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Abstract. In this work we investigate some computational 
aspects of the eigenvalue calculation with edge elements; 
those include: the importance of the grid generator and 
node-edge numbering. As the examples show, the sparse 
structure of the mass and stiffness matrices is highly 
influenced by the edge numbering. 
Tetrahedral grid generators are mainly designed for nodal 
based finite elements so an edge numbering is required. 
Two different edge numbering schemes are tested with six 
different grid generators. Significant bandwidth reduction 
can be obtained by the proper combination of the edge 
numbering scheme with the grid generator method. 
Moreover, an ordering algorithm such as the Reverse 
Cuthill McKee can improve the bandwidth reduction 
which is necessary to reduce storage requirements. 
Keywords: Tetrahedral grid generators, edge elements, 
RCM ordering, generalized eigenproblem. 
 
Resumen. En este trabajo se investigan algunos aspectos 
computacionales del cálculo de eigenvalores con 
elementos de contorno tales como la importancia del 
generador de mallas y la numeración de nodos y lados. 
Como muestran los ejemplos, la estructura esparcida de las 
matrices de masa y momentos es altamente influenciada  
por la numeración de los lados. 
Generadores de mallas en tetraedros son diseñados 
principalmente para elementos finitos basados en los 
nodos, así una numeración de los lados es requerida. Se 
realizaron pruebas con dos esquemas de enumeración de 
los lados con seis generadores de mallas distintos. Una 
reducción de banda significante puede obtenerse con una 
combinación apropiada de esquema de numeración de los 
lados con el método empleado por el generador de malla. 
Más aún un algoritmo de reordenamiento como el RCM 
puede mejorar la reducción de ancho de banda lo cual es 
necesario para reducir los requerimientos de 
almacenamiento. 
Palabras Clave: Generadores de mallas en tetraedros, 
elementos de contorno, reordenamientos RCM, valores 
propios generalizados. 

1 Introduction 
 
In electromagnetics, eigenvalue problems that are 
often encountered include those of cavity resonance 
and wave propagation in both closed and open 
structures, such as metallic waveguides, open and 
shielded microstrip transmission lines, and optical 
waveguides or fibers. In these problems, one is 
interested in determining the resonant frequencies 
or propagation constants corresponding to 
eigenvalues and the associated resonant or 
propagation modes corresponding to eigenvectors. 
The finite element method with edge elements has 
been used to solve these kind of problems; some of 
the advantages of edge elements include: 
divergence free (elimination of spurious nonphysical 
solutions), interelement boundary conditions are 
automatically obtained through the natural boundary 
conditions, edge elements impose the continuity of 
only the tangential components of the 
electromagnetic field, and Dirichlet boundary 
condition can be easily imposed along the edge 
elements. Some factors that complicate the finite 
element solution of the eigenvalue analysis are the 
sparsity of the matrices and the fact that the method 
gives rise to generalized eigenproblems  where only 
a few selected eigenvalues are desired. The sparse 
structure of the matrices M and S is highly 
influenced by the edge numbering provided by the 
grid generator. Here, sparse matrix techniques are 
preferable since the storage required increases as 
0(N), where N denotes the degrees of freedom of 
the problem. Moreover, storage can be reduced by 
minimizing the bandwidth of the connectivity matrix; 
thus, generalized eigensolvers that take advantages 
of the banded structure are highly desirable. The 
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work is organized as follows: in section 2 we 
introduce the finite element formulation for 
eigenvalue problems in electromagnetics by using 
edge elements (three dimensional Whitney 
elements), section 3 shows the influence of the 
mesh generator in the structure of the mass and 
stiffness matrices, in section 4 we present the use of 
the RCM ordering algorithm to reduce the bandwidth 
of the matrices and section 5 includes conclusions of 
this work. 

2 The edge elements for the eigenvalue 
calculation 

The problem of calculating resonant frequencies of 
three-dimensional cavities can be formulated either 
by using the E or the H fields ([1], [2]). Let us 
consider the vector wave equation 
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where   , x y zE E x E y E z µ= + +   and  are the 
permittivity and the permeability respectively of the 
material. 
 
A. Finite Element Formulation 
In order to get the weak formulation let us multiply 
equation (1) by a vector testing function  

nW  and integrate over the volume V  of the cavity [3] 
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by using the identity 
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equation (2) can be written as 
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Fig. 1. Configuration of tangential edge elements 

 
 

Table 1. Edge definition for a tetrahedral element 

Edge 
i  

Node 

2i  
Node 

2i   
1 
2 
3 
4 
5 
6 

1 
1 
1 
2 
4 
3 

2 
3 
4 
3 
2 
4 

 

 
 
by using the divergence theorem and the identity         
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Here V indicates integration over the volume, S over 

the outer surface, n is the outward unit vector 
normal to the surface. For a cavity bounded by 
perfectly electric conducting electric conductor, the 
field as well as the testing function Wn has to be 
zero on the outer surface; hence the last term on the 
right-hand side vanishes. Thus we have 
 

( ) ( ) dvdv
V nrcnV

r
k Ε⋅=Ε×∇⋅×∇ ∫∫ WW1 2ε

µ
 (6) 
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The electric field in a single tetrahedral element is 
represented as 
 

∑
=

=Ε
6

1
W

m
mme  (7) 

 

here ( )1 2 2 1
,  m m m m m m mW l L L L L l= ∇ − ∇ is the 

length of edge m connecting nodes 1m   and 2m ; 

1mL  and 2mL  are the simplex coordinates 

associated with nodes 1m  and 2m  Fig. 1 and table I 
show the definition of the edges. In order to obtain 
the finite element formulation we substitute equation 
(4) into (3) to get  
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n = 1,・・・ 6, here ∆ denotes integration over the 
volume of the tetrahedron. This can be written in 
matrix form as 
 
[ ]Sel

mn
[ ]e = [ ]el

mnc Mk 2 [ ]e  

 
(9) 

where the element matrices are given by 
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And 
 
[ ] ( )dvM nmr

el
mn ∫∆ ⋅=∈ WW  (11) 

 
that after a loop over all the tetrahedrons we obtain 
a global eigenmatrix equation 
 
[ ]S [ ]e = [ ]M2

ck [ ]e  
 

(12) 

 

3 The influence of the Mesh Generator 

The most popular element shapes employed for 
three-dimensional applications are tetrahedrons; this 
is due that tetrahedral element is the simplest 
tessellation shape for modeling three dimensional 
geometries and is also well suited for automatic 
mesh generation. To investigate the influence of the 
mesh generator we considered six different 
tetrahedral grid generators: initmesh [4] (Femlab), 
Tetgen [5], Distmesh [6], Qmg [7], Gambit [8] 
(Fluent) and Ansys [9]. Initmesh is a Matlab function 
of the Femlab package that implements a Delaunay 
tetrahedralization algorithm, Tetgen is a mesh 
generator that uses constrained Delaunay 
tetrahedralization, Distmesh is based on an iterative 
continuous smoothing method, Qmg uses a 
quadtreebased algorithm and finally Ansys and 
Gambit use an advancing front method. We start our 
discussion with some observations about the 
sparsity pattern of the stiffness S and mass M 
matrices. In order to efficiently allocated storage the 
number of edges (degrees of freedom) can be 
calculated by using the formula provided by Hoole 
[10]. At [11] a bound for the number of nonzero 
entries of the stiffness and mass matrices for 
triangular meshes was given, however the analogy 
does not hold in the three dimensional case. For 
vector elements the unknowns are still associated 
with the edges of the elements; but in 3d an edge 
either on the boundary or at the interior of the 
computational domain can be shared for more than 
two tetrahedrons which make difficult to determine 
the number of neighboring edges. The sparse 
structure of the matrices S and M depends on the 
edge ordering; most of the grid generators do not 
provide the edge numbering because they were 
developed for node-based finite elements(among 
the grid generators tested none provides the edge 
numbering), thus we need to convert node 
numbering into edge numbering. Here we follow the 
two simple schemes by Jin [1].  

To describe the numbering schemes we take as 
an example the four elements tetrahedral mesh at 
Fig. (2). its element-to-node connectivity array is 
given at table 2. For the first scheme denoted by 
Sc1, an indicator (product of the nodes) to each 
edge is defined and the array of  
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        Table 2. Four element tetrahedral mesh 

 
1 2 4 3 
4 1 3 5 
1 6 3 5 
2 1 6 3 

 

 
Table 3. Table of edges 

 
Indicator Nodes Elements 

2 
4 
3 
8 
6 

12 
4 

12 
20 
3 
5 

15 
6 
3 
5 

18 
30 
15 
2 

12 
6 
6 
3 

18 

12 
14 
13 
24 
23 
34 
14 
34 
45 
13 
15 
35 
16 
13 
15 
36 
56 
35 
12 
26 
23 
16 
13 
36 

1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 

 
 
 

 
 

Fig. 2. A four elements tetrahedral mesh 
 
 
 

 

 
Table 4. Table of sorted edges 

 
Indicator Nodes Element 

2 
2 
3 
3 
3 
3 
4 
4 
5 
5 
6 
6 
6 
6 
8 

12 
12 
12 
15 
15 
18 
18 
20 
30 

12 
12 
13 
13 
13 
13 
14 
14 
15 
15 
16 
16 
23 
23 
24 
26 
34 
34 
35 
35 
36 
36 
45 
56 

1 
4 
1 
2 
3 
4 
1 
2 
2 
3 
3 
4 
1 
4 
1 
4 
1 
2 
2 
3 
3 
4 
2 
3 

 

 
 

Table 5. Edge to node array 
 

Edge Nodes Elements 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

12 
13 
14 
15 
16 
23 
24 
26 
34 
35 
36 
45 
56 

1 
1 
1 
2 
3 
1 
1 
4 
1 
2 
3 
2 
3 

 
indicators is rearranged by a sorting algorithm. 
Tables 3 and 4 show the edges and sorted edges. 
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Most sorting algorithms are very efficient and 
can perform the task with Nlog(N) operations (N is 
equal to six times the number of tetrahedrons). Now 
we proceed to count the edges, here the indicator is 
used to reduce the number of comparisons, thus we 
get the edge-to-node/element array given at table V. 
We finally use this array to get the element-to-edge 
connectivity array given at table VI. 

For the second scheme Sc2, no sorting 
algorithm is required; we use the element-to-node 

connectivity array to generate a table of edges 
displayed at table 7.  
      Then the element-to-edge array is initialized with 
zeros and a counter is set to zero; to fill in it we loop 
over the elements and examine its edges, if the 
entry is nonzero this edge was already numbered 
and we go to the next edge, if it is zero we give it the 
value of the counter, this algorithm requires 18m 
(m− 1) operations, here m is the number of edges. 

 
 

 

 

Table 6. Element-edge array scheme 1 

Edge 1 Edge 2 Edge 3 Edge 4 Edge 5 Edge 6 
1 
3 
5 
1 

3 
9 
2 
8 

2 
12 
4 
6 

7 
2 

11 
5 

6 
4 

13 
2 

9 
10 
10 
11 

 
 

Table 7. Edge to node array 

Edge 1 Edge 2 Edge 3 Edge 4 Edge 5 Edge 6 
12 
14 
16 
12 

14 
34 
13 
26 

13 
45 
15 
23 

24 
13 
36 
16 

23 
15 
56 
13 

34 
35 
35 
36 

 
 

Table 8. Element-edge array scheme 2 

Edge 1 Edge 2 Edge 3 Edge 4 Edge 5 Edge 6 
1 
2 

10 
1 

2 
6 
3 

13 

3 
7 
8 
5 

4 
3 

11 
10 

5 
8 

12 
3 

6 
9 
9 

11 
 

 

Table 9. Meshes information 

Mesh Created by N-nodes N-elements N-edges Size 
1 Femlab 1411 6653 8620 0.1312 
2 Tetgen 1370 6565 8583 0.1059 
3 Distmesh 1288 6478 8325 0.1979 
4 Qmg 1508 6818 9003 0.1019 
5 Ansys 1387 6570 8514 0.1355 
6 Gambit 1504 6857 9026 0.1291 
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These schemes generate different edge 
numberings for a given tetrahedralization as seen at 
tables 5 and 8. In our first experiment we used the 
different grid generators to define a grid for the 
simple geometry of a cylinder of radius 1 and height 
1 with approximately 6500 elements. 

The table 9 displays the information of the 
meshes. By using the two schemes of edge 
numbering we calculate the stiffness matrix S for the 
six meshes. Fig. 3-8 show the sparse structure of S 
for the two edge numbering schemes (S and M have 
similar structure). The poorly structured connectivity 
of an unstructured finite element mesh can lead to 
poor cache affinity ([12]). 

Fig. (9) shows bandwidth for the six meshes 
with the two schemes. In this plot we refer to 
bandwidth as the half bandwidth over the number of 
degrees of freedom. Here we notice no significant 
changes in the bandwidth for the first two meshes 
(obtained by Delaunay  
 

tetrahedralization methods) with both schemes; 
similar results are observed with last two. However 
we note that Sc1 works better (lower bandwidth) for 
the mesh generated by Distmesh while Sc2 works 
better for the mesh generated by Qmg.  

In fact the bandwidth obtained by using Sc1 is 
only the 15.8% of the one obtained with Sc2 for 
Distmesh; while for Qmg we have the opposite 
situation the bandwidth obtained with Sc2 is the 
17.96% of the one obtained with Sc1. The grid 
generator Distmesh is based on the iterative method 
of Persson which tries to optimize the node locations 
by a force-based smoothing procedure while Qmg 
uses a quadtree method. It seems that grid 
generators based on Delaunay methods produce no 
significant changes in the bandwidth size with both 
edge numbering schemes. However Sc1 produces a 
lower bandwidth that Sc2 for Distmesh, here the 
iterative method of Persson gives an optimal node 
numbering for the Sc1 which is based on a sorting 
algorithm.  

 

Fig. 3. Matrix Structure Femlab; left Sc 1, right Sc 2 
  

Fig. 4. Matrix Structure Tetgen; left Sc 1, right Sc 
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On the other hand Sc2 produces lower 
bandwidth that Sc1 for Qmg. In this case Sc2 makes 
a loop over the elements so it seems that Qmg gives 
and optimal element ordering. Similar results were 
observed by testing twenty different geometries 
showing that the bandwidth is influenced by the 
method used for the grid generator [13]. 
Unstructured grid generators usually create numbers 
for vertices and cells as they produce them. For a 
frontal grid generator the vertices are often 
numbered in a spiral fashion, for octree methods 
cubes containing the geometric model are 
recursively divided until a desired resolution thus 
nodes and faces are formed whenever the internal 

octree structure intersects the boundary; whereas 
Delaunay generators have random numbering. Fig. 
10 shows the mesh obtained by Distmesh. As we 
mentioned above, the finite element formulation with 
edge elements requires the edge numbering to 
assemble the matrices and the boundary edges to 
imposed boundary conditions. Table 10 summarizes 
some useful information of the grid generators. 
Among them, none provides the edge numbering, 
initmesh (Femlab), Tetgen and Qmg only provide 
the boundary edges. Here E.N. and B.E. means 
edge numbering and boundary elements 
respectively. 

 

 
Fig. 5. Matrix Structure Distmesh; left Sc 1, right Sc 2 

 
 
 

 
Fig. 6. Matrix Structure Qmg; left Sc 1, right Sc 2 
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Fig. 7. Matrix Structure Ansys; left Sc 1, right Sc 2 

 
 

 
Fig. 8: Matrix Structure Gambit; left Sc 1, right Sc 2 

 
 

 
 

Fig. 9. Bandwidth 
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Fig. 10. Mesh for a cylinder 

 
 

Table 10. Grid generators information 

 Availability Method E.N. B.E. Language 
Femlab Commercial Delaunay X Ok Matlab 
Tetgen OpenSource Delaunay X Ok C++ 

Distmesh OpenSource Continuous smoothing X X Matlab 
Qmg OpenSource Quadtree X Ok Matlab-C++ 

Ansys Commercial Advancing front X X User interface 
Gambit Commercial Advancing front X X User interface 

4 Reordering 

Reordering of sparse matrices is essential for good 
performance on parallel computers, a good 
reordering algorithm can lead to much better load 
balance of the computer and thus to a dramatic 
increase in performance compared to a naive 
ordering ([14],[15]). 

In order to reduce the bandwidth of the stiffness 
and mass matrices an ordering scheme can be 
used. Nodal ordering for the formation of suitable 
sparsity patters for the finite element matrices are 
often performed using graph theory ([16], [17]). A 
widely used but rather simple ordering algorithm is 
the reverse Cuthill-McKee ordering algorithm [18]. 
The algorithms first find a pseudo peripheral vertex 
of the graph of the matrix. It then generates a level 
structure by breadth-first search (bfs) and orders the 
vertices by decreasing distance from the pseudo 
peripheral vertex. The cost of bfs is O(|V| + |E|) with 
|V| and |E| the number of nodes and edges 
respectively. 

Here we use RCM with two approaches: in the 
first one the ordering is applied to the graph of the  
 

 
 
mesh (the nodes and elements) and then we 
assemble the matrices. 

On the second one we assemble the matrices 
and use the RCM to reorder the rows and columns 
of the matrices (the eigenvalues remain invariant); a 
Matlab implementation of this ordering is provided 
by the function symrcm. It is desirable that the grid 
generator can provide optimal meshes, so the RCM 
should be considered as part of the grid generator. 

A. Reordering the meshes 

As we mentioned we generate a mesh, apply the 
RCM algorithm and then we assemble the matrices. 
By the nature of the edge ordering schemes, we 
expect to obtain better results by using Sc1 after the 
RCM ordering. 

Fig. 11 shows the bandwidth reduction 
produced by the RCM algorithm. At each group the 
height of the columns represent the bandwidth, the 
first one is obtained by using Sc1, the second one is 
RCM followed by Sc1, the third is Sc2 and the fourth 
is RCM followed by Sc2. Bandwidth reduction is 
attained with all grid generators when a RCM 
followed by Sc1 is used except with Distmesh, it 
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seems that the node ordering of the mesh generated 
by Distmesh is optimal and a RCM reordering is not 
needed. Note that even though a RCM ordering of 
the mesh was used the Sc2 does not provide 
bandwidth reduction. 
 

 
 

Fig. 11. Reordering the meshes 

B. Reordering the matrices 

 

 
 

Fig. 12. Reordering the matrices 
 
In this case the RCM ordering is applied after the 
matrices are assembled. Fig. 12 shows the 
bandwidth  reduction by using RCM to the meshes 
(rcm1) and to the assembled matrices (rcm2). At 
each group the height of the columns represents the 
bandwidth, the first column is the obtained by rcm1 
with scheme 1, the second column is rcm2 with  

scheme 1, the third column is rcm1 with scheme 2 
and the fourth one is rcm2 with scheme 2. In all the 
cases bandwidth reduction is obtained by rcm2. 

5 Eigenvalue calculation 

After discretization by the edge finite element 
method we arrive to 
 

[ ]S [ ]e = [ ]M2
ck [ ]e  (13) 

 
here we have assumed constant material 
parameters so the matrices are symmetric. We are 
now faced with the problem of numerically solve a 
generalized eigenproblem; one approach is to 
reduce it to a standard eigenvalue problem by 
means of congruence transformations and then use 
an iterative method to calculate the eigenvalues (the 
resulting eigenproblem amounts to solving the 
eigenvalues of a symmetric tridiagonal matrix); 
sometimes this approach is called by using direct 
solvers, the other approach is to directly write an 
iterative method for the generalized eigenproblem 
(iterative solvers). A review of direct solvers for the 
generalized eigenproblem can be found at ([19]). 

Over the years, several numerical methods and 
software to solve large scale eigenproblems have 
been developed, for a comprehensible list of 
software and references we refer to ([20], [21]). A 
vast majority of the programs are based on the 
Lanczos algorithm including irbleigs ([22]) and eigs 
(Matlab implementation of Arpack) [23]; these kind 
of methods require the invertion of M, if the 
eigenvalues are badly separated a shift and invert 
transformation is required. Other programs such as 
jdqz([24]) and lopbcg([25]) do not required shift-and-
invert transformation or the inversion of M but 
require more user inputs as initial approximations or 
preconditioners. An alternative matlab program that 
does not require user’s inputs is eigifp ([26]), which 
uses an inverse free preconditioned Krylov 
subspace projection method. Perhaps one of the 
simplest ways to solve generalized eigenproblems is 
by using the Matlab function eigs. This function 
implements an Implicitly Restarted Arnoldi algorithm 
[23]. We investigate the performance of this solver in 
the cases of banded and nonbanded sparse 
matrices. For this end, we consider the eigenvalue 
calculation of the resonances of a closed rectangular 
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 empty cavity 1cm × 0.5cm×. Here the mesh has 
1547 nodes, 7416 elements and 9709 edges. The 
first cutoff wavenumbers are given by 5.23, 7.01, 
7.55, 7.56, and 8.16 in agreement with the 
calculated values in literature. 

Even though bandwidth reduction is obtained by 
the proper choice of the grid generator or rcm 
ordering, no significant reduction have been 
observed in the execution time of eigs (arpack) 
when calculating the eigenvalues (cutoff wave 
numbers). The eigensolver was not affected by the 
bandwidth of the matrices because the command 
eigs in Matlab solves linear systems internally when 
the eigenproblem is generalized.  
This suggests that in order to speed up the 
computations a further study with banded 
generalized eigensolvers either direct or iterative 
must be conducted [27]. 

6 Conclusions 

In this work we have investigated the importance of 
the grid generator and edge numbering in the 
eigenvalue calculation with edge elements. We have 
observed how the sparse structure of the mass and 
stiffness matrices is highly influenced by the edge 
numbering. Grid generators are mainly designed for 
node based finite element, so an edge numbering is 
required. Two numbering schemes for the edges 
were investigated, six grid generators were tested 
summarizing their suitableness for the edge element 
formulation. Significant bandwidth reduction can be 
obtained by the proper combination of the edge 
numbering scheme with the grid generator method. 
In fact Sc2 only gives good results with Qmg 
(quadtree based), for the other grid generators Sc1 
is a better choice. The RCM reordering of the mesh 
followed by the Sc1 can improve the bandwidth 
reduction with all the grid generators except with 
Distmesh. The ordering of Distmesh is optimal with 
Sc1, thus no RCM ordering is required which make 
this grid generator a suitable choice for edge 
element formulation. 

We remark the point that a RCM ordering of the 
mesh followed by Sc2 does not provide bandwidth 
reduction. Moreover, RCM of the assembled 
matrices improves the bandwidth reduction reducing 
the storage requirements (reordering the assembled 
matrices leaves the eigenvalues invariant) with the 
downside of requiring the assemble of the matrices. 
As future work it is due to investigate the 
performance of the available eigensolvers in order to 

determine the most suitable one for the kind of 
generalized eigenproblems arising in 
electromagnetics. 
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