when a 
state is accepted, i.e., 
 

 N in = Ndof 2 + 8(1−
log(T − Tf )
log(T0 − Tf )

)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (11) 

 
where Ndof is the number of degrees of freedom of the system. 
 

The initial temperature must be chosen such that the system has sufficient energy to visit the entire solution 
space. The system is sufficiently melted if a large percentage, i.e. 80%, of state transitions are accepted.  If the initial 
guess for the temperature yields less than this percentage, T0 can be scaled linearly and the process repeated.  The 
algorithm will proceed to a reasonable solution when there is excessive energy; it is simply less computationally 
efficient.  Besides the stopping criterion mentioned above, which indicates convergence to a global minimum, the 
algorithm is also terminated by setting a final temperature given by: 

 

 Tf = αNoutT0  (12) 
 
where Nout is the number of outer loop iterations and is given as data to our problem. 
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Fig. 3. Neighboring heuristic for three cut n1 and n2 combinations 
 

3 Results 
 
The source language for our implementation is in Python for Windows in a Centrino @1.69 GHz with 1 GB RAM.  
All tests were performed with real data given by the paper manufacturing company in which this research was 
carried out.  

The initial data is shown in Table 1 and for a machine of 2.025 m maximum width and 3 cutting blade machine. 
The present cutting schedule procedure generated a total waste of 17,628.5 kg and 16,742.0 kg to inventory and 

it took almost three hours. The system using the simulated annealing algorithm generated a total waste of 7,244.9 kg 
without the need of production cuts to inventory in about 40 seconds.  The SA system obtained 430 cutting 
combinations.  The sum of the required widths was 84,918.6-cm and since the master roll width was 202.5-cm, we 
would have needed 420 master rolls.  The SA system generated 10 additional cutting combinations to the minimum 
number of them. The resulting waste is about 59% less than the manual procedure and considering production to 
inventory also as waste, it is about 79% smaller.  The total production for this test was 211,317.3 kg.  This means 
that the total waste, without inventory, compare to the total production decreased from 8.34% to 3.43%.  If we 
include the inventory as waste, it went down from 16.26% to 3.43%.  Now, if the paper production cost of 1,000 kg 
is $400 USD, the SA system generated a total savings amount of $4,154 USD and considering inventory it was 
$10,850 USD.  If we would know each machine production rate, the previous savings would be equivalent to 
$2,549-USD/day and considering the inventory to $6,659 USD/day.  

Many tests were performed to test for robustness varying some parameters of the SA algorithm like the number 
of Markov chain ranging from 400 to 1400 and the initial temperature ranging from 400 to 4000 verifying total 
waste, total number of cutting combinations, the number of states, and the running time.  The results showed that the 
total waste (which was part of the cost function) had a standard deviation which represented 0.01% of the mean; the 
number of cutting combinations had a standard deviation which represented 0.16% of the mean; and the number of 

Computación y Sistemas Vol. 13 No.1, 2009, pp 87-95 
ISSN 1405-5546 



94   Horacio Martínez Alfaro and Manuel Valenzuela Rendón 
 

k, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 

k, S., & Toulouse, G. (1985). Configuration space analysis of travelling salesman problems. J. 

 Aarts, E. H. L. (1987). Simulated annealing: Theory and applications. Dordrecht, 

1991). Synthesis of spatially and intrinsically constrained curves using 

res-Terán, G. (1998). Solving the classroom assignment problem with simulated 

total states had a standard deviation of 15.9% of the mean which was very similar to the total running time which had 
a standard deviation of 15.39% of the mean. 

The other of the SA algorithm also tested was the percentage of acceptance rate ranging from 80% to 70% 
obtaining practically the same results in the total waste and the number of cutting combinations; the number of total 
states and the running time decreased its standard deviation to 8.96% and 9.92% of their respectively mean. 

Many other test were performed with orders for four different cutting machines, different maximum width or 
master roll width, and different number of cutting blades, for a period of four months obtaining verifying the 
previous tests for robustness.  The average savings in total waste was 680,000 kg using the SA system which 
represented a 29% savings compared to the manual procedure.  This represented a $477,756 USD in savings.  
However, production that went directly to inventory was 12,000,000-kg which represented $4.8 million USD.  If we 
consider that the SA system does not generate production to inventory (unless it is specified), the total savings for 
four months with four cutting machines was more than five million USD. 
 
4 Conclusions 
 
All results were validated by people in charge of obtaining the cutting schedule at the paper manufacturing company. 
Savings generated by the SA system allows not only an optimization of the total waste but also in the elimination of 
production to inventory.  The production to inventory resulted as the actual problem the company had.  Although 
some inventory production could be sold, this production was generated to minimize the total waste during the 
generation of the cutting schedule.  By using the system, it allows people from the company to spend more time in 
decision making, problem analysis and/or urgent orders since to obtain a cutting schedule takes less than a minute.  

The simple neighboring heuristic allowed a faster and better solution compared to the previous results reported 
in Martínez-Alfaro & Valenzuela-Rendón (2004).  Execution time was reduced to 1/10 and for higher number of 
orders, even more (1/50); and since the simulated annealing algorithm could explore more solutions of the domain, 
results are slightly better (absolute values). 

The authors are currently working in a global optimal cutting schedule generation system that will allow the use 
of several cutting machines (different width) to process an order set to generate the cutting schedule. 
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