

Computación y Sistemas Vol. 14 No. 1, 2010, pp 5-16
ISSN 1405-5546

Tetrahedral Grid Generators and the Eigenvalue Calculation
with Edge Elements

Generadores de Malla Tetraédricos y el Cálculo de Eigenvalores

con Elementos de Contorno

Gerardo Mario Ortigoza Capetillo
Facultad de Ingeniería Universidad Veracruzana

Calzada Adolfo Ruiz Cortines s/n, Fracc. Costa Verde Boca del Río Ver, México
e-mail: gortigoza@uv.mx

Article received on September 03, 2008; accepted on February 25, 2009

Abstract. In this work we investigate some computational
aspects of the eigenvalue calculation with edge elements;
those include: the importance of the grid generator and
node-edge numbering. As the examples show, the sparse
structure of the mass and stiffness matrices is highly
influenced by the edge numbering.
Tetrahedral grid generators are mainly designed for nodal
based finite elements so an edge numbering is required.
Two different edge numbering schemes are tested with six
different grid generators. Significant bandwidth reduction
can be obtained by the proper combination of the edge
numbering scheme with the grid generator method.
Moreover, an ordering algorithm such as the Reverse
Cuthill McKee can improve the bandwidth reduction
which is necessary to reduce storage requirements.
Keywords: Tetrahedral grid generators, edge elements,
RCM ordering, generalized eigenproblem.

Resumen. En este trabajo se investigan algunos aspectos
computacionales del cálculo de eigenvalores con
elementos de contorno tales como la importancia del
generador de mallas y la numeración de nodos y lados.
Como muestran los ejemplos, la estructura esparcida de las
matrices de masa y momentos es altamente influenciada
por la numeración de los lados.
Generadores de mallas en tetraedros son diseñados
principalmente para elementos finitos basados en los
nodos, así una numeración de los lados es requerida. Se
realizaron pruebas con dos esquemas de enumeración de
los lados con seis generadores de mallas distintos. Una
reducción de banda significante puede obtenerse con una
combinación apropiada de esquema de numeración de los
lados con el método empleado por el generador de malla.
Más aún un algoritmo de reordenamiento como el RCM
puede mejorar la reducción de ancho de banda lo cual es
necesario para reducir los requerimientos de
almacenamiento.
Palabras Clave: Generadores de mallas en tetraedros,
elementos de contorno, reordenamientos RCM, valores
propios generalizados.

1 Introduction

In electromagnetics, eigenvalue problems that are
often encountered include those of cavity resonance
and wave propagation in both closed and open
structures, such as metallic waveguides, open and
shielded microstrip transmission lines, and optical
waveguides or fibers. In these problems, one is
interested in determining the resonant frequencies
or propagation constants corresponding to
eigenvalues and the associated resonant or
propagation modes corresponding to eigenvectors.
The finite element method with edge elements has
been used to solve these kind of problems; some of
the advantages of edge elements include:
divergence free (elimination of spurious nonphysical
solutions), interelement boundary conditions are
automatically obtained through the natural boundary
conditions, edge elements impose the continuity of
only the tangential components of the
electromagnetic field, and Dirichlet boundary
condition can be easily imposed along the edge
elements. Some factors that complicate the finite
element solution of the eigenvalue analysis are the
sparsity of the matrices and the fact that the method
gives rise to generalized eigenproblems where only
a few selected eigenvalues are desired. The sparse
structure of the matrices M and S is highly
influenced by the edge numbering provided by the
grid generator. Here, sparse matrix techniques are
preferable since the storage required increases as
0(N), where N denotes the degrees of freedom of
the problem. Moreover, storage can be reduced by
minimizing the bandwidth of the connectivity matrix;
thus, generalized eigensolvers that take advantages
of the banded structure are highly desirable. The

6 Gerardo Mario Ortigoza Capetillo

Computación y Sistemas Vol. 14 No. 1, 2010, pp 5-16
ISSN 1405-5546

work is organized as follows: in section 2 we
introduce the finite element formulation for
eigenvalue problems in electromagnetics by using
edge elements (three dimensional Whitney
elements), section 3 shows the influence of the
mesh generator in the structure of the mass and
stiffness matrices, in section 4 we present the use of
the RCM ordering algorithm to reduce the bandwidth
of the matrices and section 5 includes conclusions of
this work.

2 The edge elements for the eigenvalue
calculation

The problem of calculating resonant frequencies of
three-dimensional cavities can be formulated either
by using the E or the H fields ([1], [2]). Let us
consider the vector wave equation

01 2 =Ε∈−







Ε×∇×∇ rkc

rµ
 (1)

where   , x y zE E x E y E z µ= + +  and are the
permittivity and the permeability respectively of the
material.

A. Finite Element Formulation
In order to get the weak formulation let us multiply
equation (1) by a vector testing function

nW and integrate over the volume V of the cavity [3]

∫ =









Ε⋅∈−
















Ε×∇×∇⋅

V nrc
r

n dvk 01 WW 2

µ
 (2)

by using the identity

() () ()Β×Α∇−Β⋅Α×∇=Β×∇⋅Α (3)

equation (2) can be written as

() ∫∫ Ω
+Ε⋅=








Ε×∇⋅×∇ dvdv nrc

r
V k W1W 2

n ε
µ

dv
r

nV 















Ε×∇×⋅∇∫ µ

1W (4)

Fig. 1. Configuration of tangential edge elements

Table 1. Edge definition for a tetrahedral element

Edge
i

Node

2i
Node

2i
1
2
3
4
5
6

1
1
1
2
4
3

2
3
4
3
2
4

by using the divergence theorem and the identity
() ()Β×⋅Α−=⋅Β×Α nn ˆˆ we have

() ∫∫ Ω
−Ε⋅∈=








Ε×∇⋅×∇ dvdv nrc

r
V n k W1W 2

µ

dsn
s

r
n∫ 
















Ε×∇×⋅

µ
1

ˆW
(5)

Here V indicates integration over the volume, S over

the outer surface, n is the outward unit vector
normal to the surface. For a cavity bounded by
perfectly electric conducting electric conductor, the
field as well as the testing function Wn has to be
zero on the outer surface; hence the last term on the
right-hand side vanishes. Thus we have

() () dvdv
V nrcnV

r
k Ε⋅=Ε×∇⋅×∇ ∫∫ WW1 2ε

µ
 (6)

Tetrahedral Grid Generators and the Eigenvalue Calculation with Edge Elements 7

Computación y Sistemas Vol. 14 No. 1, 2010, pp 5-16
ISSN 1405-5546

The electric field in a single tetrahedral element is
represented as

∑
=

=Ε
6

1
W

m
mme (7)

here ()1 2 2 1
, m m m m m m mW l L L L L l= ∇ − ∇ is the

length of edge m connecting nodes 1m and 2m ;

1mL and 2mL are the simplex coordinates

associated with nodes 1m and 2m Fig. 1 and table I
show the definition of the edges. In order to obtain
the finite element formulation we substitute equation
(4) into (3) to get

() () =×∇⋅×∇∑∫
=

∆
dvemm

m
n

r

WW1 6

1µ

() dvemnm
m

rck ∫∑ ∆
=

⋅∈ Ww
6

1

2

(8)

n = 1,・・・ 6, here ∆ denotes integration over the
volume of the tetrahedron. This can be written in
matrix form as

[]Sel

mn
[]e = []el

mnc Mk 2 []e

(9)

where the element matrices are given by

[] () ()dvS nm
r

el
mn WW1

×∇⋅×∇= ∫∆µ
 (10)

And

[] ()dvM nmr

el
mn ∫∆ ⋅=∈ WW (11)

that after a loop over all the tetrahedrons we obtain
a global eigenmatrix equation

[]S []e = []M2

ck []e

(12)

3 The influence of the Mesh Generator

The most popular element shapes employed for
three-dimensional applications are tetrahedrons; this
is due that tetrahedral element is the simplest
tessellation shape for modeling three dimensional
geometries and is also well suited for automatic
mesh generation. To investigate the influence of the
mesh generator we considered six different
tetrahedral grid generators: initmesh [4] (Femlab),
Tetgen [5], Distmesh [6], Qmg [7], Gambit [8]
(Fluent) and Ansys [9]. Initmesh is a Matlab function
of the Femlab package that implements a Delaunay
tetrahedralization algorithm, Tetgen is a mesh
generator that uses constrained Delaunay
tetrahedralization, Distmesh is based on an iterative
continuous smoothing method, Qmg uses a
quadtreebased algorithm and finally Ansys and
Gambit use an advancing front method. We start our
discussion with some observations about the
sparsity pattern of the stiffness S and mass M
matrices. In order to efficiently allocated storage the
number of edges (degrees of freedom) can be
calculated by using the formula provided by Hoole
[10]. At [11] a bound for the number of nonzero
entries of the stiffness and mass matrices for
triangular meshes was given, however the analogy
does not hold in the three dimensional case. For
vector elements the unknowns are still associated
with the edges of the elements; but in 3d an edge
either on the boundary or at the interior of the
computational domain can be shared for more than
two tetrahedrons which make difficult to determine
the number of neighboring edges. The sparse
structure of the matrices S and M depends on the
edge ordering; most of the grid generators do not
provide the edge numbering because they were
developed for node-based finite elements(among
the grid generators tested none provides the edge
numbering), thus we need to convert node
numbering into edge numbering. Here we follow the
two simple schemes by Jin [1].

To describe the numbering schemes we take as
an example the four elements tetrahedral mesh at
Fig. (2). its element-to-node connectivity array is
given at table 2. For the first scheme denoted by
Sc1, an indicator (product of the nodes) to each
edge is defined and the array of

8 Gerardo Mario Ortigoza Capetillo

Computación y Sistemas Vol. 14 No. 1, 2010, pp 5-16
ISSN 1405-5546

 Table 2. Four element tetrahedral mesh

1 2 4 3
4 1 3 5
1 6 3 5
2 1 6 3

Table 3. Table of edges

Indicator Nodes Elements

2
4
3
8
6

12
4

12
20
3
5

15
6
3
5

18
30
15
2

12
6
6
3

18

12
14
13
24
23
34
14
34
45
13
15
35
16
13
15
36
56
35
12
26
23
16
13
36

1
1
1
1
1
1
2
2
2
2
2
2
3
3
3
3
3
3
4
4
4
4
4
4

Fig. 2. A four elements tetrahedral mesh

Table 4. Table of sorted edges

Indicator Nodes Element

2
2
3
3
3
3
4
4
5
5
6
6
6
6
8

12
12
12
15
15
18
18
20
30

12
12
13
13
13
13
14
14
15
15
16
16
23
23
24
26
34
34
35
35
36
36
45
56

1
4
1
2
3
4
1
2
2
3
3
4
1
4
1
4
1
2
2
3
3
4
2
3

Table 5. Edge to node array

Edge Nodes Elements
1
2
3
4
5
6
7
8
9
10
11
12
13

12
13
14
15
16
23
24
26
34
35
36
45
56

1
1
1
2
3
1
1
4
1
2
3
2
3

indicators is rearranged by a sorting algorithm.
Tables 3 and 4 show the edges and sorted edges.

Tetrahedral Grid Generators and the Eigenvalue Calculation with Edge Elements 9

Computación y Sistemas Vol. 14 No. 1, 2010, pp 5-16
ISSN 1405-5546

Most sorting algorithms are very efficient and
can perform the task with Nlog(N) operations (N is
equal to six times the number of tetrahedrons). Now
we proceed to count the edges, here the indicator is
used to reduce the number of comparisons, thus we
get the edge-to-node/element array given at table V.
We finally use this array to get the element-to-edge
connectivity array given at table VI.

For the second scheme Sc2, no sorting
algorithm is required; we use the element-to-node

connectivity array to generate a table of edges
displayed at table 7.
 Then the element-to-edge array is initialized with
zeros and a counter is set to zero; to fill in it we loop
over the elements and examine its edges, if the
entry is nonzero this edge was already numbered
and we go to the next edge, if it is zero we give it the
value of the counter, this algorithm requires 18m
(m− 1) operations, here m is the number of edges.

Table 6. Element-edge array scheme 1

Edge 1 Edge 2 Edge 3 Edge 4 Edge 5 Edge 6
1
3
5
1

3
9
2
8

2
12
4
6

7
2

11
5

6
4

13
2

9
10
10
11

Table 7. Edge to node array

Edge 1 Edge 2 Edge 3 Edge 4 Edge 5 Edge 6
12
14
16
12

14
34
13
26

13
45
15
23

24
13
36
16

23
15
56
13

34
35
35
36

Table 8. Element-edge array scheme 2

Edge 1 Edge 2 Edge 3 Edge 4 Edge 5 Edge 6
1
2

10
1

2
6
3

13

3
7
8
5

4
3

11
10

5
8

12
3

6
9
9

11

Table 9. Meshes information

Mesh Created by N-nodes N-elements N-edges Size
1 Femlab 1411 6653 8620 0.1312
2 Tetgen 1370 6565 8583 0.1059
3 Distmesh 1288 6478 8325 0.1979
4 Qmg 1508 6818 9003 0.1019
5 Ansys 1387 6570 8514 0.1355
6 Gambit 1504 6857 9026 0.1291

10 Gerardo Mario Ortigoza Capetillo

Computación y Sistemas Vol. 14 No. 1, 2010, pp 5-16
ISSN 1405-5546

These schemes generate different edge
numberings for a given tetrahedralization as seen at
tables 5 and 8. In our first experiment we used the
different grid generators to define a grid for the
simple geometry of a cylinder of radius 1 and height
1 with approximately 6500 elements.

The table 9 displays the information of the
meshes. By using the two schemes of edge
numbering we calculate the stiffness matrix S for the
six meshes. Fig. 3-8 show the sparse structure of S
for the two edge numbering schemes (S and M have
similar structure). The poorly structured connectivity
of an unstructured finite element mesh can lead to
poor cache affinity ([12]).

Fig. (9) shows bandwidth for the six meshes
with the two schemes. In this plot we refer to
bandwidth as the half bandwidth over the number of
degrees of freedom. Here we notice no significant
changes in the bandwidth for the first two meshes
(obtained by Delaunay

tetrahedralization methods) with both schemes;
similar results are observed with last two. However
we note that Sc1 works better (lower bandwidth) for
the mesh generated by Distmesh while Sc2 works
better for the mesh generated by Qmg.

In fact the bandwidth obtained by using Sc1 is
only the 15.8% of the one obtained with Sc2 for
Distmesh; while for Qmg we have the opposite
situation the bandwidth obtained with Sc2 is the
17.96% of the one obtained with Sc1. The grid
generator Distmesh is based on the iterative method
of Persson which tries to optimize the node locations
by a force-based smoothing procedure while Qmg
uses a quadtree method. It seems that grid
generators based on Delaunay methods produce no
significant changes in the bandwidth size with both
edge numbering schemes. However Sc1 produces a
lower bandwidth that Sc2 for Distmesh, here the
iterative method of Persson gives an optimal node
numbering for the Sc1 which is based on a sorting
algorithm.

Fig. 3. Matrix Structure Femlab; left Sc 1, right Sc 2

Fig. 4. Matrix Structure Tetgen; left Sc 1, right Sc

 Tetrahedral Grid Generators and the Eigenvalue Calculation with Edge Elements 11

Computación y Sistemas Vol. 14 No. 1, 2010, pp 5-16
ISSN 1405-5546

On the other hand Sc2 produces lower
bandwidth that Sc1 for Qmg. In this case Sc2 makes
a loop over the elements so it seems that Qmg gives
and optimal element ordering. Similar results were
observed by testing twenty different geometries
showing that the bandwidth is influenced by the
method used for the grid generator [13].
Unstructured grid generators usually create numbers
for vertices and cells as they produce them. For a
frontal grid generator the vertices are often
numbered in a spiral fashion, for octree methods
cubes containing the geometric model are
recursively divided until a desired resolution thus
nodes and faces are formed whenever the internal

octree structure intersects the boundary; whereas
Delaunay generators have random numbering. Fig.
10 shows the mesh obtained by Distmesh. As we
mentioned above, the finite element formulation with
edge elements requires the edge numbering to
assemble the matrices and the boundary edges to
imposed boundary conditions. Table 10 summarizes
some useful information of the grid generators.
Among them, none provides the edge numbering,
initmesh (Femlab), Tetgen and Qmg only provide
the boundary edges. Here E.N. and B.E. means
edge numbering and boundary elements
respectively.

Fig. 5. Matrix Structure Distmesh; left Sc 1, right Sc 2

Fig. 6. Matrix Structure Qmg; left Sc 1, right Sc 2

12 Gerardo Mario Ortigoza Capetillo

Computación y Sistemas Vol. 14 No. 1, 2010, pp 5-16
ISSN 1405-5546

Fig. 7. Matrix Structure Ansys; left Sc 1, right Sc 2

Fig. 8: Matrix Structure Gambit; left Sc 1, right Sc 2

Fig. 9. Bandwidth

Tetrahedral Grid Generators and the Eigenvalue Calculation with Edge Elements 13

Computación y Sistemas Vol. 14 No. 1, 2010, pp 5-16
ISSN 1405-5546

Fig. 10. Mesh for a cylinder

Table 10. Grid generators information

 Availability Method E.N. B.E. Language
Femlab Commercial Delaunay X Ok Matlab
Tetgen OpenSource Delaunay X Ok C++

Distmesh OpenSource Continuous smoothing X X Matlab
Qmg OpenSource Quadtree X Ok Matlab-C++

Ansys Commercial Advancing front X X User interface
Gambit Commercial Advancing front X X User interface

4 Reordering

Reordering of sparse matrices is essential for good
performance on parallel computers, a good
reordering algorithm can lead to much better load
balance of the computer and thus to a dramatic
increase in performance compared to a naive
ordering ([14],[15]).

In order to reduce the bandwidth of the stiffness
and mass matrices an ordering scheme can be
used. Nodal ordering for the formation of suitable
sparsity patters for the finite element matrices are
often performed using graph theory ([16], [17]). A
widely used but rather simple ordering algorithm is
the reverse Cuthill-McKee ordering algorithm [18].
The algorithms first find a pseudo peripheral vertex
of the graph of the matrix. It then generates a level
structure by breadth-first search (bfs) and orders the
vertices by decreasing distance from the pseudo
peripheral vertex. The cost of bfs is O(|V| + |E|) with
|V| and |E| the number of nodes and edges
respectively.

Here we use RCM with two approaches: in the
first one the ordering is applied to the graph of the

mesh (the nodes and elements) and then we
assemble the matrices.

On the second one we assemble the matrices
and use the RCM to reorder the rows and columns
of the matrices (the eigenvalues remain invariant); a
Matlab implementation of this ordering is provided
by the function symrcm. It is desirable that the grid
generator can provide optimal meshes, so the RCM
should be considered as part of the grid generator.

A. Reordering the meshes

As we mentioned we generate a mesh, apply the
RCM algorithm and then we assemble the matrices.
By the nature of the edge ordering schemes, we
expect to obtain better results by using Sc1 after the
RCM ordering.

Fig. 11 shows the bandwidth reduction
produced by the RCM algorithm. At each group the
height of the columns represent the bandwidth, the
first one is obtained by using Sc1, the second one is
RCM followed by Sc1, the third is Sc2 and the fourth
is RCM followed by Sc2. Bandwidth reduction is
attained with all grid generators when a RCM
followed by Sc1 is used except with Distmesh, it

14 Gerardo Mario Ortigoza Capetillo

Computación y Sistemas Vol. 14 No. 1, 2010, pp 5-16
ISSN 1405-5546

seems that the node ordering of the mesh generated
by Distmesh is optimal and a RCM reordering is not
needed. Note that even though a RCM ordering of
the mesh was used the Sc2 does not provide
bandwidth reduction.

Fig. 11. Reordering the meshes

B. Reordering the matrices

Fig. 12. Reordering the matrices

In this case the RCM ordering is applied after the
matrices are assembled. Fig. 12 shows the
bandwidth reduction by using RCM to the meshes
(rcm1) and to the assembled matrices (rcm2). At
each group the height of the columns represents the
bandwidth, the first column is the obtained by rcm1
with scheme 1, the second column is rcm2 with

scheme 1, the third column is rcm1 with scheme 2
and the fourth one is rcm2 with scheme 2. In all the
cases bandwidth reduction is obtained by rcm2.

5 Eigenvalue calculation

After discretization by the edge finite element
method we arrive to

[]S []e = []M2
ck []e (13)

here we have assumed constant material
parameters so the matrices are symmetric. We are
now faced with the problem of numerically solve a
generalized eigenproblem; one approach is to
reduce it to a standard eigenvalue problem by
means of congruence transformations and then use
an iterative method to calculate the eigenvalues (the
resulting eigenproblem amounts to solving the
eigenvalues of a symmetric tridiagonal matrix);
sometimes this approach is called by using direct
solvers, the other approach is to directly write an
iterative method for the generalized eigenproblem
(iterative solvers). A review of direct solvers for the
generalized eigenproblem can be found at ([19]).

Over the years, several numerical methods and
software to solve large scale eigenproblems have
been developed, for a comprehensible list of
software and references we refer to ([20], [21]). A
vast majority of the programs are based on the
Lanczos algorithm including irbleigs ([22]) and eigs
(Matlab implementation of Arpack) [23]; these kind
of methods require the invertion of M, if the
eigenvalues are badly separated a shift and invert
transformation is required. Other programs such as
jdqz([24]) and lopbcg([25]) do not required shift-and-
invert transformation or the inversion of M but
require more user inputs as initial approximations or
preconditioners. An alternative matlab program that
does not require user’s inputs is eigifp ([26]), which
uses an inverse free preconditioned Krylov
subspace projection method. Perhaps one of the
simplest ways to solve generalized eigenproblems is
by using the Matlab function eigs. This function
implements an Implicitly Restarted Arnoldi algorithm
[23]. We investigate the performance of this solver in
the cases of banded and nonbanded sparse
matrices. For this end, we consider the eigenvalue
calculation of the resonances of a closed rectangular

Tetrahedral Grid Generators and the Eigenvalue Calculation with Edge Elements 15

Computación y Sistemas Vol. 14 No. 1, 2010, pp 5-16
ISSN 1405-5546

 empty cavity 1cm × 0.5cm×. Here the mesh has
1547 nodes, 7416 elements and 9709 edges. The
first cutoff wavenumbers are given by 5.23, 7.01,
7.55, 7.56, and 8.16 in agreement with the
calculated values in literature.

Even though bandwidth reduction is obtained by
the proper choice of the grid generator or rcm
ordering, no significant reduction have been
observed in the execution time of eigs (arpack)
when calculating the eigenvalues (cutoff wave
numbers). The eigensolver was not affected by the
bandwidth of the matrices because the command
eigs in Matlab solves linear systems internally when
the eigenproblem is generalized.
This suggests that in order to speed up the
computations a further study with banded
generalized eigensolvers either direct or iterative
must be conducted [27].

6 Conclusions

In this work we have investigated the importance of
the grid generator and edge numbering in the
eigenvalue calculation with edge elements. We have
observed how the sparse structure of the mass and
stiffness matrices is highly influenced by the edge
numbering. Grid generators are mainly designed for
node based finite element, so an edge numbering is
required. Two numbering schemes for the edges
were investigated, six grid generators were tested
summarizing their suitableness for the edge element
formulation. Significant bandwidth reduction can be
obtained by the proper combination of the edge
numbering scheme with the grid generator method.
In fact Sc2 only gives good results with Qmg
(quadtree based), for the other grid generators Sc1
is a better choice. The RCM reordering of the mesh
followed by the Sc1 can improve the bandwidth
reduction with all the grid generators except with
Distmesh. The ordering of Distmesh is optimal with
Sc1, thus no RCM ordering is required which make
this grid generator a suitable choice for edge
element formulation.

We remark the point that a RCM ordering of the
mesh followed by Sc2 does not provide bandwidth
reduction. Moreover, RCM of the assembled
matrices improves the bandwidth reduction reducing
the storage requirements (reordering the assembled
matrices leaves the eigenvalues invariant) with the
downside of requiring the assemble of the matrices.
As future work it is due to investigate the
performance of the available eigensolvers in order to

determine the most suitable one for the kind of
generalized eigenproblems arising in
electromagnetics.

References

1 Jianming J. (2002).The Finite Element Method in
Electromagnetics (2nd ed.). New York: John Wiley and
Sons.

2 Volakis, J. L., Chatterjee, A., & Kempel, L. C. (1998).
Finite Element Method for electromagnetics: to antennas,
microwave circuits, and scattering applications. New York:
IEEE Press.

3 Reddy, C.J., Deshpande, M.D., Cockrell, C. R., & Beck,
F. B. (1998). Finite element method for eigenvalue
problems in electromagnetics. (NASA Technical Paper
3485). Hampton, Virginia: NASA Center for AeroSpace
Information

4 Multiphysics Modeling and Simulation Software-
COMSOL. (s.f.). Retrieved from http://www.comsol.com/

5 Hang, S., & Gartner, K. (2005). Meshing piecewise linear
complexes by constrained Delaunay tetrahedralizations.
14th International Meshing Roundtable, San Diego, CA,
USA, 147–164.

6 Persson, P.O., & Strang, G. (2004). A simplemesh
generator in matlab. SIAM Review, 46(2), 329–345.

7 Qmg 2.0 (s.f.) Retrieved from
http://www.cs.cornell.edu/home/vavasis/qmg2.0/qmg2_0_
home.html

8 CFD Flow Modeling Software & Solutions from Fluent
(s.f.). Retrieved from http://www.fluent.com./

9 Ansys Simulation Driven Product Development (s.f.).
Retrieved from http://www.ansys.com/

10 Hoole, S.R.H., Jayakumaran, S., & Yoganathan S.
(1986). Tetrahedrons, edges and nodes in 3d finite
element meshes. Electronic Letters, 22 (14), 735–737.

11 Ortigoza, G. (2009). Triangular grid generators for the
eigenvalue calculation with edge elements. Revista
Mexicana de Física, 55 (2), 154-160.

12 Shires D., & Mohan R. (2003). Optimization and
performance of a FORTRAN 90 mpi-based unstructured
code on large-scale parallel systems. The Journal of
Supercomputing, 25 (2), 131–141.

13 A survey of unstructured mesh generation
technology. Retrieved from
www.andrew.cmu.edu/user/sowen/survey/

14 Hansen, P. C. T., Ostromsky, A., Basermann, P.,
(1994). Weidner, Reordering of sparse matrices for
parallel processing. APPARC PaA3a Technical report,

15 Burgess D. A., & Giles, M. B. (1997). Renumbering
unstructured grids to improve performance of codes on
hierarchical memory machines. Advances in Engineering
Software, 28 (3), 189–201.

16 Kaveh, A. & Rahimi Bondarabady, H. A. (2002). An
hybrid method for finite element ordering. Computers &
Structures, 80 (3-4), 219-225.

17 Paulino, G. H., Meneses, I.F., Gattass M., & Mukherjee,
S. (1994). Node and element resequencing using the
Laplacian of a finite element graph: Part I – General

16 Gerardo Mario Ortigoza Capetillo

Computación y Sistemas Vol. 14 No. 1, 2010, pp 5-16
ISSN 1405-5546

concepts and algorithm. International Journal for
Numerical Methods in Engineering, 37(9), 1511–1530.

18 Cuthill, E., & McKee, J. (1969). Reducing the bandwidth
of sparse symmetric matrices. ACM Annual Conference
24th national conference, New York, USA, 157–172.

19 Lang, B. & Aachen, R. (2000). Direct solvers for
symmetric eigenvalue problems. In Johannes
Grotendorst (Ed.) Modern methods and algorithms
of quantum chemistry proceedings, Jülich, Alemania, 3,
231–259.

20 Bai, Z., Demmel, J., Dongarra, J., Ruhe, A. & Van der
Vorst, H. (2000). Templates for the Solution of Algebraic
Eigenvalue Problems: A Practical Guide. Philadelphia:
Society for Industrial and Applied Mathematics

21 Hernandez, V., Román, J.E. Tomas, A., & Vidal, V.
(2007). A survey of software for sparse eigenvalue
problems. (SLEPc Technical Report STR-6). España:
Universidad Politécnica de Valencia.

22 Baglama, J., Calvetti, D., & Reichel, L. (2003). Algorithm
827: irbleigs: a matlab program for computing a few
eigenpairs of a large sparse hermitian matrix. ACM
transactions on mathematical software, 29 (3), 337–348,

23 Lehoucq, R. B., Sorensen, D. C., & Yang, C. (1998).
Arpack: user’s guide: Solution of large-scale eigenvalue
problems with implicit restarted arnoldi methods.
Philadelphia : SIAM.

24 Fokkema D., Sleijpen G., & Van der, H. (1998). Jacobi-
Davidson style qr and qz algorithms for the reduction of
matrix pencils. SIAM Journal on Scientific Computing, 20
(1), 94–125.

25 Knyazev, A. (2001). Towards the optimal preconditioned
eigensolver: locally conditioned conjugate gradient
method. SIAM Journal of Scientific Computation, 23 (2),
517–541.

26 Money J. H. & Ye Q. (2005). Algorithm 845: Eigifp: a
matlab program for solving large symmetric generalized
eigenvalue problems. ACM transactions on mathematical
software, 31 (2), 270–279.

27 Kaufman L. (2000). Band reduction algorithms revisited.
ACM Transactions on Mathematical Software, 26 (4),
551–567.

Gerardo M. Ortigoza C.

Is a full time professor and researcher in Electrical and
Mechanical Engineering at the Universidad de Veracruz,
Veracruz. He got a Ph.D in Mathematics Applied to Industry in
Minnesota University, USA. His research interest are in
mathematical modelling and numerical simulation

