
Computación y Sistemas Vol. 13 No. 2, 2009, pp 221-237
ISSN 1405-5546

ABSTRACT OF PhD THESIS

Reactive Scheduling of DAG Applications on Heterogeneous and Dynamic
Distributed Computing Systems

Mapeo de Aplicaciones Paralelas tipo DAG en Sistemas Distribuidos Heterogéneos y
Dinámicos

Graduated: Jesús Israel Hernández Hernández
Institute for Computing Systems Architecture
School of Informatics
University of Edinburgh, UK.
j.i.hernandez@sms.ed.ac.uk
Graduated in December 4th, 2008

Supervisor: Murray Cole
Institute for Computing Systems Architecture
School of Informatics
University of Edinburgh, UK.
mic@inf.ed.ac.uk

Abstract
Emerging computational platforms enable a set of geographically distributed computers with different capabilities
to be linked together and used in a coordinated fashion to solve a parallel application at the same time. Effective
scheduling mechanisms are essential to exploit the tremendous potential of computational resources offered by
such platforms. We consider the problem of scheduling parallel applications which are often abstracted as directed
acyclic graphs (DAGs), in which vertices represent application tasks and edges represent data dependencies
between tasks. The core scheduling issues are that the availability and performance of resources, which are
already by their nature heterogeneous, can be expected to vary dynamically, even during the course of an
execution. This thesis summary presents the main results of the Global Task Positioning (GTP) mapping method,
which is based on the cyclic use of a static mapping method over time. We place strong emphasis in three key
aspects, which we believe are central to address the dynamic nature of the problem: reactivity, data-aware
components and fault tolerance.
Keywords: Parallel processing, heterogeneous computing, task scheduling, DAG scheduling, fault tolerance.

Resumen
Plataformas computacionales emergentes permiten la compartición de recursos computacionales conectados a una
red de alta velocidad y localizados en sitios distribuidos geográficamente, en la solución de una aplicación de
manera concurrente. En este contexto, mecanismos de asignación de tareas se vuelven esenciales para explotar el
tremendo potencial de recursos computacionales. Nuestra investigación considera el problema de mapear
aplicaciones paralelas, frecuentemente representadas por grafos del tipo DAG (Directed Acyclic Graphs), en
ambientes computacionales distribuidos, heterogéneos y dinámicos. El punto central del problema es que la
disponibilidad y desempeño de los recursos computacionales pueden variar con el tiempo, incluso antes de
terminar la ejecución de la aplicación. Ponemos especial énfasis en tres aspectos clave, los cuales creemos son
primordiales para tratar la naturaleza dinámica el problema: adaptabilidad, reuso de información y tolerancia a
fallas. Este resumen de tesis comparte la experiencia adquirida en el área y muestra los resultados principales del
método de mapeo de aplicaciones paralelas GTP (Global Task Positioning) con sus respectivas variantes.
Palabras clave: Cómputo paralelo, cómputo heterogéneo, mapeo de tareas, tolerancia a fallas.

1 Introduction

Shared Heterogeneous Computing Systems (SHCS) are a natural result of the advances in network technology, in
which it became possible for geographically distributed computers with different capabilities to efficiently
communicate and therefore collaborate in a coordinated fashion to solve a wide range of applications [(Foster et al.,

222 Jesús Israel Hernández Hernández

Computación y Sistemas Vol. 13 No. 2, 2009, pp 221-237
ISSN 1405-5546

1999) ,(Chervenak et al., 2000)(Foster et al., 2001)]. We consider the DAG scheduling problem on SHCS. The core
scheduling issues are that the availability and performance of resources, which are already by their nature
heterogeneous, can be expected to vary dynamically, even during the course of an execution. Parallel applications
can be represented as directed acyclic graphs (DAG), in which vertices represent application tasks and edges
represent data dependencies between tasks. The DAG scheduling problem aims to map each task of the DAG onto
selected candidate resources in a way which minimizes the resulting schedule length (makespan) while satisfying the
task precedence constraints. Since this scheduling problem is NP-complete in its general forms [(Gary et al., 1979),
(Papadimitriou and Steiglitz, 1998)], a vast number of heuristics have been proposed in the literature. However, most
approaches were designed for homogeneous environments, assuming that the processors have the same capabilities
[(Kwok, 1999)]. Some other approaches were designed for particular heterogeneous environments, assuming that
heterogeneous resources are dedicated and unchanged over time [(Gerasoulis et al., 1992),(Topcuoglu, 2002) ,(Shi
and Dongarra, 2006), (Sih and Lee, 1993)]. Few algorithms can be found addressing the heterogeneous and
changeable nature of SHCS. Such heuristics can be divided into two main categories. One approach proposes to
schedule all tasks at run-time, as they become available [(Pegasus, 2003),(Deelman et al., 2003), (Maheswaran and
Siegel, 1998)]. The other approach, which we follow, is related with cyclic use (rescheduling) of a mapping method
over time [(Hernandez and Cole, 2007a), (Hernandez and Cole, 2007b), (Hernandez and Cole, 2007c), (Zhao and
Sakellariou, 2004)]. In this thesis, we propose the Global Task Positioning (GTP), a reactive scheduling system to
map DAG applications on SHCS. We place strong emphasis in three key aspects, which we believe are central to
address the heterogeneous and dynamic nature of the problem: reactivity, data-aware components and fault tolerance.
Thus, the description of our research is divided into three main parts. The first part defines the Global Task
Positioning (GTP) scheduling system, a list-scheduling heuristic based model, which addresses the problem by
allowing rescheduling and migration of the tasks of an executing application, in response to significant variations in
resource characteristics. Our overall system is sketched in Fig.1, in which ITG represents the task graph, STG
contains dynamic information concerning the progress of the application, and GRP contains dynamic information
concerning the performance of the processors. We will define these structures more formally in Section 2. We
consider that an initial task schedule is generated by a standard static mapping method and launched to SHCS. Then,
our model considers the cyclic use (rescheduling) of a static mapping method over time. The notion behind this
approach is to refine an initial schedule over time, taking into account the most recent performance information of
the resources and the progress of the application. The second part, based on observations of previous results for GTP,
proposes a new version of the model called GTP/c, in which re-use of information is introduced, to improve the
utilization of resources and to minimize the impact of the migration cost on the application makespan. Finally, the
third part explores the case of extreme variation of dynamic resources (i.e., processor failure), for situations in which
the availability of computational resources cannot be guaranteed. To address this, we propose a rewinding
mechanism, an event-driven process executed when a failure is detected at some rescheduling point. The mechanism
rewinds the progress of the application to a previous state, thereby preserving the execution despite the failed
processor(s). We show how to integrate the rewinding mechanism within GTP and GTP/c producing the new
versions GTP/r and GTP/c/r respectively.

The remainder of this article is organized as follows. In the next section, the DAG scheduling problem and some
related terminology are defined. In Section 3, we present the GTP system for scheduling DAG applications on
SHCS. Then, Section 4 presents the GTP/c system, an extended version of GTP in which re-use of information is
introduced, to improve the utilization of the computational resources and to minimize the impact of the migration
cost on the application makespan. Section 5 describes the rewinding mechanism to preserve the execution of the
application despite the presence of processor failure, resulting in the new versions GTP/r and GTP/c/r, for GTP and
GTP/c respectively. The evaluation of GTP, GTP/c, GTP/r and GTP/c/r is conducted by simulation, since this allows
us to generate repeatable patterns of resource performance variation. In Section 6 we describe the simulation
framework in which we conduct our experiments. In Section 7 we present the assessment of our experimental
results. Finally, Section 8 discusses future work and concludes the article.

 Reactive Scheduling of DAG Applications on Heterogeneous and Dynamic Distributed Computing Systems 223

Computación y Sistemas Vol. 13 No. 2, 2009, pp 221-237
ISSN 1405-5546

2 Description of the GTP System

The Global Task Positioning (GTP) system consists of a DAG application, a target Shared Heterogeneous
Computing Systems (SHCS) and a reactive heuristic scheduling mechanism to map the tasks composing the DAG
application on SHCS. The term Global denotes the coordinated collaborative environment of shared resources
potentially located at global scale, made possible by advances in network technology.

2.1 Definition of the SHCS
To represent Shared Resource Pools (SRP), we will use graphs SRP :: (P,L,avail,bandwidth) where P is the set of

available processors in the system, pi(1 ≤ i ≤ |P|). L is the set of communication links connecting pairs of distinct

processors, li(1 ≤ i ≤ |L|) such that l(pm, pn) ∈ L denotes an undirected communication link between pm and pn. We
assume that the intra-processor communication cost (pm = pn) is negligible. We assume that the processors are fully
connected. Our dynamic scheduling decisions will be based upon the latest available resource performance
information (as returned by standard Grid monitoring tools such as NWS[(NWS, 2002)] or Globus MDS[(MDS,
2000)]). Thus, at time t we assume knowledge of availt ::P → [0..1], capturing the availability of each CPU and

bandwidtht :: L→Float capturing the available bandwidth on each link. We note that the models GTP and GTP/c

described in Section 3 and Section 4 respectively, assume |availt > 0| in resources. The rewinding mechanism
described in Section 5 addresses the case of extreme variations when the variability is equal to zero (availt = 0).

Fig.1. The GTP System

2.2 Definition of the Input Task Graph (ITG)
Static information about the DAG application (see Fig.1.) is represented by an input task graph ITG :: (V,E,data,W).
V is the set of tasks, vi(1≤i≤|V|). E ⊆V ×V is the set of directed edges connecting pairs of distinct tasks, ei(1 ≤ i ≤
|E|), where e(vi, vj) ∈ E denotes a precedence constraint and data transfer from task vi to task vj. This implies that vj
cannot start execution until vi finishes and sends its results to vj. For future convenience, we define the notation

224 Jesús Israel Hernández Hernández

Computación y Sistemas Vol. 13 No. 2, 2009, pp 221-237
ISSN 1405-5546

Pred(vi) to denote the subset of tasks which directly precede vi and Succ(vi) to denote the subset of tasks which
directly succeed vi. Those tasks vi such that |Pred(vi)|= 0 are called entry tasks and |Succ(vi)|=0 are called exit tasks.
We assume that information about data transfer sizes and task computation times are provided in standard units,
compatible with those of our bandwidth and computational performance measures. We use data ::V ×V → Int to
describe the size of data transfers, such that data(i, j) denotes the amount of data to be transferred from vi to vj.
Remembering that our processors are heterogeneous, we represent computation times with W ::V × P → Int, where
W(i,m) denotes the execution time in standard units of task vi on processor pm, when working at full availability (i.e.,
availability 1 in terms of function avail).

2.3 Definition of the Situated Task Graph (STG)
Just as we maintain dynamic information avail and bandwidth on the SRP, so we must maintain additional dynamic
information on the progress of the DAG execution. We model this by augmenting the static ITG, to form a Situated
Task Graph STG. This includes information on current schedule of tasks, partial completion of tasks and partial
completion of communications. This is necessary, together with monitored information on the availability of
processors and links, to allow us to iteratively compute improved schedules, taking into account migration costs and
resource availability changes. A key new concept is that of the placed task. A task is said to become placed on a
processor once it has begun to gather its input data on that processor. A task which has merely been assigned to some
processor by the current schedule is said to be non-placed. The distinction is important because of its impact on
migration costs associated with data retransmission. The decision to migrate a non-placed task will incur no
migration cost because retransmission of data is not needed. We define STG :: (V,E,data,W,Π, κc,κd), where the first
four components are taken directly from the corresponding ITG. We use Π :: V → P+ to represent placement
information. P+ represents P augmented with the special value NONE. For placed tasks vi, Π(vi) indicates the
corresponding processor. For non-placed tasks vi, Π(vi) = NONE. A placed task remains placed until migrated or
until the whole application terminates, because even after task completion we will later need to retrieve (or re-
retrieve in the case of migration) its results. We assume that information concerning the progress of computations
and communications is made available by monitoring tools at each rescheduling point. We use κc :: V →[0..1] to

capture the proportion of a task’s computation which has been completed, and similarly, κd :: E → [0..1] to capture
the proportion of a data transfer which has been completed. The initial STG is effectively just the ITG with all
completions equal to zero and all task placements set to NONE.

3 The GTP Scheduling Method

GTP is based on the list scheduling approach which basically consist of two phases: The task prioritization phase in
which a rank (priority) is assigned to each task and the candidate processor selection phase in which each task in the
sequence will be assigned onto that processor which optimizes a predefined cost function (i.e., the earliest finish
time). Our interest in the list scheduling approach is the evolvement process observed in the literature for this
scheduling strategy when the computational platform evolves (i.e., from homogeneous computing systems to
dedicated heterogeneous computing systems). Thus, with the advent of emerging technologies such as SHCS, we
intend to adapt this mapping strategy for SHCS.

3.1 Setting Task Ranks
We use Ru(vi) (also known as blevel), which is an upward rank computed from the exit node to vi and defined as the
length of the critical path from vi to an exit node. Ru(vi) is computed recursively as,

 Ru(vi) =Wi +maxvj∈Succ(vi)(data(vi ,vj)+Ru(vj)) (1)

 Reactive Scheduling of DAG Applications on Heterogeneous and Dynamic Distributed Computing Systems 225

Computación y Sistemas Vol. 13 No. 2, 2009, pp 221-237
ISSN 1405-5546

where Wi is the average execution cost of task vi across all processors and it is defined by,

 Wi = (Σm=1 W(vi, pm)) (2)
 |P|

Notice that the computation weight of a node is approximated by the average of its weights across all

processors, following the approach of [(Topcuoglu, 2002)].

3.2 Costing of Candidate Schedules
Our cost prediction approach is based upon redefinition of concepts drawn from the literature [(Kwok, 1999;
Topcuoglu, 2002)], together with some additional operations required by the dynamic nature of SHCS.

3.2.1 Estimating Communication Cost
During (re)scheduling at time t, we need to predict how much time will be required to transfer data for various
candidate assignments of tasks to processors. In general, this will depend upon the processors involved and any
existing partial completion of the transfers. The estimated communication cost in standard-units to transfer data
associated with an edge e(vi, vj) from pm (processor assigned to vi) to pn (processor assigned to vj) is defined by,

 Ct (vi, pm,vj , pn) = StartUp + datat (vi,vj) (3)
 bandwidtht (pm, pn)

StartUp is the system dependent fixed time taken between initiating a request for data and the beginning of the data
transfer, and is therefore only applicable to transfers which have not already begun. datat(vi, vj) denotes the
remaining volume of data to transmit from task vi to task vj at time t and is computed as,

 datat(vi, vj) = data(vi, vj) ∗ (1−κd(vi, vj)) (4)

3.2.2 Estimating Computation Cost
In estimating the value of candidate schedules we need to predict the time at which some task could begin execution
on some processor and the time at which that execution will finish. These times depend upon the availability of the
processors (which may have other tasks to complete first) and the availability of input data (which may have to be
transferred from other processors). We must first define two mutually referential quantities. EST t(vi, pm) is the
Estimated Start Time of task vi on processor pm where the estimate is made at time t. For tasks which have already
begun (or even completed) on pm at t, EST will be t (the effect of already completed work will be allowed for in
EFT).

ESTt (vi,pm) = t, if μt(vi) = pm and (5)

kc(vi) > 0

For other tasks it will be determined by the need for predecessors of vi to complete and send their data to pm.

 ESTt (vi, pm) = max {PAt(pm),DAt(vi) } (6)

|P|

226 Jesús Israel Hernández Hernández

Computación y Sistemas Vol. 13 No. 2, 2009, pp 221-237
ISSN 1405-5546

where PAt(pm) is a function which returns the time at which the processor becomes available, having completed
other tasks. We notice that our model uses a non-insertion approach to fill the available capacity of processors,
therefore the function will return the latest estimated finish time among tasks already assigned to pm.

 PAt(pm) = max{vi | (μ

(vi)=pm)}{EFTt(vi, pm)} (7)

Meanwhile, DAt(vi) is the estimated earliest time at which data from a predecessor task vj (mapped on μt(vj)) will

be available at pm.

 DAt(vi) = max v j∈Pred(vi){EFTt(vj, pk) + Ct(vj, pk, vi, pm)} (8)

The max block in Equation (8) returns the estimated time of arrival of all data needed to execute task vi onto
processor pm. This is calculated by considering the evolving status of each vj ∈ Pred(vi). Similarly, EFTt(vi, pm) is the
Estimated Finished Time of task vi on processor pm. For already completed tasks (at t) we will have

 EFTt (vi, pm) = t, if kc(vi) = 1 (9)

For other tasks it will be determined by the quantity of work outstanding and the availability of pm.

 EFTt(vi, pm) = ESTt(vi, pm)+Wt(vi, pm) (10)

where Wt (vi, pm) denotes the amount of work still to completed for task vi on processor pm, defined by

 Wt(vi, pm) = W(vi, pm) * (1−kc(vi)) (11)
 availt(pm)

As with communication cost prediction, migrated tasks must be costed for a restart from scratch (i.e., we reset
kd(vi, vj) = 0). The discrepancy between real and predicted times is incorporated into our rescheduling as a result of
the difference between actual completion information (kc,kd) returned by monitoring, and that which would have
been expected at the preceding rescheduling point. Thus, the overall objective of minimising the real makespan of
the DAG application is achieved by minimising iteratively the estimated makespan.

3.3 The Task Migration Model in GTP
A placed task vi is migrated when it has been rescheduled onto a processor other than Π (vi). In our costings, we
adopt a pessimistic model, in which the migrated task must be restarted from the very beginning, including
regathering all inputs from its predecessors. This is illustrated in Fig.2a with a hypothetical case. We have that at RPi,
the tasks v1 and v2 were executed at p1 and p3 respectively and task v3 was scheduled to be executed at p4 after receive
the data required. However it has so far just received data from v1. By considering the current status of both
resources and application, the model reschedules the application and v3 is migrated from p4 to p2, expecting to be
executed at some point before RPi+1. Thus, data from Pred(v3) must be totally retransmitted to p2. At RPi+1 we have
the same situation. The requirement was partially fulfilled as just v2 successfully transmitted the needed data to v3.
Again, after updating both the performance of resources and progress of tasks, the model reschedules the application
and v3 is migrated back to processor p4, expecting to be executed before RPi+2. Now, at some point before RPi+2, we
observe that v3 is finally executed after receiving the required data from Pred(v3). We notice that task v1 sent the data
twice to the same processor p4 as a result of the pessimistic model used by GTP. Obviously, in more complex DAGs,
this will tend to increase the overhead cost and the makespan of the application. In Section 4 we consider a more
sophisticated method to improve the utilization of resources and minimize the impact of the migration cost on
makespan, by exploiting copies of results.

 Reactive Scheduling of DAG Applications on Heterogeneous and Dynamic Distributed Computing Systems 227

Computación y Sistemas Vol. 13 No. 2, 2009, pp 221-237
ISSN 1405-5546

Fig.2. The task migration model in GTP

3.4 Time Complexity Analysis for the GTP model
The time complexity analysis is centered in the cyclic use of the static mapping method part which involves two main
phases: the computation of task ranks and the costing of candidate schedules. The computation of task ranks
traverses the graph upward from the exit nodes which can be done in O(e+v). Then, we have the sorting of the list of
tasks by rank (priorities) which takes O(v×log v). The costing of candidate schedules which selects a task vi from the
list and maps each task onto that processors offering the minimum earliest finish time, takes O(e× p) for e edges and
p processors for each cycle. For a dense graph when the number of edges e is proportional to O(v2), the time
complexity for the costing of candidate schedule is of the order of O(v2 × p). Thus the time complexity for the GTP
model for each cycle is of the order of O(v2× p).

4 Description of the GTP/c Model

In GTP, a migrated task had to be restarted from the very beginning, including regathering all inputs directly from its
predecessors. Obviously this may negatively affects the makespan of the application. We observed from experiments
with GTP that as a consequence of the adaptive nature of the model, some results of some completed tasks
transmitted to succeeding tasks, which later on migrate to another processor, can be reused after subsequent
migrations as possible sources of its required data. To exploit this observation, we extended the GTP model by
adding a Copying Maintenance function, resulting in a new version, the Global Task Positioning with copying
facilities (GTP/c) system. The GTP/c considers the maintenance of a collection of reusable copies of the results of
completed tasks. This information is maintained in the STG structure which, as before, contains the dynamic
information related to the progress of the application.

4.1 Extension of the Situated Task Graph with Copying (STG/c)
We extend the definition of the Situated Task Graph (STG) structure defined in Section 2.3 as
STG/c::(V,E,data,W,Π,κc,κd,Ω), where the first seven components are taken directly from the previous definition of

228 Jesús Israel Hernández Hernández

Computación y Sistemas Vol. 13 No. 2, 2009, pp 221-237
ISSN 1405-5546

STG. The key new concept is that of reusable copy. A data transfer for a particular edge e(i, j) is said to become
reusable copy on a processor once it has been totally transmitted (κd(e(i, j)) = 1) from Π(vi) to Π(vj). It is reusable
because if during the process, vj migrates to a different processor, the copy may be used as source in subsequent
scheduling decisions. The copy will remain reusable until task vj finishes execution. The adaptive nature of our
model allows multiple reusable copies for a particular e(i, j), since task vj can migrate at each rescheduling point, if
the benefits are substantial. We expect that reusable copies will help to minimize the impact of migration on
makespan by avoiding unnecessary data transfer between tasks and exploiting the network links which offers the
minimum data transfer cost according to the latest performance resource information. To do this, we need to keep
information about every reusable copy generated at time t in our model. We use Ωt :: E →P(P) to describe the subset
of P where copies of the given (edge) data are available at time t.

4.2 Costing of Candidate Schedules
As before, we need to obtain the costing of candidate schedules, now considering that the results (copies) of some
tasks can be stored in others sites and reused in subsequent migration of placed tasks.

4.2.1 Estimating the Communication Cost
In the same manner as GTP, during (re)scheduling at time t, we need to predict how much time will be required to
transfer data, now considering that the data for a particular edge may have several copies distributed on several sites,
for various candidate assignments of tasks to processors. In general, this will depend upon the latest performance
information of the link (bandwidth) associated with the processors involved, the location of the reusable copies
generated and any previous partial completion of the transfers. We retain equations from Section 3.2.1 for the GTP
model, to estimate the communication cost in standard units. The Copying Management (CM) function defined in
equation (12), will return the minimum data transfer cost for data associated with e(i, j) to μt(vj). Thus, for a
particular e(i, j), CM evaluates the locations (processors) for each reusable copy in Ωt(e(i, j)) and together with the
latest bandwidth of the links involved, returns the minimum data transfer cost to μt(vj).

 CMt(vi, vj) = minp∈Ωt (e(i, j)) {Ct(vi, p, vj, μ(vj))} (12)

4.2.2 Estimating Computation Cost
We retain definitions from Section 3.2.2 for the GTP model to predict the time at which some task could begin
execution on some processor. However, in such prediction we must now include the existent copies which will
certainly affect the beginning execution of tasks. Thus, we have redefined the equation (8) such that, now the new
equation (13) will compute the estimated earliest time at which data from a predecessor task vj (mapped on μt(vj) and
any available copies of their results) will be available at pm.

 DAt(vi) = maxv j∈Pred(vi) {EFT(vj, pk)+CMt(vj, vi)} (13)

In the same manner, we need to predict the time at which that execution will finish. For this, we retain the

equation (9),(10) and (11) for GTP. As before, migrated tasks must be costed for a restart from scratch (i.e., we reset
kd(vi, vj)= 0) and GTP/c ignores possible contention in communication by assuming an infinite number of links from
pm to pn.

4.3 The Task Migration Model in GTP/c
We recall that GTP uses a pessimistic model, in which the migrated task must be restarted from the very beginning,
including regathering all inputs directly from the predecessors (see Fig.2a). Now, with GTP/c we have that in an
execution with relatively frequent migration, it may be that, over time, the results of some task have been copied to
several other nodes, and so a subsequent migrated task may have several possible sources for each of its inputs.
Some of these copies may now be more quickly accessible than the original, due to dynamic variations in

 Reactive Scheduling of DAG Applications on Heterogeneous and Dynamic Distributed Computing Systems 229

Computación y Sistemas Vol. 13 No. 2, 2009, pp 221-237
ISSN 1405-5546

communication capabilities. The adaptive nature of the GTP/c model is illustrated in Fig. 2b where we can observe
the difference of strategies used between GTP and GTP/c. In such figure, we observe that at RPi, task v3 could not be
executed as v3 only received the required data from task v1. However, the idea behind the GTP/c model, is that we
now maintain the copy of the result generated by v1 in the system in Ωi(e(v1, v3)) , such that it may be used as an
input in future migrations for v3. Thus, we have that at RPi and after considering the latest information about both
resources and progress of the application, task v3 is migrated from p4 to p2 and we observe that the required data from
v1 can be transmitted from the site p4 storing the copy or from the site p1 where v1 was executed. The decision to
select the site from which the data will be transmitted will depend upon the prediction of the minimum estimated
finish time which involves the estimated availability of the processors (which may have other tasks to complete first)
and the estimated availability of input data (which may have to be transferred from other processors). Following the
example, at RPi+1, v3 was not computed as it had only received data from v2. This creates a new copy in the system
and is maintained in Ωi+1(e(v2, v3)) for future migration for v3. At RPi+1 task v3 is now migrated from p2 to p4, and we
observe that there are several possible sources for each preceding tasks. At the end we observe that v3 is finally
executed, using the copy Ωi+1(e(v1, v3)) and a direct data transfer for e(v2, v3).

5 Reliable DAG scheduling with Rewinding and Migration

Fault tolerance is an important issue in SHCS as the availability of shared resources can not be guaranteed
[(Medeiros et al.,2003),(In et al.,2005)]. The presence of a resource failure during the DAG execution may disrupt
the subsequent execution of some tasks in the DAG. The tasks expected to be disrupted when a processor pm fails,
can be grouped as a) those tasks vi mapped to a processor other than pm, but still retrieving data from preceding tasks
already executed on pm, and b) those unfinished tasks mapped to pm which have begun to gather input data for
execution. To address this, we designed the rewinding mechanism, an event-driven process executed when a failure
is detected at some checkpoint (see Fig.3). The rewinding mechanism preserves the execution of the application by
recomputing and migrating those tasks which will disrupt the forward execution of succeeding tasks. This section
describes the rewinding mechanism and shows how to integrate it within our adaptive mapping methods, producing
the new versions GTP/r and GTP/c/r respectively. We identify three main steps to consider in the integration of the
rewinding mechanism into a particular reactive scheduling approach,

1. The first step is related to the integration of the rewinding mechanism with the data structures containing the

information on both the performance of the processors composing the SHCS and the progress of the
application (i.e., STG and SRP defined below).

2. The second step is related to the procedure of the rewinding mechanism itself, which will rewind those
critical tasks associated with the failed processor which will disrupt the forward execution of succeeding
tasks.

3. The last step is related to particular considerations in the dynamic scheduling strategy (i.e., copying, data
replication) and deals with resetting the information maintained in the system and linked to the failed
processor, to avoid inconsistencies in subsequent scheduling decisions.

The integration and performance of the rewinding mechanism into our scheduling method, is highly dependent

upon the details of the scheduling strategies used, encompassing issues such as task assignments, data transfers,
migration of tasks, data replication and so on.

5.1 The GTP system with rewinding (GTP/r)
The inclusion of the rewinding mechanism into GTP produces the GTP/r version, which we describe next.

5.1.1 Definition of the SHCS
We will take the same definition and assumptions from the GTP model described in Section 2.1 to represent Shared
Resource Pools (SRP). As we defined, at time t we assume knowledge of availt :: P→[0..1], capturing the availability

230 Jesús Israel Hernández Hernández

Computación y Sistemas Vol. 13 No. 2, 2009, pp 221-237
ISSN 1405-5546

of each CPU. We consider that a possible failure in some processor pm occurs when the latest availt(pm) = 0. Then,
at each rescheduling point (RP), if a failure is detected then the rewinding process will be triggered to rewind the
application if necessary.

Fig.3. The rewinding mechanism

5.1.2 Redefinition of the Situated Task Graph (STG)
We extend the definition of the Situated Task Graph (STG) structure defined in Section 2.3 as STG/r ::
(V,E,data,W,Π,κcκd ,Q), where we now consider Q t :: P→ P(V) to denote the current set of placed tasks mapped on

each pi ∈ P. Recall that a placed task remains placed until migrated or until the whole application terminates,
because even after task completion we will later need to retrieve (or re-retrieve in the case of migration) its results.
As before, we use κc :: V → [0..1] to capture the proportion of a task’s computation which has been completed, and

similarly, κd :: E → [0..1] to capture the proportion of a data transfer which has been completed. A key new concept
is that of rewinding a placed task vi which means that all the current computations and all their inputs and outputs
will be initialized, giving the impression of rewinding the application to a previous state. To rewind a task vi, at t we
must perform the following operations on STG.
1. ∀vj ∈ SUCC(vi) set κd(vi, vj) to 0

2. ∀vk ∈ PRED(vi) set κd(vk, vi) to 0
3. Set κc(vi) to 0
4. Set Π(vi) to NONE

Thus, rewinding vi gives the impression of rewinding a portion of the application to a previous state in which
nothing has happened and leaving it unplaced once again.

 Reactive Scheduling of DAG Applications on Heterogeneous and Dynamic Distributed Computing Systems 231

Computación y Sistemas Vol. 13 No. 2, 2009, pp 221-237
ISSN 1405-5546

5.1.3 Procedure of the GTP/r model
Qt(pm) = {v0, v1, v2, ..., vk} contains the set of k placed tasks known at time t to be mapped onto pm, from which we
will rewind those placed tasks which are expected to disrupt the forward execution of succeeding tasks. To do this,
we must consider each task in vi ∈ Qt(pm). Intuitively, vi must be rewound if either.
i it has a successor task which has not yet received a complete copy of the result of vi, or
ii it has a successor vj, which is also assigned to pm and which also needs to be rewound.

The recursive form of this rule means that we must consider tasks in Qt in an order which respects a reverse
topological sort (according to the precedence constraints between tasks). Thus, within Qt(pm) we must consider exit
tasks first, then their predecessors, and so on. This ordering is straightforward to maintain in an implementation
because all precedence information is available. Thus, a task vi ∈ Qt(pm) must be rewound if,

1. ∃e(vi, vj) ∈ E : κd(vi, vj) < 1, or

2. ∃vk ∈ SUCC(vi) : vk ∈ Qt(pm) and vk must be rewound

Note the importance of maintaining information about all placed tasks in Qt, including those whose completion
is complete. Following the procedure, we now know that no information related to the failed processor pm is
maintained in GTP/r. Obviously, after the rewinding process, the failed processor will not be considered in the
subsequent scheduling decisions, unless availt(pm)> 0 at future RP’s. To illustrate the rewinding mechanism for GTP,
we extend the example of Fig. 2a by adding a failure in processor p3 before finishing the execution of the DAG
application at some point between RPi+1 and RPi+2 as shown in Fig.3(a). We observe that the failure in p3 will inhibit
the precedence constraint satisfaction for e(v2, v3) as v3 will stop retrieving the input required from v2 to start
execution. Then, the failure will be detected at RPi+2 and therefore the rewinding mechanism will be triggered at this
point. The rewinding mechanism must determine which placed tasks mapped to p3 need to rewind to preserve the
execution of the DAG application. At RPi+2, Qi+2(p1)={v1}, Qi+2(p3)={v0, v2} and Qi+2(p4)={v3}. Then, the rewinding

mechanism will evaluate in reverse order the sequence of each placed task vi ∈ Qi+2(p3). Thus, the first task to
evaluate is v2 which as we observe inhibits the precedence constraint satisfaction for e(v2, v3), as v3 will stop
retrieving input from v2 executed on p3. Then, v2 is rewound as explained above. Now, the next task to evaluate from
Qi+2(p3) is v0, which Succ(v0)={v1, v2}, then for the first precedence constraint e(v0, v1) is satisfied as v1 has finished
its execution at p1. However, when evaluating the second precedence constraint e(v0, v2) we observe that it is not
satisfied as v2 (already rewound) will not be able to retrieve their input from v0 executed on p3. Thus, task v0 must
also be rewound. Since, tasks v0 and v2 were rewound, they will be ready to be rescheduled and migrated to a
different available processor, guaranteeing the data transfer of the remaining tasks and preserving the forward
execution of the DAG application. Obviously the processor p3 will not be considered for scheduling decisions.
Following the steps for the rewinding mechanism, there is no additional information linked to p3 which could lead to
inconsistences in scheduling decisions. After rewinding and rescheduling the application at RPi+2, the task v3 was
finally executed at p4 after receiving the required inputs.

5.2 The GTP/c System with Rewinding (GTP/c/r)
In the same manner we will follow the three steps defined to integrate the rewinding mechanism into the GTP/c
system resulting in the GTP/c/r version.

5.2.1 Redefinition of the Situated Task Graph with Copying (STG/c)
We extend the definition of the Situated Task Graph with copying (STG/c) structure defined in Section 4.1 as
STG/c/r :: (V,E,data,W,Π,κc,κd,Ω, Q). In particular we remember Ω::E →P(P) to capture information on location of

232 Jesús Israel Hernández Hernández

Computación y Sistemas Vol. 13 No. 2, 2009, pp 221-237
ISSN 1405-5546

copies which can be used as source. In the same manner as GTP/r, we use Qt to capture information on tasks placed
on each processor.

5.2.2 Procedure of the GTP/c/r model
The placed tasks at time t, vi ∈ Qt(pm) are evaluated in reverse topological order. The first criterion to select those
tasks to be rewound is the same as GTP/r, which states that a placed task vi mapped to pm will be rewound if there
exists at least a data transfer e(vi, vj) ∈ E such that it is partially transmitted kd(vi, vj)<1. However, now we have a

second criterion to be met related to the existence of possible reusable copies for a particular edge e(vi, vj) ∈ E, such
that if there exist at least one reusable copy in a processor different than pm, then it means that vj can retrieve the data
from its copy despite pm, and therefore rewinding is not needed. This particular feature of GTP/c is expected to
reduce the overhead cost generated by the rewinding mechanism. More formally, for GTP/c/r, a task vi ∈ Qt(pm)
must be rewound if,
1. Ω(vi) = {pm}, (this is the only copy), and either

2. ∃(vi, vj) ∈ E : κd(vi, vj) ≤ 1, or

3. ∃vk ∈ SUCC(vi) : vk ∈ Qt(pm) and vk must be rewound

As before, for tasks to be rewound, we must reset elements of kd, kc and Π to reflect the rewinding. For
GTP/c/r, all the copies located at the failed processor pm and maintained in STG can lead to scheduling thrashing if
they are not eliminated. Thus, and following with the procedure, those copies Ωt (ei, j) = pm must be eliminated from
STG. To illustrate GTP/c/r, we will use the same case as for GTP/r with the same failure in processor p3 at some
point between RPi+1 and RPi+2. This is shown in Fig.3(b). At RPi+2, Qi+2(p1) = {v1}, Qi+2(p3) = {v0, v2} and Qi+2(p4) =

{v3}. Then, the rewinding mechanism will evaluate in reverse order the sequence of each placed task vi ∈ Qi+2(p3).
Thus, the first task to evaluate is v2 which, as we observe, inhibits the precedence constraint satisfaction for e(v2, v3),
as v3 will stop retrieving input from v2 executed on p3. However, due to the maintenance of reusable copies for
GTP/c/r, the input required by v3 from v2 can be retrieved from the copy generated before RPi+1 and stored at p2,
satisfying the precedence constraint. Then, rewinding task v2 is not needed. The next task to be evaluated is v0 with
Succ(v0) = {v1, v2}. The first precedence constraint for e(v0, v1) is satisfied as v1 has finished execution at p1. The next
precedence constraint for e(v0, v2) is considered as satisfied as v2 kept its status of finished task, because it was not
rewound. Thus task v0 will not be rewound. Finally, since GTP/c/r maintains a collection of reusable copies some of
which may be stored at p3, we need to reset those copies stored at p3 which could lead to inconsistence in future
decisions. In this case, the copy Ωi+2 (e(v2, v 3)) stored at p3 must be deleted from the system as it can lead to
inconsistences in the scheduling decisions in the case that task v3 be migrated in the future. Thus, after the third step,
the application has been rewound and its execution has been preserved despite failure of p3 at RPi+2. Completing the
example, after rewinding and rescheduling the application at RPi+2, v3 was finally executed at p4 after receiving the
required inputs.

6 Simulation Framework

We have selected the well known HEFT [(Topcuoglu, 2002)] and DLS/sr against which to evaluate the performance
of GTP and GTP/c. In [(Zhao and Sakellariou, 2004)], a selective rescheduling policy is proposed to reduce the
frequency of rescheduling attempts. We use this approach to build an adaptive version (DLS/sr) of the well known
Dynamic Level Scheduling (DLS)[(Sih and Lee, 1993)] algorithm. For our purposes, we will use the spare time
between tasks as selective rescheduling policy, which denotes the maximal time that for a particular edge e(vi, vj) ∈

 Reactive Scheduling of DAG Applications on Heterogeneous and Dynamic Distributed Computing Systems 233

Computación y Sistemas Vol. 13 No. 2, 2009, pp 221-237
ISSN 1405-5546

E, task vi can execute without affecting the start time of their successor vj. It also includes the adjacent task of vi in
the execution order of the assigned processor. Our evaluation is conducted by simulation, since this allows us to
generate repeatable patterns of resource performance variation. We have used an extended version of the Simgrid
simulator [(Simgrid, 2001)] for this purpose.

6.1 The Directed Acyclic Graphs (DAG)
The shape of the graphs considered in our experiments were taken from the Standard Task Graph Project [STG,
2000]. The graph size (in number of tasks) varied in the range {50,100,300,500,1000}. For each size of DAG, we
generated three different graphs with different Communication to Computation Ratio (CCR) characteristics, to test
the mapping methods. The DAG’s CCR is defined as the average of all its communication costs divided by the
average of all its computation costs. Thus, for each size of the task graph, we generated three different graphs for
CCR equal to 0.1,0.5 and 1.5.

6.2 The Scheduling Scenarios
We created a number of test scenarios to evaluate the performance of GTP, GTP/c, GTP/r and GTP/c/r. A scenario
involves a sequence of randomly defined (but repeatable) events, each simulating a resource change in either
processor or bandwidth availability. Our scenarios are distinguished by the bound placed on the maximum variation
allowed in one event, expressed as a percentage of the peak performance of a resource. For example, an scenario
with a bound of 30%, any one event can cause the availability of a processor to decrease to no less than 70% of its
peak performance, or of a link to decrease to no less than 70% of its maximum bandwidth. We experimented with a
bound ranging from 0% to 90% in increments of 10%. Our graphs embrace the whole spectrum of bounds.

6.3 Comparison Metrics for GTP and GTP/c
We use the Normalized schedule length (NSL) to compare the performance of GTP with that of GTP/c and DLS/sr.
The NSL metric is defined as the ratio of the schedule length (makespan) to the sum of the computational weights
along the critical path and can be computed as,

 NSL = Makespan (14)

 ∑vi∈CPathWi

Other metrics to be used to understand the behaviour of each model are the average number of migrated tasks ,
the average number of remappings and the average overhead cost.

6.4 Comparison Metrics for GTP/r and GTP/c/r
In the same manner, we use the NSL metric defined in equation (14) to evaluate the performance of the rewinding
mechanism integrated into the GTP (GTP/r) and GTP/c (GTP/c/r) models. Aiming to understand the behavior of
such mechanisms, we will use two complementary metrics: The Rewound Tasks (RT) metric, which counts the
number of placed tasks rewound to preserve the execution of the application and the Rewound Levels (RL) metric,
which determines how deep the application had to be rewound after processor failure.

7 Experimental Results

In this section we show and evaluate the performance results for GTP, GTP/c, GTP/r and GTP/c/r.

7.1 Performance Evaluation of GTP and GTP/c
We report here only the results for SCE10-300 (10 processors and 300 tasks) with CCR=0.5. The case in which
scenarios include 0% of variability allows us to investigate the extent which emerging discrepancies between real
and predicted behavior are handled by GTP and GTP/c. Thus, for this particular scenario, we observe in the graphic
showing the average NSL (Fig. 4) that as resource variability increases, increases the discrepancies between the

234 Jesús Israel Hernández Hernández

Computación y Sistemas Vol. 13 No. 2, 2009, pp 221-237
ISSN 1405-5546

predicted and real estimations, being the performance of the static model HEFT more negatively affected than the
reactive models. This means that GTP, GTP/c and DLS/sr, at each RP, reacted to inaccurate estimation in the
previous schedule and obtained a refined schedule considering the progress of the application on unchanging
environments, which increased the performance of the application compared with HEFT.

For more SHCS-like scenarios, the experimental results show that GTP/c outperforms HEFT, GTP and DLS/sr
in most cases. Exceptions are limited to the use of DAGs with few tasks (mainly 50 and 100 tasks) and low
variability in computational resources. GTP/c has a better performance particularly when the application becomes
larger and complex (i.e., 300, 500 and 1000 tasks). This can be observed in the results for SCE10-300 (see Fig.4),
where the average NSL for GTP/c when the variability is 40%, outperforms HEFT by up to 14% and as shown, it
tends to considerably increase the performance as the variability increases, due to the static nature of HEFT. GTP/c
outperforms GTP by up to 3% and the performance of DLS/sr by up to 7%, with increasing improvement as
variability increases. We believe that this is because, the number of copies will tend to increase, and the migrated
tasks will have several possible sources to retrieve the information. Thus, some reusable copies will reduce the
impact of migration on makespan by avoiding unnecessary data transfer between tasks, and by exploiting the
network link which offers the minimum data transfer cost according to the latest performance resource information.
A natural consequence is that the number of remappings will decrease, decreasing the migrated tasks, decreasing the
overhead cost and finally decreasing the makespan of the application. This can be observed in the graphs showing
the average number of remappings, migrated tasks and overhead cost in Fig.4.

Fig.4. Performance results of GTP and GTP/c

7.2 Performance Evaluation of GTP/r and GTP/c/r.
The experimental results show that for most cases the performance of the rewinding mechanism for GTP/c/r
outperforms GTP/r in the presence of a processor failure. This can be observed in the results for SCEr10-300 (see
Fig.5), where the average NSL for GTP/c/r when the variability is 20%, outperforms GTP/r by 5% and as shown, the
performance of GTP/c/r tends to considerably increase as the variability increases. Now, from the complementary

 Reactive Scheduling of DAG Applications on Heterogeneous and Dynamic Distributed Computing Systems 235

Computación y Sistemas Vol. 13 No. 2, 2009, pp 221-237
ISSN 1405-5546

metrics, we observe in Fig. 5 that GTP/r will need up to 3% more levels rewound than GTP/c/r, and the number of
tasks to be recomputed is up to 4% more than GTP/c/r, generating 3% more rewinding overhead. From this we learn
that when processors fail, the strategy of using reusable copies in the GTP/c/r model, may help some remaining tasks
still retrieving data from the failed processor, to retrieve data from other sites.

Fig.5. Performance results of GTP/r and GTP/c/r

8 Summary

This research work explored the DAG scheduling problem on SHCS. The core issues are that the availability and
performance of resources, which are already by their nature heterogeneous, can be expected to vary dynamically,
even during the course of an execution. We placed strong emphasis in three key aspects which we believe are central
to address the dynamic nature of the problem: reactivity, data-aware components and fault tolerance. Thus, we
presented the GTP, GTP/c, GTP/r and GTP/c/r scheduling methods. Experimental results showed that GTP/c
outperformed GTP, HEFT and DLS/sr; and GTP/c/r outperformed GTP/r. Since we believe that new classes of
complex DAG applications will emerge to exploit the vast number of resources offered by SHCS, our future work
goes in the directions of developing new scheduling strategies to effectively address the dynamic nature of emerging
global computational platforms.

References

1. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury and S. Tuecke, “The Data Grid: Towards an

Architecture for the Distributed Management and Analysis of Large Scientific Datasets”, Journal of Network &
Computer Applic., 23(3): 187-200 (1999).

236 Jesús Israel Hernández Hernández

Computación y Sistemas Vol. 13 No. 2, 2009, pp 221-237
ISSN 1405-5546

2. Deelman, E., Kesselman, C., Blythe, J., and Gil, Y, “Mapping abstract complex workflows onto grid
environments”, Journal of Grid Computing, 1(1):25–39 (2003).

3. Eshaghian, M. and Wu, Y., “Mapping heterogeneous task graphs onto heterogeneous system graphs”, In
Proceedings of Heterogeneous Computing Workshop (HCW’97), pages 147–160, 1997.

4. Foster, I., and Kesselman,C., “The Grid: Blueprint for a Future Computing Infrastructure”, Morgan
Kaufmann Publishers, USA, 1999

5. Foster, I., Kesselman, C., and Tuecke, S, “The anatomy of the grid: Enabling scalable virtual organizations”,
International Journal on Supercomputer Applications, 15(3):200–222 (2001).

6. Gary, M. and Johnson, D. Computers and intractability: a guide to the theory of np-completeness. W.H.
Freeman and co., New York, 1979.

7. Gerasoulis, A. and Yang, T., “A comparison of clustering heuristics for scheduling directed acyclic graphs on
multiprocessors”, Journal of Parallel and Distributed Computing, 16(4):276–291 (1992).

8. Hernandez, I. and Cole, M., “Reactive grid scheduling of dag applications”, In Proceedings of the 25th
IASTED(PDCN), Acta Press, pages 92–97, 2007a.

9. Hernandez, I. and Cole, M., “Reliable DAG scheduling with rewinding and migration”, In Proc.of the First
International Conference on Networks for Grid Applications(GridNets), ACM Press, pages 1-8,2007b.

10. Hernandez, I. and Cole, M., “Scheduling DAGs on grids with copying and migration”, Parallel Processing
and Applied Mathematics (PPAM07), Springer LNCS, pages 1019-1028, 2007c.

11. In, J., Avery, P., and Ranka, S., “Sphinx: A fault-tolerant system for scheduling in dynamic grid
environments”, In Proc. of the 19th International Parallel and Distributed Processing Symposium (IPDPS),
pages 12–22, 2005.

12. Kwok, Y. and Ahmad, I., “Static algorithms for allocating directed task graphs to multiprocessors”, ACM
Computing Surveys, 31(4):406–471 (1999).

13. Maheswaran,M. and Siegel, H., “A dynamic matching and scheduling algorithm for heterogeneous systems”,
In Proceedings of the 7th Heterogeneous Computing Workshop(HCW), pages 57–69, 1998.

14. MDS, “The Monitoring and Discovery System”, http://globus.org/mds, 2000.
15. Medeiros, R., Cirne, W., Brasileiro, F., and Sauve, J., “Faults in grids: Why are they so bad and what can be

done about it?”, In Proceeding of the International Workshop on Grid Computing, pages 18–24, 2003.
16. NWS, “The Network Weather Service”, http://nws.cs.ucsb.edu., 2002.
17. Papadimitriou, C. and Steiglitz, K., “Combinatorial optimization: Algorithms and complexity”, Dover Pub.,

INC., 1998.
18. Pegasus, “Planning for execution in grids”, http://pegasus.isi.edu/, 2003.
19. Ranganathan, K. and Foster, I.. “Computation and data scheduling for large scale distributed computing”,

Proceedings of the 19th IEEE Euromicro-PDP, pages 263–275, 2004.
20. Shi, Z. and Dongarra, J., “Scheduling workflows applications on processors with different capabilities”,

Future Generation Computer Systems (FGCS), 22(6):665–675 (2006).
21. Sih, G. and Lee, E., “A compile-time scheduling heuristic for interconnection constrained heterogeneous

processor architectures”. IEEE Trans. on Parallel and Distributed Systems, 4(2):175–187 (1993).
22. Simgrid , “The simgrid project homepage”, http://simgrid.gforge.inria.fr/, 2001.
23. STG, “The Standard Task Graph project”, http://www.kasahara.elec.waseda.ac.jp/schedule/, 2000.
24. Topcuoglu, H., “Performance-effective and low-complexity task scheduling for heterogeneous computing”,

IEEE Transactions on Parallel and Distributed Systems, 13(3):260–274 (2002).
25. Zhao, H. and Sakellariou, R., “A low-cost rescheduling policy for efficient mapping of workflows on grid

systems”, Scientific Programming SPR, 12(4):253–262 (2004).

 Reactive Scheduling of DAG Applications on Heterogeneous and Dynamic Distributed Computing Systems 237

Computación y Sistemas Vol. 13 No. 2, 2009, pp 221-237
ISSN 1405-5546

Israel Hernandez obtained his Ph.D. degree in Informatics in 2008 from the School of Informatics, University of
Edinburgh, UK and his M.Sc. in Computer Science in 1996 from Monterrey Institute of Technology (ITESM),
Campus Monterrey. He has been involved in IT projects with companies such as Nissan Mexicana, Vitro
Corporation and others. Since 2008, he is a professor/researcher at Polytechnic University of Victoria in Mexico.
His research interests include parallel processing, heterogeneous computing, task scheduling, DAG scheduling,
reactive scheduling, grid and cloud computing and fault tolerance.

Murray Cole is a member of the Institute for Computing Systems Architecture at Edinburgh University, UK, with an
interest in parallel programming models, emphasising approaches which exploit "skeletons" to package well known
patterns of computation and interaction as customisable frameworks. At present his efforts focus on the eSkel and
Enhance projects, which investigate these ideas in the contexts of single machine parallelism and Grid computing
respectively.

