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Abstract. Power systems monitoring is particularly 
challenging due to the presence of dynamic load changes 
in normal operation mode of network nodes, as well as the 
presence of both continuous and discrete variables, noisy 
information and lack or excess of data. This paper proposes 
a fault diagnosis framework that is able to locate the set of 
nodes involved in multiple fault events. It detects the faulty 
nodes, the type of fault in those nodes and the time when 
it is present. The framework is composed of two phases: In 
the first phase a probabilistic neural network is trained with 
the eigenvalues of voltage data collected during normal 
operation, symmetrical and asymmetrical fault 
disturbances. The second phase is a sample magnitude 
comparison used to detect and locate the presence of a 
fault. A set of simulations are carried out over an electrical 
power system to show the performance of the proposed 
framework and a comparison is made against a diagnostic 
system based on probabilistic logic. 
Keywords: Fault Diagnosis, Multiple Faults, Probabilistic 
Neural Networks, Correlation Matrix, Eigenvalues, Power 
System, Dynamic Load Changes 
 
Resumen. El monitoreo de sistemas de potencia es 
particularmente retador debido a la presencia de cambios 
dinámicos de carga de los nodos de la red en modo de 
operación normal, así como la presencia de variables 
continuas y discretas, información con ruido y falta o 
exceso de datos. Este artículo propone un método de 
diagnóstico de fallas que es capaz de localizar el conjunto 
de nodos involucrado en eventos de fallas múltiples. El 
método detecta los nodos con falla, el tipo de falla y el 
tiempo en el cual está presente la falla. El método está 
compuesto de dos fases: En la primera fase una red 
neuronal probabilística es entrenada con los eigenvalores 
de los datos de voltaje obtenidos en operación normal así 

como con fallas simétricas y asimétricas. La segunda fase 
emplea una comparación entre las muestras para detectar 
y localizar la presencia de una falla. Se lleva a cabo un 
conjunto de simulaciones en un sistema eléctrico de 
potencia para mostrar el desempeño del método 
propuesto y se realiza una comparación contra un sistema 
de diagnóstico basado en lógica probabilística. 
Palabras clave: Diagnóstico de Fallas, Fallas Múltiples, 
Redes Neuronales Probabilísticas, Matriz de Correlación, 
Eigenvalores, Sistemas de Potencia, Cambios Dinámicos de 
Carga 

1   Introduction 

The increased interest in fault diagnosis in electrical 
power networks (EPN) is because their complexity 
and high degree of interconnection can lead to an 
overwhelming number of alarms as a result of a 
disturbance. In order to manage the diagnosis task, 
supporting tools that help operators in this are 
needed. Two main features are demanded: 
efficiency and efficacy. 

When a fault occurs in an EPN, the 
consequences are often not limited to the point 
where the fault occurred but to other points where 
fault can be propagated. A short-circuit fault gives 
rise to local damages due to a high amount of 
energy deployed within a limited geometrical 
location. The global effects of the same short circuit 
give rise to a voltage dip, which can lead to 
malfunction of other processes.  



18   Juan Pablo Nieto González, Luis Garza Castañón and Rubén Morales Menéndez 

 

Computación y Sistemas Vol. 14 No. 1, 2010, pp 17-29 
ISSN 1405-5546 

Since the impact of damage is proportional to the 
time that fault is presented the diagnosis time is 
essential. The advent of current limiting devices, 
which limit the fault current before it reaches 
dangerous levels, is an application where fast and 
reliable fault detection is of importance 

There are many research works in the fault 
detection field. Many approaches are analytic 
methods, other are based on Artificial Intelligence 
(AI) or statistical methods.  [Venkatasubramanian, et 
al., 2003] classifies the methods in three groups. 
See figure 1. 

 
• Quantitative Model Based 
• Qualitative Model Based and  
• Process History Based 

 

 
 

Fig. 1. Classification of Diagnostic Methods 
 
Quantitative model based fault detection 

methods need a mathematical model of the system. 
The occurrence of a fault is captured by 
discrepancies between the monitored behavior and 
the one that is predicted by the model. These 
approaches exploit state estimation, parameter 
identification techniques, or parity relations to 
generate residuals. Fault localization then, rest on 
interlining the groups of components that are 
involved in each of the detected discrepancies. 
However, it is often difficult and time-consuming to 
develop accurate mathematical models that 
characterize all the physical phenomena occurring in 
industrial systems 

Qualitative model based methods use symbolic 
reasoning which generally combines different kind of 
knowledge with graph theory. An advantage of these 
methods is that an explicit model of the system is 
not necessary. Knowledge-based approaches such 
as expert systems may be considered as alternative 
(or complementary) when analytical models are not 
available. 

Process history based methods only require 
historical process data. There are several ways in 
which these data can be transformed as prior 
knowledge of a system. These transformations are 
known as feature extraction. They could be 
qualitative, as those used by expert systems, 
quantitative, as those used in neural networks, 
Principal Component Analysis (PCA), PLS or 
statistical pattern recognition 

Every approach has some drawbacks; the need 
for better results motivates the design of hybrid 
methods that combines several approaches. In the 
Electrical Power Networks (EPN) domain several 
applications have been developed. [Zhang, et al., 
2000] incorporates model based diagnosis and 
signal analysis with neural networks. [Bouthiba, 
2005] proposed an approach based on four 
independent artificial neural networks (ANN) for real 
time fault detection and classification in power 
transmission lines. The technique uses consecutive 
magnitude current and voltage data at one terminal 
as inputs to the ANN. The ANN outputs are used to 
indicate simultaneously the presence and the type of 
the fault. [Hartstein, et al., 2007] developed a 
methodology using wavelet transform for phase to 
ground fault detection in primary distribution 
systems, but it is an efficient methodology only for 
single phase fault detection in unbalanced 
distribution systems. [Yongli, et al., 2003] presented 
Bayesian networks (BNs) to estimate the faulty 
section of a transmission power system. Simplified 
models of BNs with Noisy-Or and Noisy-And nodes 
are proposed to test if any transmission line, 
transformer, or busbar within a blackout area is 
faulty. In [Xu and Chow, 2005] a research is 
performed about the use of logistic regression and 
neural networks to classify fault causes. [Ren and 
Mi, 2006] proposed a procedure for power systems 
fault diagnosis and identification based on Petri Nets 
and coding theory. They tested the approach with 
simulations over the IEEE 118-bus power system 
and highlight the great advantage to handle very 
easily future expansions. In [Peng, et al., 2006] a 
Fault diagnosis system is presented, based on multi-
agent systems. By using a negotiation mechanism 
between decision-making agent and a cooperative 
agent, fault diagnosis results can be obtained. [Nieto 
J.P., et al 2007] presented a fault detection 
framework based on history process data that uses 
a combination of PCA, control charts and statistic 
operation limits to make comparisons between a 
suspicious sample against its normal values giving 
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in this way the detection of a single or multiple faults 
existing in the system. 

 In other areas of application, [He Q. Peter, et al., 
2004] proposed a process monitoring which is 
composed of three parts: preanalysis, visualization 
and diagnosis, where the proposed method 
integrates PCA, FDA and clustering analysis taking 
advantage of each technique for a complete 
solution. [Liang W., et al., 2005] combined the use of 
signed directed graph to make a classification 
model, PCA and fuzzy knowledge to form a 
qualitative and quantitative model and compares the 
grade of the patterns needed to be diagnosed to the 
given fault patterns. [Gentil S., et al., 2004] proposed 
a method based on the interaction between AI and 
control techniques. It uses a causal graph 
representation of the process, enabling 
decomposition into subsystems and reducing the 
diagnostic computational complexity. After that, at 
local level, FDI techniques based on numerical 
residual generation and analysis are carried out. 
[Liang J., et al., 2003] showed how PCA and 
statistical control charts are used to detect process 
operating faults on an industrial rolling mill reheating 
furnace. The Q statistic and Hotelling T2 statistic are 
used to calculate the control limits of the statistical 
control chart. [Shi W., et al., 2005] proposed a fault 
diagnosis model based on machine learning which 
extracts multi-dimension features from the detected 
signal to supervise the different features of it 
simultaneously.  

The goal of this research work is to build a full 
diagnostic system. The system must be able to 
detect single or multiple, simultaneous or non-
simultaneous faults, as well as be capable to 
diminish the false alarms rate using only historical 
data. The main advantages of this framework are 
first, the relatively easy way to obtain historical data 
from systems and processes controlled by 
computers, and second, to have an alternative 
approach when the modeling of the system is very 
difficult or even impossible due to the lack of 
experience of the diagnostic system designer or the 
high degree of complexity of the system itself. In this 
work Probabilistic Neural Network (PNN) was 
selected as a fault detector, mainly due to the 
simplicity of its learning procedure. The PNN needs 
just a few data to be trained, tackling in this way the 
problems of time consuming when learning and the 
storage capability of the training samples, being 
these two great advantages of the PNN over other 
networks architectures. In addition, when comparing 
our approach with those presented above, it could 

be seen that ours is easier to implement as we only 
have one neural network to train and when the 
system changes we only have to update the 
information of the new nodes or delete the 
information of those nodes that were taken away 
from the system. 

 A multiple fault diagnosis framework composed 
of two phases is proposed. In a previous step, 
eigenvalues are computed from the correlation 
matrix which is built from historical data, and then 
they are used as the inputs of the probabilistic 
neural network. In the first phase, the most likely 
component state of each node is given and in 
second phase the comparison of each sample 
against a constant value gives the real component 
state and the location of the fault.  

The organization of the paper is as follows. 
Section 2 explains PNN fundamental basis and 
gives the correlation matrix and eigenvalues 
definitions. Section 3 gives a general description of 
the framework. Section 4 shows a case study. 
Section 5 concludes the paper.  

2  Preliminary 

2.1 Probabilistic neural network basis 

PNNs are conceptually similar to K-Nearest 
Neighbor (KNN) models [Duda, et al., 2001]. A 
predicted value of an item is likely to be about the 
same as other items that have close values of the 
predictor variables.  
 

 
Fig. 2. PNN are conceptually similar to KNN 

 
Figure 2 shows that each case in the training set 

has two predictor variables: x and y. The cases are 
plotted using their values as coordinates. It is 
assumed that the target variable has two categories, 
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positive which is denoted by a square and negative 
which is denoted by a dash. It can be noted that the 
triangle is positioned almost exactly on top of a dash 
representing a negative value. But that dash is in a 
fairly unusual position compared to the other dashes 
which are clustered below the squares and left of 
center. So it could be that the underlying negative 
value is an odd case. The nearest neighbor 
classification will depend on how many neighboring 
points are considered.  

If 1-NN is used and only the closest point is 
considered, then the new point should be classified 
as negative since it is on top of a known negative 
point. On the other hand, if 9-NN classification is 
used, the closest 9 points are considered and then 
the effect of the surrounding 8 positive points may 
overbalance the close negative point. 

A probabilistic neural network builds on this 
foundation and generalizes it to consider all of the 
other points. The distance is computed from the 
point being evaluated to each of the other points, 
and a radial basis function (RBF) (also called a 
kernel function) is applied to the distance to compute 
the weight (influence) for each point. The radial 
basis function is so named because the radius 
distance is the argument to the function: 
Weight=RBF(distance). The further some other point 
is from the new point, the less influence it has. 
Different types of radial basis functions could be 
used, but the most common is the Gaussian 
function. The RBF is a function whose output 
depends on the distance to a point called center. 
Gaussian RBF are symmetric functions with respect 
to x=0. See figure 3. 

The PNN architecture is shown in figure 4. The 
model has two layers:  

a) Radial Basis Layer and  
b) Competitive Layer 

 
 
 

 
Fig. 3. Gaussian RBF are symmetric functions with respect 

to x=0. 
 

 
Fig. 4. PNN architecture 

 
There are Q input vector/target vector pairs. 

Each target vector has K elements. One of these 
elements is 1 and the rest is 0. Thus, each input 
vector is associated with one of K classes.  

When an input is presented the dist  box 

produces a vector whose elements indicate how 
close the input is to the vectors of the training set. 
An input vector close to a training vector is 
represented by a number close to 1 in the output 
vector a1 . 

If an input is close to several training vectors of a 
single class, it is represented by several elements of  
a1 that are close to 1. Each vector has a 1 only in 
the row associated with that particular class of input, 
and 0's elsewhere. The multiplication Ta1 sums the 
elements of a1 due to each of the K input classes.  

Finally, the second layer produces a 1 
corresponding to the largest element of n2, and 0's 
elsewhere. Thus, the network has classified the 
input vector into a specific one of K classes because 
that class had the maximum probability of being 
correct. 

2.2 Correlation matrix and eigenvalues 
definitions 

Correlation matrix definition. A Correlation matrix 
describes correlation among M variables. It is a 
square symmetrical M x M matrix with the (ik)th 
element equal to the correlation coefficient rik 
between the (i)th and the (k)th variable. The 
correlation coefficient is obtained as  
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The diagonal elements (correlations of variables 
with themselves) are always equal to 1 [Johnson 
and Wichern, 2002]. In this work, for each node data 
set of the system being monitored, its correlation 
matrix is computed to see how their three lines or 
phases are related and to avoid false alarms due to 
a possible fault reflected on an non faulted node’s 
line because of the correlation present between the 
three node´s lines. 

Eigenvalue definition. Let A be a k x k square 
matrix and I  be the k x k identity matrix. Then the 
scalars 

 

kλλλ ,...,, 21  (2) 

 
satisfying the polynomial equation 
 

IA λ−  (3) 

 
are called the eigenvalues or characteristic roots of 
a matrix A. The equation |A - λ I| = 0 is called the 
characteristic equation, thus similar matrices to A 
and its transpose matrix have the same eigenvalues 
[Johnson and Wichern, 2002]. The eigenvalues of 
the correlation matrix of normal operation data as 
well as for every type of fault are used for 
identification of (fault or normal operation) signature. 
Later, the eigenvalues are going to be used also as 
the training vectors of the PNN.  

 
3 Framework description 
 
The proposed detection framework is shown in 
figure 5.  The framework is a Process History Based 
fault detection method. It only requires historical 
data of the Electrical Power Network (EPN). The 
amount of data will depend on the information 
recorded in the historic databases of the system. 
Thus, in order to know how big a data set is 
considered adequate, it is necessary to be sure that 
these databases contain information about normal 
and possible faulty operation. Then the total amount 
of data needed will depend on the nature of each 
individual problem to be solved.  For instance, in the 
example shown in the next section, we used a 4% of 
the total amount available of faulty data, for each 
possible different fault to train the probabilistic neural 

network. The use of just a few quantity of examples 
to train, is one of the great advantages of using the 
probabilistic neural network over other networks 
architectures. In summary, these historic data sets 
are used as prior knowledge of the power system to 
perform the EPN detection process.  
 

The first step of the training phase is to obtain 
historical normal and faulty data sets of the voltages 
of each line of the EPN’s nodes (see Figure 5). 
These data sets are matrices formed by windows of 
m samples and n power system's nodes where the 
voltage of each line of each of the power system’s 
node is monitored, that means three readings per 
each node as shown in table 1. Such matrices are 
built for normal and faulty operating conditions in the 
system. 
 

For each node data set, its correlation matrix is 
obtained to see how their three lines are related. As 
an example we took the m samples of the three lines 
(A,B,C) of the node 1. This is shown in table 2. 
Then the correlation matrix is calculated for the 
voltage samples of the three lines of the node 1, 
resulting thus a matrix (4), where the correlation 
coefficients are computed as in equation (1). 
 
 

 
 

Fig. 5. General fault detection framework 
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Table 1. Matrix containing the three lines of each of the power system´s nodes being monitored 
 

Power System Nodes’ Lines 
 

   Node 1   Node 2    Node n  
  Line 

A 
Line 

B 
Line 

C 
Line 

A 
Line 

B 
Line 

C … Line 
A 

Line 
B 

Line 
C 

 1 v1A v1B v1C v2A v2B v2C … vnA vnB vnC 

Voltages 2 v1A v1B v1C v2A v2B v2C … vnA vnB vnC 
Samples            

 m v1A v1B v1C v2A v2B v2C … vnA vnB vnC 

 
















=

1
1

1

1

CBCA

BCBA

ACAB

N

rr
rr
rr

Corr
 

(4) 

 
Given the correlation matrix, their corresponding 

eigenvalues are computed having in this way a 
signature for each of the different faulty operating 
conditions (K in figure 4). 
 

Table 2. Matrix of the voltages monitored from the three 
lines of the power system´s node 1 

 
   Node 1  
  Line 

A 
Line 

B 
Line 

C 
 1 v1A v1B v1C 

Voltages 2 v1A v1B v1C 
Simples     

 m v1A v1B v1C 
 
The eigenvalues of the matrix in expression (4) 

are obtained as follows: 
 
















−

















100
010
001

1
1

1
λ

CBCA

BCBA

ACAB

rr
rr
rr  

(5) 

 
 

where   321 ,, λλλ  are the eigenvalues or roots of 
the characteristic equation (5).  

The eigenvalues of the correlation matrix (6) 
are going to be used as the training vectors of the 
PNN corresponding to Q as described in section 

2.1.  This training vector then looks like the one 
shown in expression (6) 
 

[ ]3211 λλλ=seigenvalue  (6) 

 
Each node will have then three eigenvalues (R 

components in Figure 4) as they are coming from its 
correlation matrix that is a 3 x 3 matrix built as 
depicted in table 2 and expression (4). Up to here it 
has been described the testing process shown on 
the left of figure 5. 

Then the detection process is carried out in two 
phases. The first phase is basically a first filter or 
information discriminator. When a window of m 
samples and n EPN’s nodes is taken, each node is 
analyzed separately. From the data set 
corresponding to a particular node being monitored, 
its correlation matrix and their corresponding 
eigenvalues are obtained and used as the input 
vector to the PNN previously trained. It is mentioned 
"the most probably component state" (Figure 5) 
because unfortunately not all the eigenvalues of the 
node states are so different (Figure 7) such that the 
PNN could classify them easily. But we have found 
instead that, when certain signature faults 
eigenvalues are very similar, there exist here a 
discrimination/classification phase, because it is 
necessary to look for the real state but only 
comparing just a couple of similar signatures instead 
of the whole bunch of node states. The output from 
the PNN automatically discriminates node states 
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that are very different and gives the most likely real 
node state. Once the possible node state is 
obtained, a second phase of the framework starts. In 
the second phase each sample of every node is 
taken and its magnitude is obtained as shown in 
equation 7. Then a comparison of each of these 
results against the constant magnitudes, previously 
obtained (with equation 7 too), for each of the 
probably signature faults  are carried out. 
 

vvv CBAtCons 2

1

2

1

2

1tan ++=  (7) 

 
The constant magnitude of each type of fault has 

to be calculated in advance, such that for instance, a 
fault of three lines to ground (A-B-C  GND) on a 
node gives a constant magnitude of cero. If the 
assumption is that node 1 has the type of fault 
where two lines, for example A and B go to ground, 
the constant magnitude will be calculated as: 
 

v CtCons 2

1
22 00tan ++=  (8) 

This simple comparison is used as a second 
classifier that delivers the real node component state 
and can be used to locate the period of time or 
sample number where the fault occurred. This 
second classification is needed in order  to 
distinguish and diminish false alarms when a fault is 
present. This step is done in order to assure that the 
classification made by the PNN is a good one, 
because due to the similarity of the eigenvalues 
obtained for different types of node’s states it is 
possible to have ambiguous diagnosis. As shown in 
next section in table 7, we have found similar 
eigenvalues for different fault signatures for the case 
study.  

4 Case Study 

This section shows the performance of the proposed 
framework in multiple fault scenarios simulated in 
the electrical network shown in figure 6.  

In this power system, dynamic load changes 
were simulated, and also 24 different fault scenarios 
to determine the performance of the approach. We 
include in the study symmetrical and asymmetrical 
faults at four random nodes (3,9,10 and 13).  The 
simulations included multiple faults scenarios with 
different node’s states such as: one line to ground (A 

GND), two lines to ground (A-B GND), three lines to 
ground (A-B-C GND), or faults between two lines (A-
B or B-C) and the no fault mode (NO FAULT). 

Each database for the 24 simulations contained 
5000 samples, and every possible fault included 300 
samples. The amount of eigenvalues used in the 
learning process of the probabilistic neural network 
was 12 examples per each node state. As we had 6 
states including the no fault mode, we trained the 
neural network with a total amount of 72 
eigenvalues, having in this way 12 of them per each 
state. At the same time we divided these 12 
eigenvalues examples of each possible fault in 3 
groups of 4 eigenvalues containing 75%, 50% and 
25% of faulty data coming from windows of 100 
samples. This means that the quantity of 
eigenvalues we needed to store for the learning 
process of the probabilistic neural networks were 
only 72 vectors, each of size 1 x 3. 

The methodology proposed is applied as follows: 
1.-  Obtain windows of 100 samples from normal and 

faulty operation history process data  (electrical 
voltage in each  node's line). 

2.-  Obtain the correlation matrix for each node, 
which gives a 3 x 3 matrix. 

3.-  Obtain the eigenvalues from the correlation 
matrix (this gives 3 eigenvalues), and with this 3 
eigenvalues build an input vector to train a PNN. 

4.- Take a test data set of 100 samples from the 
electrical power system being monitored. 

5.-  Obtain the correlation matrix for each node, 
which gives a 3 x 3 matrix. 

6.-  Obtain the eigenvalues from the correlation 
matrix (this gives 3 eigenvalues), and with this 3 
eigenvalues build an input vector for the PNN. 

7.-  First Phase: Take the output of the PNN as one 
of the two probably states of the node  
monitored. 

8.-  Second Phase: Take each sample of each node 
monitored and obtain its magnitude, then 
compare it against the constant magnitude of the 
two probably signature faults and classify  it 
using this simple criteria. Locate the time or 
sample number where the fault occurs. 

9.-  Give the diagnosis of each node being 
monitored. If a fault is present in a specific node 
give also the type and location of it, else print NO 
FAULT. 
In the following tables the performance of the 

approach is shown, taking into account three 
possible cases, when the 100 samples windows are 
selected as follows: 
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a) Case 1, system is working properly during the 
first 25 samples from a total of 100, that 
means 25 samples are ok and 75 samples 
corresponds to a fault present in the system. 

b) Case 2 takes 50 samples of normal operation 
data and 50 samples with a fault present. 

c) Case 3 takes 75 samples of normal operation 
and 25 with a fault present.  
 

     Tables 3 and 4 show the performance obtained 
just for case 1. Tables 5 and 6 give a summary of 
the accuracy percentages for each of the three 
cases considered. 

 
 
 
 
 
 
 

Table 3. Performance of detection per node’s component 
state with 25 samples ok and 75 samples with a fault 

present (case 1) 

 

Component State Correct False Alarms Accuracy 
A-B-C GND 14 0 100% 
A-B GND 10 0 100% 
A GND 14 0 100% 

A-B 18 0 100% 
B-C 16 0 100% 

NO FAULT 13 11 54.16% 

Table 4. Performance of detection per node's number with 
25 samples ok and 75 samples with a fault present 

(case 1) 
 

 

Node Number Correct False Alarms Accuracy 

3 20 4 83.33% 
9 19 5 79.16% 

10 22 2 91.66% 
13 24 0 100% 

 
Fig. 6. IEEE reliability test system single line diagram 



Multiple Fault Diagnosis in Electrical Power Systems with Dynamic Load Changes…25 
 

Computación y Sistemas Vol. 14 No. 1, 2010, pp 17-29 
ISSN 1405-5546 

 
 

Table 5. Performance of detection per node’s component 
state for the different cases 

 
 

 

Component State Case 1 Case 2 Case 3 

A-B-C GND 100% 100% 100% 
A-B GND 100% 100% 100% 
A GND 100% 85.71% 92.85% 

A-B 100% 83.33% 50% 
B-C 100% 68.75% 68.75% 

NO FAULT 54.16% 58.33% 79.16% 

 
 

 Table 6. Performance of detection per node number for 
the different cases 

 

 

Node Number  Case 1 Case 2 Case 3 

3 83.33% 83.33% 83.33% 
9 79.16% 75% 70.83% 

10 91.66% 87.5% 62.5% 
13 100% 95.83% 100% 

 
 

The difference in performance, shown in tables 5 
and 6 for the same fault scenarios, are explained by 
considering the high similarity of eigenvalues of 
correlation matrices, when there are more normal 
operation data than fault samples, in each data 
window. 

In this framework, when more normal operation 
data appear in the sample window, more difficult is 
to classify the eigenvalues by the PNN, because 
they look very similar. This can be seen on figure 7, 
where a simulation for case 2 shows the 
eigenvalues obtained for four different power 
system´s nodes and whose operation modes are 
different between themselves. In this example, the 
following faults were simulated: 
 

1. 3 A GND, that is a fault present in node 3 of 
type line A to ground. 

2. 9 A-B GND, that is a fault present in node 9 
of type line A and B to ground. 

3. {10,13} NO FAULT, that is nodes 10 and 13 
are working properly. 

 
 
 
 
 
 

In summary, the similarity of the eigenvalues 
obtained for different types of node’s states, gives 
rise to ambiguous diagnosis, as is shown in table 7. 
 

Table 7. Similar eigenvalues found for the different 
operation modes for the power system being analyzed 

 
 Eigenvalues for  

Fault type Are similar to Eigenvalues for  
Fault type 

A-B-C GND ≈ NO FAULT 
A-B GND ≈ A GND 

A-B ≈ B-C 
 

 
Several tests were carried out, when all data 

came from normal operation mode, and it has been 
found that the framework has detected 100% of 
them as NO FAULT node's component state.  
Percentages shown in the tables are low because 
criteria used in the second phase of the framework, 
are related to the maximum magnitude value and a 
threshold that needs to be set as the upper limit, to 
make the difference between two very similar 
signatures for the same node. 
 
4.1 Comparison of the general performance 
against several classical methods. 

 
In order to observe the relative general performance 
of our proposal, a comparison against four classical 
and similar Process History Based fault detection 
methods has been carried out. We have chosen 
diagnostic methods that are based on the use of 
PCA and/or Multidimensional feature extraction of 
signal based on machine learning, due to the large 
number of references in the literature of fault 
diagnosis that make use of them, when dealing with 
storing and handling big quantities of data. 
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Fig. 7. Example of the results given by a matlab simulation 

 
Table 8 shows this comparison. The first column 

shows the capability to detect single faults, 
simultaneous and non-simultaneous multiple faults, 
as well as detection of measurement and process 
noise presence. The PCA method was applied as 
depicted in [Liang N., et al 2003], the Machine 
Learning technique was the one proposed by [Shi 
W., et al 2005] the fourth column method is the one 
developed by [Nieto J.P., et al 2007], the 
Probabilistic Logic was the method proposed by 
[Garza, 2001] and the last column shows the 
capabilities of the present work. 

We can notice that the method of PCA used 
without any other technique, offers a poor data 
analysis, thus as pointed out before, when a 
combination of two or more techniques is done, a 
better performance should be expected. It is 
observed also that the rest of methodologies offer 
multiple fault detection.  

Nevertheless, the use of Machine Learning 
techniques needs to be implemented for each 
measured signal, which generates a big quantity of 
data to be analyzed. Meanwhile PCA + Control 
Charts + Statistic Limits and Probabilistic Logic 

methodologies avoid this data explosion, but they 
could not detect non-simultaneous multiple faults. 
Finally an advantage that is noted immediately is 
that our proposed methodology could detect all 
kinds of faults and also noise presence in the 
system. 

 
Table 8. Comparison of the general performance of our 

proposal against several classical methods 
 

 

Detection  
Of 

PCA  
Method 

Machine 
Learning 

PCA+Control 
 Charts + 

Statistic Limits 

Probabilistic 
Logic 

PNN + 
Magnitud 

Comparison 

Single Fault √ √ √ √ √ 
Simultaneous  

Multiple Faults NO √ √ √ √ 

Non-Simultaneous 
Multiple Faults NO √ NO NO √ 

Measurement Noise NO NO √ √ √ 

Process Noise NO NO NO NO √ 
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4.2 Comparison against the diagnostic system 
based on probabilistic logic 
 

In order to test the performance of our 
framework, a challenging complex system was 
chosen in the domain of electrical power networks 
(see figure 6). The system is a highly interconnected 
process with many components and dynamic signal 
variations during normal operation.  We decided to 
compare the performance of the proposed 
framework against the diagnostic system taken from 
[Garza, 2001], due to the availability of data and the 
similar general performance of the techniques 
shown in table 8. 

This diagnostic system consists of a modeling 
step followed by a diagnosis step. In the modeling 
step it is used the Dynamic Independent Choice 
Logic (DICL) to represent the diagnosis problem with 
causal probabilistic models that represent both, the 
relationships between the elements of the system, 
and the dynamics of the process.  The diagnosis 
task comprises two phases. In phase one, the 
diagnostic system generates all possible 
explanations from a set of discrete observations, 
consistent with the process model facts. The 
discrete observations are taken from the statuses of 
protection breakers installed between node’s lines. 
The explanations contain the suspected faulted 
components. Phase one uses heuristics based on 
probabilities, to deal with the combinatorial explosion 
in the number of generated explanations, due to the 
large quantity of available information. In phase 2, 
the diagnostic framework models the dynamics of 
the problem by specifying Dynamic Probabilistic 
Models within DICL. The model structure is learned 
from data and the inference is performed with a 
maximum entropy classifier. These models 
represent the steady state behavior of a device or 
component. Faults are detected by analyzing a set 
of filtered residuals, computed from the difference 
between the dynamic model and the observed 
measurements. Phase 2 can be considered as a 
refining stage where non faulted components, given 
by the first phase, are discarded by analyzing 
continuous signals that give more insight in the 
behavior of the component.  

Table 9 and 10 show the performance of this 
diagnostic system based on probabilistic logic. 

Comparing the results of both frameworks, we 
noticed that they have a very similar performance, 
but when comparing case 1 of our  framework 

against the diagnostic system based on probabilistic 
logic, our method has a better performance.  

Another important point is that our framework is 
relatively easier to implement and to update when 
power system scales up. In the probabilistic 
framework, new simulations are required to compute 
the fault detection thresholds and also a dynamic 
model needs to be learned for every added node. 
 
Table 9. Performance of detection per node’s component 

of the diagnostic system based on probabilistic logic 
 

 

Component State Correct False Alarms Accuracy 

A-B-C GND 14 0 100% 
A-B GND 10 0 100% 
A GND 12 2 85.7% 

A-B 15 3 83.3% 
B-C 16 0 100% 

NO FAULT 17 7 70.8% 

 
Table 10. Performance of detection per node number of 

the diagnostic system based on probabilistic logic 
 

 

Node Number Correct False Alarms Accuracy 

3 19 5 79.1% 
9 21 3 87.5% 

10 21 3 87.5% 
13 23 1 95.8% 

  Table 11 shows a comparison of the 
performance obtained per node’s component with 
the framework presented in this paper against that of 
the diagnostic system based on probabilistic logic. 
We can see that both frameworks in general have a 
very similar performance, but when comparing case 
1 of  our proposal against the probabilistic logic 
diagnostic system, it is clearly noticed that the 
former reach a better behavior. 
 
 

Table 11. Comparison of the accuracy of detection per 
node’s component state of the 3 cases considered in the 

framework proposed against the probabilistic logic system 
 

 

Component State Case 1 Case 2 Case 3 Probabilistic 
Logic 

A-B-C GND 100% 100% 100% 100% 
A-B GND 100% 100% 100% 100% 
A GND 100% 85.71% 92.85% 85.7% 

A-B 100% 83.33% 50% 83.3% 
B-C 100% 68.75% 68.75% 100% 

NO FAULT 54.16% 58.33% 79.16% 70.8% 

 
Table 12 is a comparison of the 

performance obtained per node number between the 
two frameworks. 
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Table 12. Comparison of the accuracy of detection per 
node number for the two frameworks 

 

 

Node Number Case 1 Case 2 Case 3 Probabilistic 
Logic 

3 83.33% 83.33% 83.33% 79.1% 
9 79.16% 75% 70.83% 87.5% 
10 91.66% 87.5% 62.5% 87.5% 
13 100% 95.83% 100% 95.8% 

 
5 Conclusion 
 
This paper has presented a fault detection 
framework for electrical power systems with dynamic 
load changes. This approach uses a PNN as a first 
classifier to obtain the most probably operation 
mode of the nodes being analyzed. An advantage 
we have over model based methods, is that this 
framework needs only historical data of normal 
system operation as well as faulty data sets, to train 
the PNN, which in practice is relatively easy to 
obtain for computer controlled systems. We use a 
PNN because it is an ideal choice to work on 
classification problems. Its most important 
advantage is that it needs only a little time for its 
training.  

Thus, the only thing that is needed for the 
framework presented in this paper is a big quantity 
of normal and different faults data sets. 
When a test sample arrives, it is necessary to obtain 
windows of data of m size. Then, in the first phase, 
the eigenvalues of the correlation matrix obtained 
from the samples windows are taken and used them 
as inputs for a PNN to classify the node's 
component state. It has been shown how this 
classification could be improved and carried out 
when eigenvalues are very similar, with the 
implementation of a second phase. In this phase, a 
simple comparison of each sample magnitude to the 
constant value of a certain signature fault is made, 
to detect the type of fault, and at the same time the 
location of the fault.   

It can be concluded that, when more fault 
than normal data appear in the sample window, our 
proposed framework has a better performance 
because eigenvalues are easily classified by the 
PNN as they have very different values.  

The most important advantage of this 
proposal is that as it diagnoses the status of each 
node, it could detect simple and multiples faults, 
simultaneous and non-simultaneous faults and a 
combination of different faults as well as their 
corresponding location for each node separately. 
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