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Abstract

We introduce a formal theoretical background, which includes theorems and their proofs, for a neural

network model with associative memory and continuous topology, i.e. its processing units are elements

of a continuous metric space and the state space is Euclidean and infinite dimensional. This approach

is intended as a generalization of the previous ones due to Little and Hopfield. The main contribution

of the present work is to integrate -and to provide a theoretical background that makes this integration

consistent- two levels of continuity: i) continuous response processing units and ii) continuous topology

of the neural system, obtaining a more biologically plausible model of associative memory. We present

our analysis according to the following sequence of steps: general results concerning attractors and stat-

ionary solutions, including a variational approach for the derivation of the energy function; focus on the

case of orthogonal memories, proving theorems on stability, size of attraction basins and spurious states;

considerations on the problem of resolution, analyzing the more general case of memories that are not

orthogonal, and with possible modifications to the synaptic operator; getting back to discrete models, i.

e. considering new viewpoints arising from the present continuous approach and examine which of the

new results are also valid for the discrete models; discussion about the generalization of the non deter-

ministic, finite temperature dynamics.

Keywords: associative memory, continuous metric space, dynamical systems, Hopfield model, stability,

Glauber dynamics, continuous topology.

Resumen

Presentamos bases te�oricas formales, incluyendo teoremas y sus demostraciones, para un modelo de red

neuronal con memoria asociativa y topologia continua, i. e. sus unidades de procesamiento son elemen-

tos de un espacio m�etrico continuo y el espacio de estados es euclidiano y de dimensi�on infinita. El en-

foque es concebido como una generalizaci�on de los precedentes debidos a Little y Hopfield. La princi-

pal contribuci�on del presente trabajo es integrar -y proveer fundamentos te�oricos que den consistencia a

tal integraci�on- dos niveles de continuidad: i) unidades de proceso de respuesta continua y ii) topologia

continua del sistema neuronal, obteniendo de esta manera un modelo m�as biol�ogicamente plausible de

memoria asociativa. Nuestro an�alisis es presentado de acuerdo con la siguiente secuencia de pasos: re-

sultados generales sobre atractores y soluciones estacionarias, que incluyen un enfoque variacional para

derivar la funci�on de energia; estudio detallado del caso de memorias ortogonales, demostrando teoremas

sobre estabilidad, tama~no de cuencas de atracci�on y estados espurios; consideraciones sobre el problema

de la resoluci�on, analizando el caso m�as general de memorias no ortogonales, y con modificaciones pos-
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ibles al operador sin�aptico; retorno a los modelos discretos, i.e. consideraci�on de nuevos puntos de vista

que surgen del presente esquema, y de cu�ales de los nuevos resultados son tambi�en v�alidos para los mo-

delos discretos; discusi�on sobre la generalizaci�on de la din�amica no deterministica a temperatura finita.

Palabras clave: memoria asociativa, espacio m�etrico continuo, sistema din�amico, modelo de Hopfield,

din�amica de Glauber, topologia continua, estabilidad.

1 Introduction

In seminal papers, Little [11][12] and Hopfield [8] constructed a content-addressable memory as a dense

network of artificial neurons that are represented as elementary bistable processors. Addressability is

guaranteed by the dissipative dynamics of the system. It consists of switching each processor from one

of its stable configurations to the other as a consequence of the intensity of the local field acting on it.

The memories, corresponding to fixed points of the dynamics, are stored in the system in a distributed

manner through the matrix of two-body interactions (synaptic efficacies) between the neurons. If this

matrix is properly defined, the above dynamics is enough so as to ensure a monotonic decrease of an

\energy" function. Thus, starting from an arbitrary configuration the system is led to a local minimum that

corresponds to the nearest stored memory.

In a later work, Hopfield [9] aimed at a more realistic model by replacing bistable neurons by graded

response devices. In fact, a classical objection to the former model [8][11][12] was that a two-state

representation of the neural output is, from a biological point of view, an oversimplification and that it

is necessary to describe relevant neural activity by firing rates, rather than merely by the presence or the

absence of an individual spike1. In either case the retrieval process is again guaranteed by the nature of

the matrix of synaptic efficacies. However, in [9] the space of states describing the patterns of activity

remained discrete, in the sense that the number of units was, at most, countable. This was an open gap in

the plausibility of the model. In fact, since the Little model was formulated to describe the computational

ability of an ensemble of simple processing units, it was necessary to reconcile the biological evidence

of a true continuum of the neural tissue with the descriptions provided by discrete models inspired in

an Ising system. While the empirical evidence always shows patterns of activity or quiescence involving

patches with finite sizes, the ferromagnetic approach suggests systems with discrete processing units with

no finite dimensions. In spite of this simplification all the discrete models have been remarkably successful

in describing emergent processing abilities that correspond to stylized facts concerning basic elementary

cognitive processes.

In this paper we introduce a solid theoretical background, including theorems and their proofs, for our

neural network model with associative memory and processing units defined as elements of a continuous

metric space. This model [15],[16],[17] is intended as a generalization of the previous ones due to Little

and Hopfield. Our main purpose is to provide rigorous proofs in the sense that it is actually possible to

formulate a system of associative memory with continuous response units and a continuous topological

structure on the set of such units. We conceive the network so as to preserve the salient features that

made attractive all the discrete models, especially the levels of continuity that the Hopfield model with

graded response [9] added to the discrete one [8]: continuous-valued units and continuous scale of time,

1However, there is at present an increasing agreement that spiking neurons have some properties for describing

certain aspects of neural dynamics not completely covered by rate-coding models.
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via the transition from discrete to continuous, differential equation dynamics. In spite of the fact that the

corresponding space of configurations is an infinite dimensional functional space, we can define a basic

simple dynamics having asymptotic, stationary solutions which can be associated to minima of an energy

functional of Lyapunov type and can be taken to represent the memories that are stored in the system.

We have already introduced in a previous article [15] several of the results included here, but none

of them was supported on rigorous proof. The present article is devoted to provide a solid theoretical

foundation for that sketch. Emphasis is placed on a detailed analysis of orthogonal memories, which

constitute a relevant particular case of the general theory (in fact, a deep comprehension of orthogonal

memories is essential to understand the general pseudo-orthogonal case).

The paper also presents other more general results. In particular, concerning the biological plausibility

of the model, we face the problem of what we call its \unbounded resolution", which unavoidably takes

place under the assumptions of Hebbian operator and orthogonal memories. We investigate the possible

extensions of the Hebb rule and its robustness against the relaxation of the basic assumption of orthogonality

of the memory states. We show that a \finite resolution" can be imposed to the stored memories by limiting

the minimum size of the activity patches. Two ways for doing this are presented (Section 7). Moreover, the

possibility of modifying the dynamics of the system is discussed, in connection with the desirable (always

in terms of biological plausibility) continuity of the solutions, i.e. smoothness of the memory states. As we

will see in Section 8, the equation that governs the evolution of the system (1) can be modified, in order

for some graded transition to take place between patches with firing neurons and patches without activity.

Some approaches closely related to ours have appeared some time ago [13][14]. In particular, the

concept of field computation, introduced by MacLennan, has a similar inspiration in the fact that many
neural phenomena can be conveniently described as a field, i.e. the distribution of some physical quantity

over a continuous space, with some topology associated to it. On the other hand, the big number of neurons

per square millimeter that can be found throughout most of the brain cortex, justifies the treatment of neural

activity as a field.

All these arguments are related to our approach. However, this is aimed to a different purpose, which

is that of formulating an extended model of associative memory and theoretically founding it, including

justification of its potential as a tool for modelling cognitive processes of memory and learning. In this sense,

we think that these modelling abilities could provide a wide range of possibilities for our understanding of

normal as much as pathological brain function.

Moreover, in another previous paper [16], we have already proposed a generalization of the nondeter-

ministic, finite temperature Glauber dynamics [5] to the case of a finite number of graded response neurons

(Hopfield'84). We did this by casting the retrieval process of a Hopfield model with continuous-valued

units, into the framework of a diffusive process governed by the Fokker-Plank equation. We thus pro-

vided a description of the transitional regime that prevails during the retrieval process, which is currently

disregarded. In other words, we unified the graded response units model [9] and the stochastic approach,

obtaining a description of the retrieval process at both the microscopic, individual neuron level and the

macroscopic level of time evolution of the probability density function over the space of all possible acti-

vation patterns, i.e. an equation describing, for each possible pattern, how, given an initial probability for

the system being in it, this probability changes upon time. For the sake of completeness, we bring here a

brief description of the formalisms of this approach.

A not minor issue about the present approach is (as it will be clear, we hope, along the paper and
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will be discussed more deeply in the Conclusions) how can classical, discrete models and the new ones

introduced here be compared. It seems natural to choose some relevant criteria for this comparison and two

of them look particularly important: capacity and stability. As it will be seen, the key issue is, concerning

capacity, not the finiteness or infiniteness of the storable and retrievable memories, but rather -and this links

with the second criterium mentioned above- that of stability of the system as a memory device. In fact,

while degradation in the classical Hopfield model is not smooth but certainly subject to a first transition

dynamics (i.e. sudden loss of retrievable information beyond a certain critical load value [1]), nothing of

this (instability, catastrophic loss of information) happens in neither the continuous topology model nor in

that with finite temperature.

It will be also clear along the paper, we think, that such features as stability and biological plausibility

are not cost free concerning the complexity of the model and, hence, the time and computer resources

required; mathematically speaking, the dynamics of the model implies the numerical integration of nonlinear

differential equations instead of a set of discrete difference equations.

Another interesting question that could be stated concerns how general is the work presented in this

paper. Besides generalizing the Little and Hopfield models, could it be said that it has any other additional

or wider generalization power? In principle, the central concept inspiring our proposal is that of extending

the neural dynamics as proposed by those authors to a topologically continuous array of neurons, provided

with a metric notion which is not present in the classical discrete models. However, as soon as we introduce

variants either on the Hebb-inspired rule for learning the synaptic weights (as we do in Section 7) or directly

on the equation that governs the evolution of the system (1), we are going beyond the original framework,

defining dynamics that could enclose many different models not identifiable as belongig to the family of

the "Little-Hopfield Models".

We will also show (see Section 9 for details) that the results to be proven along the paper can also

be useful, to a considerable extent, when reconsidering the discrete case in the light of the knowledge of

what happens if the state space is continuous. As it will be seen, this "reverse track" could be useful for

both: i) confirming the power of generalization of the proposed model and ii) enhance our understanding

of the properties of classical approaches in a more general context.

The paper is organized as follows. In Section 2 we give some basic concepts and definitions. Section 3

provides general results concerning attractors and stationary solutions, including a variational approach for

the derivation of the energy function. In Section 4, we focus on the orthogonal case, proving theorems on

the stability of the memories and of the origin. Section 5 presents a result on the size of basins of attraction

and Section 6 analyzes the question of spurious states. In Section 7 we analyze possible extensions of the

Hebb rule and its robustness against relaxation of the condition of orthogonality of the memories. The

possibility of modifying the dynamics of the system is briefly discussed in Section 8 (although it remains

an open question for future investigation). Finally, in Section 9 we get back to discrete models, i.e. discuss

new viewpoints arising from the present continuous approach and examine which of the new results are

also valid for the discrete models. Additionally, in Section 10 we present a brief description of the finite

temperature dynamics (which was already studied in detail in [16]).
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2 Basic definitions and first results

Assume that v(x, t) describes the activity of a point-like neuron located in x at time t. This pattern of

activity evolves according to:

∂v(x, t)

∂ t
= −v(x, t)+gσ





∫

K

T(x,y)v(y, t)dy



 (1)

with v(x, t) : K ×R≥0 → R, K ⊂ X . X is a metric space, K a compact domain, gσ a sigmoid function, i.e.
gσ ∈ C1(R), non decreasing, odd and satisfying limx→±∞

gσ(x) = ±VM, limσ→∞
gσ(x) = sgn(x) ∀x 6= 0,

| gσ (x) |< min{VM,σx} and g′σ (0) = σ .
Let S be the set of all possible states v(x) (patterns of activity) of the system. Then a solution v(x, t)

fulfilling (1) is a trajectory in S.

We can assume that VM = 1. As for T:K ×K → R, we assume it is continuous almost everywhere

(a.e.) in order to ensure that the integral is well defined. As a natural extension of the discrete case we

introduce the local field on (or net input to) the neuron located in x when the state of the system is v(y, t):

hvt (x) =

∫

K

T(x,y)v(y, t)dy

For t = 0 we write hv(x) = hv
0
(x). Note that hv is linear in v.

Let v
µ
0
(x) = vµ(x,0) be an initial condition and v(x, t) the solution of (1) associated to it. We say that

vµ(x) is a memory or an attractor if and only if:
1) vµ is an equilibrium point, i.e. vµ(x) = gσ (hv

µ

t (x)) a.e.

2) For every t0 ≥ 0 and v0 a different initial condition corresponding to the solution v, there exists

δ (t0) > 0 such that if ‖ vµ −v0 ‖< δ then ‖ vµ(·, t)−v(·, t) ‖→ 0 when t → ∞.

Hence, attractors are stationary solutions of (1). Assume that S=L2(K) and that | K |< ∞ (K has finite

Lebesgue measure).

We define the energy of the system at time t0 as the functional:

H [v(·, t0)] = −
1

2

∫

K

∫

K

T(x,y)v(x, t0)v(y, t0)dxdy+
∫

K

v(x,t0)
∫

0

g−1

σ (s)dsdx (2)

where H[v(·, t0)] means that v is viewed as a function of x. Thus, each v in S has an energy H(v). This

is an extension of the energy as defined in [9] for the (discrete) model with graded response functions.

2.1 Attractors and stationary solutions

We begin by proving a useful property:

Lemma 2.1: if v(x, t) is a general solution (for some initial condition) of (1), then it holds that:

∂hvt (x)

∂ t
= −hvt (x)+

∫

K

T(x,y)gσ (hvt (y))dy
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Proof: straightforward, noting that

∂hvt (x)

∂ t
=

∂

∂ t





∫

K

T(x,y)v(y, t)dy



=

∫

K

T(x,y)
∂v(y, t)

∂ t
dy

and using (1).

From now on we assume that T is symmetric.

Theorem 2.2: H is monotonically decreasing with t and reaches its minima at vte(x) = v(x, te) such that

[

∂v

∂ t
(x, t)

]

te

= 0 (3)

a.e. in K (in words, given a solution v(x, t) corresponding to some initial condition, the minima of H are
equilibrium points of the system). This theorem, as well as its proof, generalizes the classical equivalent

result for the discrete Hopfield model with graded response neurons [9] (see for example [2][6]).

Proof: let v(x, t) be a solution of (1) and assume it has a derivative a.e. First observe that ∂
∂t

[

v(x,t)
∫

0

g−1
σ (s)ds

]

=

hvt (x) ∂v(x,t)
∂t
. Differentiating H with respect to t (under the integral sign) yields:

∂H(v(x, t))

∂ t
= −

∫

K

∂v(x, t)

∂ t





∫

K

T(x,y)v(y, t)dy−hvt (x)



dx (4)

Noting that
∂v(x,t)

∂t
= g′σ (hvt (x)) ∂hvt (x)

∂t
and using lemma 2.1 we obtain:

∂H(v(x, te))

∂ t
= −

∫

K

g′σ (hvt (x))

(

∂hvt (x)

∂ t

)2

dx ≤ 0

Then, H is monotonic. It always decreases with t, except when it reaches a minimum, i.e. at some te:

∂H(v(x, te))

∂ t
= 0 ⇐⇒

∂hvt (x)

∂ t
|te= 0 a.e. in K

since g′
σ > 0. But

∂v

∂ t
(x, te) = g′σ

(

hvte(x)
) ∂hvt (x)

∂ t
|te=⇒

∂H

∂ t
(v(x, te)) = 0 ⇐⇒

∂v

∂ t
(x, te) = 0 a.e. in K

Memories or attractor states, as defined in this section, satisfy the above conditions. However, the

reciprocal implication is not necessarily true: from the previous theorem it does not follow that if a solution

v(x, t) of (1) satisfies condition (3) for some t∗, then v(x, t∗) is an attractor. For example, the trivial solution
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v≡ 0 satisfies it for all t but, as we soon will see, its stability or instability depends on the slope σ of g σ at

the origin. In general, the possibility to construct nontrivial memories strongly depends on such parameter.

The sigmoid function gσ plays an important role in determining in which cases the system has

nontrivial stationary solutions. A necessary condition is given by the following

Theorem 2.3: (existence and uniqueness of the solution) If σ <
1

M|K| , being M such that | T(x,y) |≤M,

then the unique stationary solution of (1) is v≡ 0.

Proof: by definition of gσ , σ is a Lipschitz constant for it. Then, assuming that v1 and v2 are two fixed

points of the operator A defined as

Av= gσ





∫

K

T(x,y)v(y)dy





we get (using the L2 norm):

| Av1(x)−Av2(x) |=| gσ (

∫

K

T(x,y)v1(y)dy)−gσ (

∫

K

T(x,y)v2(y)dy) |

≤ σ |

∫

K

T(x,y)v1(y)dy−

∫

K

T(x,y)v2(y)dy |≤ σM | K |
1

2‖ v1 −v2 ‖

being M an upper bound for | T(x,y) | (which exists since T is continuous and K is compact). Finally:

‖ Av1 −Av2 ‖≤| K |
1

2 sup
x∈K

| Av1(x)−Av2(x) |< σM | K |‖ v1 −v2 ‖

Then A is a contraction and has a unique fixed point provided σ <
1

M|K| .

Besides the condition σM |K |≥ 1, other ones (see next section) have to be fulfilled in order to ensure

the actual existence of nontrivial solutions.

2.2 A variational approach

Historically, the function H as presented in [8] and [9] is probably a late innovation in the formulation

of the corresponding dynamics. We may conjecture that the sequence of concepts at the genesis of the

Hopfield model was as follows:

i) A stability condition is imposed (1 ≤ i ≤ N):

Si = sgn

(

∑
j

Ti jS j

)

[8] or Vi = gσ

(

∑
j

Ti jV j

)

[9]

ii) A dynamics is proposed such that its equilibria are the states satisfying i):

Si(t +1) = sgn

(

∑
j

Ti jS j(t)

)

[8]) or
∂Vi

∂ t
= −Vi +gσ

(

∑
j

Ti jV j

)

[9]
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iii) A \Lyapunov function" is constructed whose minima are the attractors for the dynamics ii):

H [S] = −
1

2
∑
i j

Ti jSiS j [8] or H [V ] = −
1

2
∑
i j

Ti jViV j +∑
i

Vi
∫

0

g−1

σ (V)dV [9]

In our case (infinite dimensional state space S), step i) is given by the condition vµ(x) = gσ

(

hv
µ

(x)
)

a.e.

in K while ii) corresponds to equation (1) and iii) to the functional H as defined by (2).

It is easy to go from i) to ii). As for deriving iii) from ii), it can be suggested that the main source of

Hopfield's and Little's works was statistical mechanics. In our case, however, it is possible to obtain the

same model through a variational approach. We will prove, by computing the variation of H (considered

as a functional from L2(K,R) onto R), that every minimum of H is also an equilibrium for the dynamics.

Let us consider a function ϕ : K −→ R continuous such that ϕ |∂K= 0.

∂H(v+εϕ)

∂ε
|ε=0= −

1

2

∫

K

∫

K

∂

∂ε
T(x,y)[v(x)+εϕ(x)][v(y)+εϕ(y)]dxdy |ε=0

+

∫

K

∂

∂ε

v(x)+εϕ(x)
∫

0

g−1

σ (s)dsdx |ε=0

=

∫

K



−

∫

K

T(x,y)v(y)dy+g−1

σ (v(x))



ϕ(x)dx

In order for v being a minimum for H, that quantity must vanish for every ϕ in the above conditions,

which forces the term between brackets to vanish a.e. in K, i.e. v(x) = gσ

(

∫

K

T(x,y)v(y)dy

)

a.e. in K.

Thus, the following theorem holds:

Theorem 2.4: if v ∈ L2(K) is a local minimum for H then it is an equilibrium point of (1).

This result is obtained without using the fact that H is decreasing (theorem 2.2). Adding that property,

it is possible to conclude:

Corollary 2.5: v ∈ L2(K) is a local minimum for H if and only if it is an attractor for (1).

2.3 A general feature of attractor memories

On the base of the previous results, it can be proved that when σ →∞, the attractors approach the asymptotic

bounds of gσ .

Theorem 2.6: if for some ε > 0 it holds that T(x,y)≥ 0 when | x−y |< ε , then

lim
σ→∞

max
v attractors, x∈K

min{1−v(x),1+v(x)} = 0
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Proof: consider an attractor v(x) (keeping in mind that this notation stands for v(x, t e) for some solution
of (1) at time te). Note that, by virtue of theorem 2.4 and corollary 2.5, if v(x) is an attractor (a memory),
then it is a local minimum of H. First remark that

∫

K

v(x)
∫

0

g−1

σ (v)dvdx =
1

σ

∫

K

v(x)
∫

0

g−1(v)dvdx →σ→0 0 a.e.

independently of v(x). We then need to consider only the quantity

H1 = −
1

2

∫

K

∫

K

T(x,y)v(x)v(y)dxdy

Suppose that v ∈ L2(K) is a minimum and there exists an element x∗ ∈ K such that v(x∗) ∈ (−1,1).
Then, from the piecewise continuity of the solutions, there exists a closed neighborhood U of x∗such that

v(y) ∈ (−1,1) ∀ y ∈U and we may write:

H1 = −
1

2
{
∫

K−U

∫

K−U

T(x,y)v(x)v(y)dxdy+
∫

U

∫

K−U

T(x,y)v(x)v(y)dxdy

+

∫

K−U

∫

U

T(x,y)v(x)v(y)dxdy+

∫

U

∫

U

T(x,y)v(x)v(y)dxdy}

Let us name A, B, C and D the four terms in H1 from left to right. D is positive since T(x,y) ≥ 0 when

| x−y |< ε (choosing U small enough). A does not depend on values in U(x∗). Finally, B and C are equal

and reduce to:

2

∫

U

v(x)





∫

K−U

T(x,y)v(y)dy



dx = 2 |U | v(ξ )

∫

K−U

T(ξ ,y)v(y)dy

for some ξ ∈U . Then, redefining v in U as

v(x) = sgn





∫

K−U

T(x,y)v(y)dy



 if x ∈U (5)

B + C increases (while A remains unchanged and D also increases). Then H1 decreases and hence H

decreases as well. This is a contradiction, due to the assumption that v as defined initially was a minimum.

Remark: the last step of the proof (5) can naturally be regarded from the point of view of a ferromagnetic

model (with an infinite number of elements in this case). Every state change that implies the alignment of

one (or more) elements according to the local magnetic field acting on it, decreases the total energy of the

system.
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3 Orthogonal memories, Hebbian synapses

The case we are specially interested in is the storage of orthogonal memories when the matrix of synaptic

weights is Hebbian. This can be achieved through a straightforward generalization of the Hebb rule [7].

Let {vµ} be an orthogonal set of functions in some space S(K), that is to say (vµ ,vν) = 0 if µ 6= ν . In

principle, S(K) may be noncountable and hence we can define in general:

T(x,y) =
1

| K |

∫

P

vρ(x)vρ(y)dρ

for ρ ∈ P some index set. In the case {vµ} is an orthogonal set in L2(K), it is at most countable (provided
the separability of L2(K)). Therefore it is natural to restrict to the case in which P is countable:

T(x,y) =
1

| K |

p

∑
µ=1

vµ(x)vµ(y) (6)

Then the following theorem holds:

Theorem 3.1: The system (1), with T(x,y) defined as in (6), may have any finite number p of orthogonal

memories taking values in {V∗,−V∗}, where gσ(±V3
∗) = ±V∗.

Proof: let p be a positive integer number and {vµ}
p
µ=1

⊂ L2(K), (vµ
,vν) = 0 if µ 6= ν , vµ(x)∈ {−V∗,V∗} ,

1≤ µ ≤ p, x∈K, beingV∗ the number such that gσ(±V 3
∗ )=±V∗ (which exists and depends on σ ). Defining

T according to (6) it holds that, for any µ :

gσ(hµ(x)) = gσ (

∫

K

T(x,y)vµ(y)dy) = gσ (

∫

K

1

| K |

p

∑
ν=1

vν(x)vν(y)vµ(y)dy)

Since the integrals are finite, we can interchange the sum and the integration, thus obtaining:

gσ(
1

| K |

p

∑
ν=1

vν(x)δνµ ‖ vµ ‖2) = gσ (
vµ(x) V 2

∗ | K |

| K |
) = vµ(x)

Then, vµ(x, t) = vµ(x) ∀ t > 0 is a fixed point of equation (1).

These solutions vµ(x) look like the example depicted in Figure 1. Activation patterns of this kind
agree with the intuitive generalization of the attractors of an Ising-type, spin glass discrete neural network

in which patches of full activation alternate randomly with those of full quiescence. They can also be

viewed as the vertices of an infinite (noncountable) dimensional hypercube.

A question arising is whether the set of orthogonal fixed points of (1) can be infinite. Note first that

it is countable: the elements vµ as they were defined belong to L2(K), a separable space; hence every
orthogonal set in it must be countable. However even an infinite countable number of orthogonal fixed

points is not possible while preserving the integrability of T. Observe that if there are kµ changes of sign in

vµ then each term of the form vµ(x)vµ(y) divides the domain K×K in (kµ +1)2 square regions. Moreover,
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Fig. 1. A memory in the space S=L2[a,b]

each region is separated from the next by discontinuity lines because such term takes the constant values

+V2
∗ or −V

2
∗. If the set of memories is infinite, the number of terms in T that are added is also infinite,

therefore those discontinuity lines are dense at least in a neighborhood of some point, and T ceases to be

piecewise continuous.

Note that theorem 3.1 implies a qualitative difference between discrete and continuous models. Since

the memory capacity is now unbounded, there is nothing like a \phase diagram" in which, for a domain K

and above some critical number pc of memories, a transition to a \confusion phase" takes place, implying

a rapid degradation of the retrieval ability. While in discrete models the size of the domain is determined

by the dimension of the state space (pc = αcN), in the present case this dimension is infinite and hence

there is no pc.

Discussions on discrete models are mostly made in the thermodynamic limit in which either the number

of neurons and the number of memories are taken to tend to infinity while their ratio is kept constant.

This possibility is lost in the continuous limit, but this is certainly not a problem as far as the biological

plausibility of the model is concerned.

We end this section with the following results that are easy to check.

Lemma 3.2: If the memories are orthogonal, the distance between any two of them is always the same.

Corollary 3.3: Orthogonal memories are never dense in L2(K).

4 Stability of the solutions

We will now derive conditions for the elements vµ , as defined in Section 3, to be stable equilibria (i.e.

memories) for equation (1).

Theorem 4.1: The elements vµ are stable fixed points of (1) if and only if g′σ(V3
∗) <

1

V2
∗
.

Theorem 4.2 :(Stability of the origin) The solution v≡ 0 is stable if and only if g′σ(0) = σ <
1

V2
∗
.
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Proof (both theorems): the computation of the directional derivatives of H(v) at an arbitrary point yields:

DwH(v) = −
1

| K |

p

∑
ν=1

(vν
,v)(vν

,w)+(g−1

σ (v),w)

with w ∈ L2(K) and ‖ w ‖= 1. Now, if v = vµ , using the condition of orthogonality and noting that

‖ vµ ‖2= V2
∗ | K |, it follows that DwH(v) = 0. Similarly, it is easy to check that DwH(v) vanishes in

general for any element in the set span{vµ}
p
µ=1
, i.e. linear combinations of the memories, when those

combinations take values on {V∗,−V∗,0}.

D2

w2H(v) = −
1

| K |

p

∑
ν=1

(vν
,w)2 +(

∂

∂v
g−1

σ (v)w,w)

But the vν are assumed orthogonal. Therefore, the use of Bessel's inequality yields:

p

∑
ν=1

(vν
,w)2

‖ vν ‖2
≤‖ w ‖2= 1 ⇐⇒

p

∑
ν=1

(vν
,w)2 ≤V2

∗ | K |

hence

D2

w2H(v) ≥ (
∂

∂v
g−1

σ (v)w,w)−V2

∗

for any w in S, ‖w ‖= 1. Then, a necessary and sufficient condition for an element v in S to be a minimum

of H is:

(g−1′
σ (v)w,w)−V2

∗ > 0 ∀ w ∈ S, ‖ w ‖= 1

Theorem 4.2 follows directly from the last equation. Applying this equation to the case in which v = vµ

and keeping in mind that g−1′
σ (v) = (g′σ(g−1

σ (v)))−1

the above condition reduces to

(
w

g′σ(g−1
σ (vµ))

,w)−V2

∗ = (
w

g′σ(V2
∗v

µ)
,w)−V2

∗ =
1

g′σ (±V3
∗)

−V2

∗ > 0

Since gσ is odd, this can be rewritten as:

g′σ(V3

∗) <
1

V2
∗

or g′σ (V3

∗)V
2

∗ < 1

Let us compare the necessary and sufficient condition given by theorem 4.2 for the stability of the

origin with the uniqueness condition for the general case (theorem 2.3). When T is defined according to

(6), the vµ 's being stationary solutions of (1) and therefore vµ(x) ∈ {V∗,0,−V∗}, we have:

| T(x,y) |≤
pV2

∗

| K |
=M.

In this case the condition for the origin to be the only solution is that σ <
1

M|K| = 1

pV2
∗
. This is more

restrictive than what follows from theorem 4.2. Therefore, for the case of orthogonal memories there exists

an intermediate range for the values of σ (σ ∈ [ 1

pV2
∗
,

1

V2
∗
], which degenerates into a point if p = 1) for which

the trivial solution v≡ 0 is an attractor, but not necessarily the only solution of (1). Note, in addition, that

the conditions derived in theorems 4.1 y 4.2 are independent of p (number of memories); this is a direct

consequence of the orthogonality of the memories.
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5 Basins of attraction

On the base of the preceeding results, we can now estimate the size of the basins of attraction.

Theorem 5.1: for p ≥ 2, the largest sphere contained in the basin of attraction of an orthogonal memory

vµ
, 1 ≤ µ ≤ p, has a radius k =V∗

√

|K|
2
.

In other words, whenever ‖ vµ −v0 ‖< k, the distance ‖ vµ(·, t)−v(·, t) ‖→ 0 when t → ∞ (being v0

any initial condition for (1) and v the corresponding solution).

Proof: the radius of the basin will be the largest number k > 0 such that D wH(vµ + kw) > 0 ∀w ∈ S,‖
w ‖= 1. We know that

DwH(v) = −
1

| K |

p

∑
ν=1

(vν
,v)(vν

,w)+(g−1

σ (v),w)

Then:

DwH(vµ +kw) = −
1

| K |

p

∑
ν=1

(vν
,vµ +kw)(vν

,w)+(g−1

σ (vµ +kw),w)

= −
1

| K |

{

V 2

∗ | K | (vµ
,w)+k

p

∑
ν=1

(vν
,w)2

}

+(g−1

σ (vµ +kw),w)

which is positive if and only if

(g−1

σ (vµ +kw),w) >
1

| K |

{

V 2

∗ | K | (vµ
,w)+k

p

∑
ν=1

(vν
,w)2

}

for every direction w. By virtue of Bessel's inequality:

p

∑
ν=1

(vν
,w)2

‖ vν ‖2
≤‖ w ‖2= 1

and, consequently (remembering that ‖ vν ‖2= V 2
∗ | K |), the condition is satisfied by imposing (g−1

σ (vµ +
kw),w) > (g−1

σ (vµ),w)+kV 2
∗ or equivalently

∫

K

g−1
σ (vµ(x)+kw)− (g−1

σ (vµ(x))

k
w(x) dx > V 2

∗ (7)

In order to prove that inequality (7) holds no matter the direction w, let us take the worst case: w pointing

to a different memory, say vν , i.e. w = vν−vµ

‖vν−vµ‖ . It is easy to check that v
ν −vµ can take only values 0 and

±2V∗ and that, by virtue of the orthogonality, it is 0 exactly on one half of the domain K and ±2V∗ on the
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Fig. 2. Two orthogonal memories and their inverses, each one with norm V∗
√

| K | and a spherical

basin of attraction of radius V∗

√

|K|
2

other half. Then w is 0 on a subdomain of size
|K|
2
and

√

2

|K| on the remaining subdomain of equal size.

Thus, condition (7) may be rewritten as

| K |

2

g−1
σ (vµ(x)+k

√

2

|K| )− (g−1
σ (vµ(x))

k
√

2

|K|

2

| K |
> V 2

∗

(multiplying numerator and denominator by
√

2

|K| ), which holds if

k

√

2

| K |
< V∗ ⇐⇒ k < V∗

√

| K |

2

Finally, the largest spherical basin of attraction has a radius equal to V∗

√

|K|
2
, since otherwise the basins

would not be disjoint, because the distance between any two vµ and vν is twice that quantity.

Note that this result does not imply that the basins of attraction are spherical. It only limits the radius

of spherical basins for memories vµ and, consequently, for −vµ as well. Figure 2 shows a simplified

bidimensional sketch.
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6 Spurious memories

As a consequence of the nonlinearity of the dynamics under consideration, undesired fixed points appear in

addition to those purposely stored in the synaptic operator T with the Hebb prescription. These are called

spurious states or spurious memories.
It is possible to distinguish two types of spurious states: mixture and non-mixture memories. v is said

to be a mixture state if it can be expressed as a linear combination of the stored memories: v=
q

∑
i=1

αµi
vµi

with q ≤ p, vµi ∈ {vµ} and αµi
real constants. A spurious state for which no such {αµ} exists is called a

non-mixture state.

6.1 Mixture spurious states

First note that, just like in the known discrete models, for every memory vµ , −vµ is also a memory. In

the simple case when p = 1, there exist only two spurious states: the origin (v ≡ 0) and the inverse of
the (unique) stored memory. Thus, there are no non-mixture states for p = 1. If p ≥ 2, the analysis gets

considerably harder.

We have already mentioned the fact that every mixture state is a fixed point if v(x) ∈ {V∗,−V∗,0}

∀x ∈ K. This may be easily seen either by using the linearity of hv or from the proof of theorems 4.1 and

4.2. It is also clear that only a small subset of span{vµ}p
µ=1

contains spurious states. In particular, it

follows that if vµ and vν are memories, then ±1

2
vµ ± 1

2
vν are fixed points of the dynamics. This implies

that there exist at least 4

(

p

2

)

spurious (mixture) states. These are in general unstable, as stated by the

following

Theorem 6.1: If v is a mixture spurious memory and there exists x ∈ K such that v(x) = 0, then v is a

saddle point of the dynamics.

Proof: let v=
q

∑
µ=1

αµv
µ , 1 ≤ q≤ p (renaming memories if necessary). v is piecewise constant (since so are

the vµ́s, and there is a finite number of them). Therefore, if v(x) = 0 then it vanishes in a neighborhood U

of x and it holds that 0 <
I

∑
i=1

αµi
vµi =−

J

∑
j=1

αµ j
vµ j at every point inU , being {vµi}I

i=1
∪{vµi}J

j=1
= {vµi}

q
µ=1

Let us choose w =
I

∑
i=1

αµi
vµi −

J

∑
j=1

αµ j
vµ j (we can neglect the normalizing constant). Then w = 2

I

∑
i=1

αµi
vµi

in U . Now compute

gσ(hv+εw(x)) = gσ (hv(x)+εhw(x))

Keeping in mind that hv(x) = V 2
∗ v(x) (by hypothesis and by virtue of the linearity of hv) and computing

hw(x) =
q

∑
µ=1

αµhv
µ

(x) = V 2

∗

q

∑
µ=1

αµv
µ(x) = 2V 2

∗

I

∑
i=1

αµi
vµi(x)

(which holds for every x ∈U), we obtain

gσ(hv+εw(x)) = gσ (V2

∗ v(x)+2εV 2

∗

I

∑
i=1

αµi
vµi(x))
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Fig. 3. A mixture spurious state. Dotted lines indicate limits for the spherical basins of the two

memories which compose the spurious state

in U. The dynamics at v+εw is (always in U ⊂ K):

∂ (v+εw)

∂ t
= −2ε

I

∑
i=1

αµi
vµi +gσ (2εV2

∗

I

∑
i=1

αµi
vµi)

No matter the sign of
I

∑
i=1

αµi
vµi , the stability condition at v+ εw is gσ(2εV 2

∗

I

∑
i=1

αµi
vµi) < 2ε

I

∑
i=1

αµi
vµi

which is equivalent to σ = g′
σ(0) <

1

V 2
∗
which is false since, by hypothesis, gσ(±V 3

∗ ) = gσV 2
∗
(±V∗) = ±V∗

(otherwise, gσ would not have any fixed point apart from the origin). Then v is unstable in the direction

w.

Now let us choose w = v. With a similar reasoning, we get gσ(hv+εw(x)) = gσ(V 2
∗ v(1 + ε)) and the

stability condition at v+εw is gσ (V2
∗ v(1+ε)) < v(1+ε). Remembering that v= gσ(V 2

∗ v), the condition
for the system to be stable at v+εw is g′σ (V 3

∗ ) <
1

V 2
∗
, which always holds since the memories vµ are minima

of H (cf. Section 2).

This leads to the useful

Corollary 6.2: The basins of attraction for mixture states have zero radius, in the sense of the L2(K) norm.

Example: for q = 2, all combinations of the form v = ±1

2
vµ ± 1

2
vν are actual spurious states and the

situation can be easily illustrated (Figure 3). The direction of maximum unstability is given by vµ −vν

and that of maximum stability is ±v (directly towards or from the origin of coordinates).
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6.2 Non-mixture spurious states

Unlike mixture spurious states, which can be calculated analytically, the non-mixture ones are difficult to

find. Indeed, in the limit p → ∞, the following property holds, no matter how T is defined.

Lemma 6.3: if {vµ}∞

µ=1
is complete2 and p → ∞, there are no non-mixture spurious memories.

Remark: since S=L2(K) here, a question about the meaning of lemma 6.3 may arise, i.e. is there some
basis of L2(K) whose elements take on only two values, say ±V∗? The answer is yes. The relevant

example for K ⊂ R (that can be extended to Rn) are the Haar wavelets, which form an orthonormal and

complete basis in L2(−∞,+∞). They are bi-valued, but since they are normalized, such values change from

one function to another. If normality is relaxed, it is possible to force them to take values in {V∗,−V∗}.
If restricted to a bounded interval K ⊂ R, they form an orthogonal (but not orthonormal) and complete set

in L2(K). However, if we construct T according to (6), this completeness can be only asymptotical: as we

already saw, the number of orthogonal memories can be as large as desired, but it cannot be infinite.

7 The Resolution. Modified Hebb rules

Until now the metrics on X , the space of processing units, has not been specified. This is not necessary,

because the contribution of each neuron to the generation of hv
t (x) for any x ∈ K is independent of any

distance, just as in the discrete cases [8],[9]. Thus, provided the memories are orthogonal, we have a

memory of unbounded \resolution" in the sense that the patches of activation and quiescence can be as

small as desired. Any function v(x) : K →{−V∗,V∗} with a set of discontinuities of zero Lebesgue measure

can be memorized by the system. In the case K ⊂ R, this implies that the set of discontinuities must be

countable.3

It is clear that a realistic model must have some lower bound for such \resolution", at least to take

into account the finite size of individual neurons. We will briefly mention two ways to tackle this problem

[15]:

i) Introducing a probability distribution on the size of the patches of activity of the memories. This

is naturally done by characterizing the memories by the average length λ of their connected regions or

\patches" with equal sign and introducing a distribution in which memories with vanishing λ have zero

probability. The properties of the associative memory are well preserved, only imposing that the memories

vµ be independent, identically distributed and such that E [v µ(x)] = 0 ∀µ , a.e. in K).

Figure 4 shows a computational evaluation of the retrieval capacity (as the mean L2 distance between the

initial state, when this is one of the stored memories, and the final state of the system) as a function on

p and λ . The memories vµ : K = [a,b] −→ {V∗,−V∗} follow a Poisson distribution with parameter λ .

Note that stability decreases when p increases, but it only happens for large values of λ . For example, if
| K |= 8, a value λ = 1, implies that each memory has, in average, eight sign changes, i.e., nine zones or

patches of activity/inactivity.

2The set {vµ} is said to be complete in L2(K) if and only if the minimal subspace of L2(K) which contains it is
the entire space L2(K).

3For example, the Dirichlet function, valuing 1 -or V∗- on every rational point and 0 -or −V∗- on every irrational

point, cannot be a memory.
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Fig. 4. Error in retrieval (average L2 distance). Memories follow, for every pair x 6= y, a Poisson

distribution with parameter λ . Here X = [0,8]. λ : 0.25 (dots), 0.5 (crosses), 1 (circles)

ii) Redefining the operator T , by modulating it with a range cut-off function that decreases with

the distance between neurons. It is worth mentioning that the properties of the associative memory are

preserved only when such cut-off function takes both positive and negative values, as the well known

mexican hat function that has been used to model lateral inhibition in the brain cortex. This fact has the
pleasant feature of being in agreement with the neurophysiological evidences of the modular organization

of the cortex [4]. This modulation in which only the interaction between nearest neighbours is preserved

causes a degradation of retrieval capacity, increasing the crosstalk between memories.
Figure 5 shows a computational evaluation of the retrieval capacity in a similar way as in Fig. 4, with the

same λ 's and p's. We define in this case:

T (x,y) =
1

| K |

p

∑
ν=1

vν (x)vν(y)m(| y−x |)

with

m(s) = {

+A i f 0 ≤ s ≤ λ1

−B i f λ1 < s ≤ λ2

0 otherwise

0 < A < B and λ1,λ2 appropriately chosen, i.e. the usual discrete approximation for the lateral interaction

function. Also in this case stability decreases when p increases, but now this degradation becomes critical

for small λ .
We can conclude that these two ways of limiting the resolution are complementary in the sense that,

while in the case in which memories are directly affected without changing the Hebbian operator, the

stability of the system decreases for large λ , when modulating T with lateral inhibition the effect is the

inverse: retrieval gets better when increasing λ .
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Fig. 5. Error in retrieval (average L2 distance) for a synaptic operator with lateral inhibition

(mexican hat function). Memories follow, for every pair x 6= y, a Poisson distribution

with parameter λ . Here X = [0,8]. λ : 0.25 (dots), 0.5 (crosses), 1 (circles)

8 Beyond the Model: Modifying Dynamics

The purpose of turning associative memory models as much plausible as possible can be aimed also through

the equation that governs the evolution of the system (1). In fact, a \landscape" of neuron activity such

as depicted in Fig. 1 does not seem quite realistic. It would be more reasonable to expect some graded

transition between patches with firing neurons and patches without activity.

We can provide H with some information about the smoothness of its argument, via the gradient of

v. Let us redefine

H∗[v] = −
1

2

∫

K

∫

K

T (x,y)v(x)v(y)dxdy+
∫

K

v(x)
∫

0

g−1

σ (s)dsdx+
α

2

∫

K

| ∇v |2 dx

with α ≥ 0. This function \penalizes" derivatives; it takes the same value as the original (1) if v is a

constant. Some computations with the variation of H∗ and Green's formula lead to the following candidate

equation to replace (1):

∂v(x, t)

∂ t
= −v(x, t)+gσ





∫

K

T (x,y)v(y, t)dy+α∆v(x, t)





Note that the vµ taking values in {V∗,−V∗} are no longer solutions (except for constants) in a classical
sense, as every solution in the above equation has at least two continuous derivatives. However, theorem

2.3 still holds, i.e. when σ → ∞, the attractors, if they exist, approach the asymptotic values of gσ . It

would be interesting to investigate whether the original vµ can still be considered as solutions in some
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\weak" sense and to study the form of the solutions for the new dynamics and whether it actually provides

any advance towards our objectives.

9 Back to the discrete domain

In order for the results of Section 2 to be valid, the only condition on X is to be a metric space (continuous

or discrete). Therefore, all theorems of Section 2 hold for the discrete Hopfield model with continuous

ranges of activity [9], provided that we replace the L2(K) norm with the usual euclidean norm and | K |

with N (number of neurons).

As for the results of Section 3, the situation is different. Clearly, theorem 3.1 is no longer true and

the same happens, in general, for lemmas and corollaries based on the possibility of memories with an

unbounded number of discontinuities, such as corollary 3.3 (which has no meaning for the discrete case).

Instead, results concerning stability (Section 4) and size of attraction basins (Section 5) remain valid, with

slight changes. The same is true for Section 6 (spurious states), except for theorem 6.3 (non-mixture

spurious memories), which has no meaning for the discrete model.

Concerning the Hopfield model with discrete activities [8], first it must be remarked that its metrics

based on the Hamming distance is not euclidean. However, being this metrics the discrete version of the

L1 norm, which is equivalent4 to the quadratic L2 norm, some results remain qualitatively true. This is the

case for theorems 2.2 and 2.4 and corollary 2.5 (as it is well known), but the mathematical tools used here

are of no help to obtain them. And, on the other hand, the results of Sections 3 to 6 have no meaning

in general (when based on concepts of euclidean distance and directional derivatives, which are of no

application in the discrete case).

10 Finite temperature considerations

Until now we where mainly concerned with what is, thermodynamically speaking, a zero temperature

dynamics, i.e. a deterministic law of evolution. In the present section we will formulate a finite temperature

version of the continuous system that we have introduced, in the same fashion as the stochastic versions

of the discrete Hopfield model. In that approach, which is based on the Glauber thermodynamical model,

the probability distribution of the state of the i-th processing unit S i at an instant n+1 is given by

P(Si = ±1) =
1

1+exp(∓2β hi)

As usual h
ζ
i =

N

∑
i=1

Ti jζ j is the local field on site i when all neurons have activities labelled by ζ at time n.

The parameter β represents the inverse temperature (we set the Boltzmann constant equal to 1).

4Two norms ‖ · ‖ and ‖ · ‖′ on a vector space V are said to be equivalent norms if there exist positive real numbers
c and d such that c ‖ x ‖≤‖ x ‖′≤ d ‖ x ‖ ∀x ∈V.
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The activity pattern of the system is therefore defined through a Markov process that can be formulated

as a Master equation [1]:

P(ξ ,n+1) = P(ξ ,n)+ ∑
ζ 6=ξ

[Wβ (ξ | ζ )P(ζ ,n)−Wβ (ζ | ξ )P(ξ ,n)] (8)

where

Wβ (ξ | ζ ) =
N

∏
i=1

1

exp{−β ξih
ζ
i }+1

(9)

In our case, ξ and ζ are elements in the (normed) state space S and Wβ : S×S 7−→ [0,1] is the transition
probability matrix.

Being S continuous infinite dimensional it is no longer possible to construct Wβ (ξ | ζ ) from point
transition probabilities. This problem can be circumvented with a proper defininition of Wβ . Equation (9)

can be formally rewritten in the continuous time limit as the differential form of the Chapman-Kolmogorov

equation [10]
∂P(ξ , t)

∂ t
=

∫

S

{Wβ (ξ | ζ )P(ζ , t)−Wβ (ζ | ξ )P(ξ , t)}dζ (10)

The integration has to be taken over the whole set S of possible activation patterns. In the present

framework in which processing units are assumed to be a continuous metric space this integration has to

be expressed as a Feynmann path integral [3]. Assuming for simplicity that K = [a,b]⊂ R and S= L2(K),
we define:

∫

S

{Wβ (ξ | ζ )P(ζ , t)−Wβ (ζ | ξ )P(ξ , t)}dζ ,

ζ(b)
∫

ζ(a)

{Wβ (ξ | ζ )P(ζ , t)−Wβ (ζ | ξ )P(ξ , t)}Dζ (τ)

which is a functional integral over all ζ ∈ L2([a,b]).
Let us expressWβ as a function of the jump r and of the initial state:

Wβ (ξ | ζ ) =Wβ (ζ ; r)

with r = ξ −ζ . This leads to the following expression for the master equation:

∂P(ξ , t)

∂ t
=

∫

S

Wβ (ξ − r; r)P(ξ − r, t)Dr−P(ξ , t)

∫

S

Wβ (ξ ;−r)Dr

where the integrals are to be also understood as path integrals, now computed over all possible jumps r ∈ S.
Now assume:

i) Only small values of the jump contribute to Wβ , i.e. Wβ (ζ ; r)≈ 0 for ‖ r ‖> δ > 0,

ii) Wβ depends smoothly on ζ , that is Wβ (ζ +∆ζ ; r) ≈Wβ (ζ ; r) for ‖ ∆ζ ‖< δ and
iii) The solution P(ξ , t) of (10) also varies slowly with ξ .
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Then we can expand the first integral of the last equation up to second order in ξ [10]:

∂P(ξ , t)

∂ t
=

∫

S

Wβ (ξ ; r)P(ξ , t)Dr−

∫

S

{Wβ (ξ ; r)P(ξ , t)}′(r)Dr

+
1

2

∫

S

{Wβ (ξ ; r)P(ξ , t)}′′(r, r)Dr−P(ξ , t)
∫

S

Wβ (ξ ;−r)Dr

where {Wβ (ξ ; r)P(ξ , t)}(ν) stands for the ν-th order derivative of {Wβ (ξ ; r)P(ξ , t)} at ξ applied to the

element (r, ..., r) in S× ...×S = Sν (being this ν-th order derivative a linear application from Sν onto R).

The first and fourth terms of the sum cancel. Then, the equation takes on the form

∂P(ξ , t)

∂ t
= −a1(ξ ,P)+

1

2
a2(ξ ,P) (11)

with

aν(ξ ,P) =

∫

S

{Wβ (ξ ; r)P(ξ , t)}(ν)(r, ..., r)Dr (r, ..., r)∈ Sν

We have obtained an expression for the time evolution of the probability distribution P which has the

form of a Fokker-Planck equation in an infinite dimensional normed space. In fact, for the case S=R we

get the well-known one-dimensional Fokker-Planck equation:

∂P(ξ , t)

∂ t
= −

∂

∂ξ
{a1(ξ )P}+

1

2

∂ 2

∂ξ 2
{a2(ξ )P}

with

aν(ξ ) =

∫

S

rνW(ξ ; r)dr

The interpretation of the Fokker-Plank equation is simple. The (functional) probability density P(ξ , t)

is defined on the space of all possible activation patterns ξ (x) and describes the evolution involved in the
\retrieval" process of some particular activation pattern starting from a given initial (arbitrary) configuration.

The transition probability matrix Wβ (ξ ; r) governs this evolution through the \moments" involved in the
Fokker Plank equation. Upon retrieval, the (stationary) probability density reached when t goes to infinity

is expected to be peaked in the neighborhood of the recalled memory. This final activation pattern is

however not expected to be δ -like due precisely to the finite temperature fluctuations. A pure deterministic

case can only be recovered by letting β go to infinity.
Note that this derivation of the finite temperature dynamics for the continuous system is a natural

extension of the master equation (8) based on the transition probability matrix (9). Therefore, it could have

been applied to the analog Hopfield model [8] in a direct way, since that case would have required only a

simple multivariate formulation of (11) in the form

∂P(ξ , t)

∂ t
= −

N

∑
i=1

∂

∂ξi

{ai
1(ξ )P}+

1

2

N

∑
i=1, j=1

∂ 2

∂ξi∂ξ j

{a
i j
2
(ξ )P}

being now ai
1
the usual first order moment for the i-th coordinate, a

i j
2
the element (i, j) of the covariance

matrix and N the number of processing units.
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11 Conclusions

We introduced a formal theoretical background, including theorems and their proofs, for our neural network

model with associative memory in which processing units are elements of a continuous metric space. This

approach is intended as a generalization of the previous ones due to Little and Hopfield. Our main purpose

was to provide a mathematical foundation in the sense that it is actually possible to formulate a system of

associative memory with graded response units and a continuous topological structure on the set of such

units, obtaining a more biologically plausible model of associative memory.

On the other hand, our approach preserves the salient features that made attractive all the discrete

models, especially the levels of continuity that the second Hopfield model [9] added to the discrete one [8]:

graded response of the activation functions and continuous scale of time, via the transition from discrete

to continuous, differential equation dynamics.

Firstly (Section 2) general results were proved assuming only a symmetric weight matrix T with

non-negative diagonal elements. These results are generalizations of well known properties of discrete,

Ising-type models.

Then (Sections 3 to 6) we analyzed the case when the memories are orthogonal and the synaptic

operator is constructed following the autocorrelation (Hebb) rule. We proved:

• Hebb rule: it can be naturally extended to the infinite dimensional case.

• Capacity: any finite set of orthogonal memories can be stored and retrieved. However there are,
concerning capacity, some differences with regard to discrete approaches.

• Stability: there exist necessary and sufficient conditions for the memories and the origin to be stable,
in terms of the relation between parameters of the transfer function gσ .

• Basins of attraction: they have the same radius for all memories, positive in the L2 norm.

• Spurious memories: they exist. If a spurious state vanishes at some point, then its basin of attraction
has zero radius (‖ L2 ‖) and it is a saddle point of the dynamics.

When considering some \weak" aspects of the model from the point of view of its biological plausi-

bility, possible variations were discussed:

• It is possible to impose a \finite resolution" to the stored memories by limiting the minimum size of
the activity patches. We have briefly indicated two possible alternatives for doing this (Section 7).

• It is possible to modify the equation that governs the evolution of the system (1), in order for some
graded transition to take place between patches with firing neurons and patches without activity

(Section 8).

The validity of our results was discussed when applied to the classical, discrete models of associative

memory [8][9]. Such application looks more natural for the Hopfield model with graded response [9], since

in this case the concepts of euclidean distance and directional derivatives remain valid, while in the discrete

case [8] only some general, well known properties (concerning stability and convergence to attractors) are

preserved, maintaining anyhow the qualitative similarity with the infinite dimensional system.
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We also showed (briefly reviewing our previous approach [16]) that a continuous model can be

extended to the case in which the evolution law is non deterministic, in the same way as the Hopfield,

discrete model is extended to include finite temperature effects through the Glauber dynamics. We have

shown that this leads to a Fokker-Planck equation (in an infinite dimensional normed space) that governs

the time evolution of the probability density distribution defined in the space of functions describing all

possible activity patterns.

In view of this multiplicity of possible alternative formulations, the question arises about how and on

the base of which parameters might all of them be compared. It seems natural to include among these criteria

at least those concerning capacity and stability. Regarding the first one, it is clear that the key issue is not

the finiteness or infiniteness of the storable and retrievable memories (since we have seen how to incorporate

control parameters in order to bound the memory capacity for the sake of biological and also technological

plausibility). The key issue is, we think, -and this leads to the second criterium mentioned above- rather

the fact that, in any case, degradation in the classical Hopfield model is not smooth but certainly subject

to a first transition dynamics implying a sudden, catastrophic loss of recoverable information as soon as a

certain critical load value is reached [1]. Nothing like this (instability, sudden loss of information) happens

in neither the continuous topology model nor (and even less) in that with finite temperature.

The above observations are valid even regardless of the questions concerning comparative costs in

time and computing resources: clearly, the price for such features as stability and biological plausibility

is, in part, a qualitative increase of the complexity of the model; mathematically speaking, it implies the

numerical integration of nonlinear differential equations instead of a set of discrete difference equations.

We think that this approach can be useful for modelling in biology and neurophysiology (bringing a

wide range of possibilities of application in technology, robotics and even in our understanding of cognitive

processes as much as normal and pathological brain function). It retains all the stylized facts that have made

attractive the Hopfield neural network model and its modifications, yet giving the possibility of modelling

the brain cortex as a continuous space. In other words, it integrates two levels of continuity:

• Continuous response units, which was already present in [9] and permits description of relevant

neural activity by firing rates, rather than merely by the presence or the absence of an individual

spike.

• Continuous topology of the neural system, obtaining a model of associative memory that reconciles
biological evidence of a continuum of the neural tissue with descriptions provided by discrete models

inspired in Ising systems.

In addition, the results proved here can also be useful, with the limitations pointed out in Section 9,

when performing the reverse track of what we have done, namely when reconsidering the discrete case in

the light of the knowledge of what happens if the state space is continuous. This "reverse track" could

have the double utility of confirming the power of generalization of the proposed model and, at the same

time, enhance our understanding of the properties of classical approaches in a more general context.
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