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Abstract. When assessing experimentally the performance 
of metaheuristic algorithms on a set of hard instances of an 
NP-complete problem, the required time to carry out the 
experimentation can be very large. A means to reduce the 
needed effort is to incorporate variance reduction 
techniques in the computational experiments. For the 
incorporartion of these techniques, the traditional 
approaches propose methods which depend on the 
technique, the problem and the metaheuristic algorithm 
used. In this work we develop general-purpose methods, 
which allow incorporating techniques of variance 
reduction, independently of the problem and of the 
metaheuristic algorithm used. To validate the feasibility of 
the approach, a general-purpose method is described 
which allows incorporating the antithetic variables 
technique in computational experiments with randomized 
metaheuristic algorithms. Experimental evidence shows 
that the proposed method yields a variance reduction of 
the random outputs in 78% and that the method has the 
capacity of simultaneously reducing the variance of several 
random outputs of the algorithms tested. The overall 
reduction levels reached on the instances used in the test 
cases lie in the range from 14% to 55%. 
Keywords: Experimental algorithm analysis, variance 
reduction techniques and metaheuristic algorithms. 

 
Resumen. Cuando se evalúa el desempeño de algoritmos 
metaheurísticos, con un conjunto de instancias difíciles de 
un problema NP-completo, el tiempo requerido para 
realizar la experimentación puede ser muy grande. Una 
forma de reducir el esfuerzo necesario es incorporar 
técnicas de reducción de la varianza en los experimentos 
computacionales. Para incorporar dichas técnicas, los 
enfoques tradicionales proponen métodos que dependen 
de la técnica, del problema y del algoritmo usado. En este 
trabajo se propone desarrollar métodos de propósito 
general, los cuales permitan incorporar técnicas de 
reducción de la varianza, independientemente del 
problema y del algoritmo metaheurístico usado. Para 

validar la factibilidad del enfoque, se describe un método 
de propósito general, el cual permite incorporar la técnica 
de variables antitéticas en experimentos computacionales 
con algoritmos metaheurísticos aleatorizados. La evidencia 
experimental muestra que el método propuesto produce 
una reducción de la varianza de las salidas aleatorias en un 
78% de las instancias consideradas y que el método tiene 
la capacidad de reducir simultáneamente la varianza de 
varias salidas aleatorias de los algoritmos probados. Los 
niveles globales de reducción alcanzados con las instancias 
usadas en los casos de prueba van del 14% al 55%. 
Palabras clave: Análisis experimental de algoritmos, 
técnicas de reducción de la varianza y algoritmos 
metaheurísticos. 

1   Introduction 

Many real-world applications require the solution of 
optimization problems which belong to a special 
class denominated NP-complete problems. 
Currently, efficient algorithms to solve large 
instances for this kind of problems are not known, 
and it is suspected that it is not possible to devise 
them. In [Garey and Johnson, 1979] and 
[Papadimitriou and Steiglitz, 1998] it is indicated that 
the solution of large instances of NP-complete 
problems can only be solved simplifying the problem 
or using an approximate solution method. 
Metaheuristic methods [Glover, 1986] or modern 
heuristic methods [Revees, 1993] are approximate 
algorithms that combine basic heuristics 
(constructive or local search), aiming at navigating 
effectively and efficiently the solution space [Blum 
and Roli, 2003]. Metaheuristic algorithms implement 
navigation strategies through the solution space that 
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permit escaping from local optima and approach the 
global optimum. There currently exists a large 
diversity of available metaheuristcs such as: Genetic 
Algorithms, Simulated Annealing, Threshold 
Accepting, Ant Colony Optimization, Grasp and 
Scatter Search [Blum and Roli, 2003 and Brito et al., 
2004]. Many metaheuristics incorporate random 
decisions in the implementation of several elements 
of their basic structure such as: generation of initial 
solutions, neighbor selection, operator selection, 
state transition rules, etc. We will refer to this type of 
algorithms as randomized metaheuristic (RM) 
algorithms. 

Given the random nature of RM algorithmss, their 
performance is analyzed conducting a series of 
computational experiments. In these experiments 
the behavior of the averages of the solution quality 
and of the algorithm execution time are observed. 
When the variation of these averages is high, a large 
number of experiments is required to determine a 
clear trend in the measurements carried out. In this 
work the problem of reducing this variation, and in 
consequence, the number of experiments required 
to analyze the performance of RM algorithms is 
approached. 

In the following sections the problem description, 
the related works, the proposed method and the 
experimental results are presented. 

2 Problem description 

It is indicated in [McGeoch, 1992 and 2002, and 
Johnson, 2002] that for reducing the variance in 
computational experiments, variance reduction 
techniques [Wilson, 1984] must be incorporated. 
When the performance of RM algorithms is analyzed 
experimentally on a group of hard instances of an 
NP-complete problem, the time required to carry out 
the experimentation is very long. A reduction in the 
number of experiments can be the only alternative to 
successfully obtain enough evidence to support the 
conclusions of the analysis of algorithm 
performance. 

The goal of a simulation study is to determine the 
value of certain amount θ related to a stochastic 
process. A simulation produces a variate x1 whose 
expected value is θ. A second execution  
 
 
 

of the simulation produces a new variate x2, 
independent of the previous one, whose average is 
also θ. This process continues until completing a 
total of n executions and producing n independent 
variates x1, x2, ..., xn, with θ=E(xi) and σ2=Var(xi). In 
order to estimate the mean (θ) and variance (σ2) of 
the population, the sample mean x = Σi xi / n and 
the sample variance s2=Σi ((xi – x )2)/ (n–1) are 
used. In [Ross, 1999] it is indicated that for 
determining the goodness of the estimator x  with 
respect to θ, its quadratic error average E[( x – θ)2] = 
Var( x ) = Var(Σi xi / n) = (Σi Var(xi)) / n2 = σ2/n = s2/n 
must be used. This expression has two 
consequences: (a) that it is possible to increase the 
quality of the estimation of θ by increasing the 
number of experiments and/or reducing the sample 
variance, and (b) that it is possible to reduce the 
number of experiments without decreasing the 
quality of the estimation by reducing the sample 
variance. 

RM algorithms perform a search through the 
space of solutions making random decisions in order 
to avoid to get stuck at some local optima and to 
advance quickly toward the global optima. Typically, 
in each computational experiment or execution of an 
algorithm, an initial solution is randomly generated 
using a uniform distribution and a local search is 
carried out in the neighborhood of this solution to 
improve it. Once the possibility of improving is 
exhausted, a new experiment begins and the 
process is repeated. In each experiment i, the target 
output xi is obtained. When all the experiments are 
carried out, the mean and the variance of xi are 
calculated. Given the randomness of RM algorithms, 
their outputs depend on a set of uniform random 
numbers {ui} generated during the algorithm 
execution such that xi = xi(u1, u2, …, ul). Some of 
these numbers are related to the decisions 
associated to the construction of the initial solution, 
and others to the decisions in the local search 
process. Unlike simulation, in an RM algorithm the 
amount of random decisions carried out in each 
experiment is variable; this constitutes the most 
important difficulty to apply the method of antithetic 
variates for reducing the variance in experiments 
with RM algorithms. 



Reducing the Experiments Required to Assess the Performance of Metaheuristic Algorithms    45 
 

Computación y Sistemas Vol. 14 No. 1, 2010, pp 43-52 
ISSN 1405-5546 

 

3 Related work 
 
Unfortunately, there exist few works that address the 
problem of applying variance reduction techniques 
to the experimental analysis of algorithms. This 
problem was first introduced by Catherine McGeoch 
in 1992 [McGeoch, 1992]. Some of the most recent 
and relevant works related to the problem of 
incorporating the techniques of variance reduction in 
computational experiments with RM algorithms are 
described next. 

McGeoch is one of the pioneers in the 
development of variance reduction methods in 
experiments with randomized algorithms. In 
[McGeoch, 1992] and [McGeoch, 2002] the use of 
common random numbers, antithetic and control 
variates techniques is proposed to reduce the 
variance in the experimental analysis of the 
performance of RM algorithms applied to the 
solution of the self-organized search problem. She 
states that, in the experimental analysis of algorithm 
performance, there exist many opportunities to apply 
variance reduction techniques, because the 
algorithms are simpler and have a more precise 
definition than simulation problems. The main 
limitation of this approach is that the proposed 
methods depends on the technique, the problem 
and the algorithm used. 

In [Fraire, 2005] and [Fraire, et al., 2006] a 
method to reduce the variance in experiments with 
RM algorithms based on the antithetic variates 
technique is presented. The method is described in 
the context of the solution of the SAT problem with 
the Threshold Accepting metaheuristic algorithm. 
The method requires that the solutions of the 
problem be represented using binary vectors and 
that the metaheuristic algorithm generate an initial 
random solution. 

As we can see the traditional approach consists 
of developing variance reduction methods that are 
dependent on the technique, the problem and the 
RM algorithm used. In this work a new approach is 
proposed, it consists of developing general-purpose 
methods that allow incorporating techniques of 
variance reduction, which are independent of the 
problem and the metaheuristic approach used. In 
order to validate the proposed approach, a general-
purpose method based on the technique of antithetic 
variates is described and it is applied to different 
problems and RM algorithms. 

 

4 Proposed method 

4.1 Main idea 

In order to develop a general-purpose variance 
reduction method, the basic idea consists of 
identifying the first (conditional independent) random 
decision that always occurs in each computational 
experiment or algorithm execution. This decision, 
which will be denominated base decision, should be 
associated to the generation of just one random 
number. Unlike the rest of the random numbers 
generated in the process, the random number 
associated to the base decision must be stored in 
the global variable a∈(0,1), so that it will be available 
in the following experiment. Thus, before generating 
each number for the base decision, we must check if 
the number of the experiment currently carried out is 
even or odd. If the number of the experiment is odd, 
a new random number must be generated and 
stored in a, otherwise the random number currently 
stored in a must be complemented. The idea is to 
use only one of the random numbers generated in 
the algorithm process, to negatively correlate all the 
outputs of all experiments conducted. 

4.2 Method description 

The proposed method consists of the following four 
steps: 
 
Step 1. Identify the base decision.  
Analyze the sequence of random decisions that 
occurs in each computational experiment. Determine 
all the decisions that do not necessarily occur in 
each experiment, which happens when a conditional 
expression of the algorithm evaluates to true. 
Identify those that always occur in the experiments, 
their occurrence is non-conditional dependent. From 
the set of decisions that consistently occur, select 
the first one and consider it as the base decision. 
 
Step 2. Generate the random number associated 
to the base decision.  
Let a and c be the global variables in which the 
random number associated to the base decision and 
the current experiment number will be respectively 
stored. Now, before carrying out the base decision, if 
c is odd a new random number must be generated 
and stored (a = random()), otherwise the 
complement of a must be stored (a=1–a). Upon 
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completing the previous process, variable a is used 
to carry out the base decision. Now the pair of 
random numbers associated to the base decision in 
successive experiments (odd and even) will be 
negatively correlated. 
Step 3. Determine the outputs of each 
experiment.  
Execute all the experiments and record the values of 
the specified output ti, for each experiment i = 1, 2, 
..., Nexp. 
Step 4. Determine the sample mean and the 
sample variance.  
The values of the variates x, y, and z are determined, 
using the following expressions: 

  
xj(a)  =  t2j–1,  yj(1–a)  =  t2j 

(1) 

and  

zj= ( xj(a) +  yj(1–a) )/2      

 j = 1, 2, …, Nexp/2. 

(2) 

calculate the mean and the variance of z. 
 
By definition, ti, xj, yj, and zj are estimators of the 

expected value of variate t, and since z = (x+y)/2, 
then Var(z) = Var((x+y)/2) = ¼ [Var(x) + Var(y) + 
2Cov(x, y)]. Now, since x and y were generated from 
negatively correlated inputs, our main assumption is 
that Cov(x, y) < 0. If this happens, the method should 
generate a variance reduction for estimator zi, with 
respect to the same estimator when this is 
generated from non-negatively correlated inputs. If 
this method is not applied, the sequence of random 
numbers associated to the base decision of the even 
and odd experiments might or might not be 
negatively correlated. If they are not negatively 
correlated, the expected variance should be larger 
than the one obtained with the proposed method. 
Conversely, if they are negatively correlated, then 
the variance of the estimator zi could be smaller or 
larger than the variance obtained when the 
proposed method is applied. Therefore, if the 
assumption is correct it is expected that variance 
reduction occurs at least in 50% of the cases 
considered. 

In this work, experimental evidence is presented, 
which shows that the impact of the application of the 
proposed method on the variance reduction is 
significant and that can be used with any 
combination of a RM algorithm and an NP-complete 
problem. The method is applicable to any kind of 
randomized algorithm; nevertheless in this work only 

the results of experiments conducted with RM 
algorithms are shown. 

4.3 Example 

In this example the SAT problem instance f600 is 
used [SATLIB]. The instance was solved executing 
30 times the Threshold Accepting metaheuristic 
algorithm reported in [Pérez, 1999]. This algorithm 
starts the navigation process from an initial feasible 
solution, which is randomly generated in each run of 
the algorithm. In this case the assignment of values 
to each of the components of the initial solution 
constitute random decisions that are carried out 
unconditionally in each experiment. Therefore, any 
of these decisions can be used as base decision. In 
this case the base decision was decided to be the 
one associated to the determination of the value of 
the first component of the initial solution. Once the 
base decision was identified, the remaining steps of 
the proposed approach were applied. As a result of 
step 2, in the odd experiments, the first component 
of the initial solution is randomly generated and 
stored; while in the even experiments the value of 
such component is determined by complementing 
the random number that was generated in the 
previous experiment. Step 3 consists of recording 
the random outputs of the experiment, in this case 
the output recorded was the execution time of each 
experiment ti, for  i = 1, 2, ..., Nexp. In step 4 the set of 
the random outputs of the experiments are divided 
into two sets: one for holding the outputs generated 
from the independent random numbers (odd 
experiments) and the other for holding those 
generated from the complements of those numbers 
(even experiments). The outputs from the first set 
correspond to variate x, and those from the second 
correspond to variate y. Finally, the values of 
variate z are calculated (average of variates x and 
y) and its variance is calculated. 

Table 1 shows the execution time ti observed for 
each experiment i = 1, 2, …, 30, when the proposed 
method is not applied (all the components of the 
initial solution are randomly generated in each 
experiment). In this case, both the mean and 
variance of variate t must be directly calculated. 
However, variates x, y, and z will be calculated to 
show the effects produced by the application of the 
method.
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Table 1. Execution times obtained without applying the proposed method 

i ti i ti i ti I ti i ti i ti 
1 0.704 6 0.906 11 0.828 16 1.125 21 1.015 26 1.110 
2 0.718 7 0.657 12 0.907 17 0.906 22 0.953 27 0.625 
3 1.188 8 0.937 13 0.890 18 1.063 23 0.719 28 0.781 
4 0.890 9 0.656 14 0.688 19 0.797 24 0.890 29 0.844 
5 0.641 10 0.797 15 0.734 20 1.156 25 0.922 30 0.687 

 

Table 2. Values of x, y, and z obtained without applying the proposed method 

j xj yj zj J xj yj zj 
1 0.704 0.718 0.711 9 0.906 1.063 0.984 
2 1.188 0.890 1.039 10 0.797 1.156 0.976 
3 0.641 0.906 0.773 11 1.015 0.953 0.984 
4 0.657 0.937 0.797 12 0.719 0.890 0.804 
5 0.656 0.797 0.726 13 0.922 1.110 1.016 
6 0.828 0.907 0.867 14 0.625 0.781 0.703 
7 0.890 0.688 0.789 15 0.844 0.687 0.765 
8 0.734 1.125 0.929     

 
 
Table 2 shows the xj, yj, and zj values obtained 

without applying the method. As we can see, the 
covariance of x and y is 0.0035 and the variance of  z 
is 0.0142. 

Table 3 shows the execution time ti observed 
when the proposed method is applied. In this case, 
both the mean and variance of variate t are 
calculated using the proposed method. 

Table 4 shows the xj, yj, and zj values obtained 
when the proposed method is applied. In this case, 
the covariance of x and y is –0.00052 and the 
variance of  z is 0.00088. In this case the method 
produces a variance reduction of 37%. 

 
 

 

Table 3. Execution times obtained applying the proposed method 

i ti i ti ti ti I ti I ti i ti 
1 0.704 6 0.641 11 0.688 16 0.922 21 0.922 26 0.703 
2 0.687 7 0.922 12 0.734 17 0.782 22 1.000 27 0.797 
3 1.000 8 0.812 13 0.907 18 0.843 23 0.875 28 0.891 
4 0.750 9 0.641 14 0.640 19 0.844 24 0.860 29 0.625 
5 0.734 10 1.109 15 1.031 20 0.609 25 0.937 30 0.781 

 

Table 4. Values of x, y, and z obtained when the proposed method is applied 

j xj yj zj J xj yj zj 
1 0.704 0.687 0.695 9 0.782 0.843 0.812 
2 1.000 0.750 0.875 10 0.844 0.609 0.726 
3 0.734 0.641 0.687 11 0.922 1.000 0.961 
4 0.922 0.812 0.867 12 0.875 0.860 0.867 
5 0.641 1.109 0.875 13 0.937 0.703 0.820 
6 0.688 0.734 0.711 14 0.797 0.891 0.844 
7 0.907 0.640 0.773 15 0.625 0.781 0.703 
8 1.031 0.922 0.9765     
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5 Experimental results 

A set of experiments were conducted to evaluate the 
variance reduction level when the proposed method 
is applied in experiments with RM algorithms. A set 
of problem instances were used, and each one was 
solved with two implementations. For each algorithm 
an implementation incorporates the proposed 
method and the other not. Thirty experiments were 
carried out with each instance and the specified 
outputs were measured. Finally, the variances 
before and after the application of the method were 
used to determine the variance reduction level. 

To describe a typical set of experimental results, 
three test cases will be used, which include three 
problems and three RM algorithms. A test case 
includes the SAT problem and the GRASP 
[González-Velarde, 1996] and the Tabu Search 
[Glover and Laguna, 1997] metaheuristic algorithms, 
another includes the Lennard-Jones problem and 
two variants of the genetic algorithm described in 
[Romero, et al., 1999], and the last test case 
includes the hot rolling scheduling problem and a 
genetic algorithm [Espriella, 2008]. 

Table 5 shows the variance reduction level of the 
average solution quality Avg(%E), obtained when 
the instances were solved with the GRASP 
metaheuristic algorithm. The first column indicates 
the instances used in the experiments. Columns VB 
and VA show the variance obtained before and after 
the method application. Column %R shows the 
variance reduction percentage. Also, the table 
includes the overall average of the reduction level 
reached. 

Table 6 shows the variance reduction level of the 
average solution quality Avg(%E), obtained with the 
Tabu Search metaheuristic algorithm. The structure 
of Table 6 is similar to that of Table 5. 

Table 7 shows the variance reduction level 
observed in three random outputs. In this test case 
15 instances of the Lennard Jones problem were 
solved with a genetic algorithm (v1). The random 
outputs were the average error percentage 
Avg(%E), the average number of evaluations of the 
objective function Avg(NEOF) and the average 
number of generations Avg(NG). The first column 
indicates the instances used in the experiments, and 
the additional columns are grouped in three 

subtables, each one with three columns. The 
structure of the sub-tables is similar to that of Table 
5.  

Table 8 has the same structure as that of Table 7, 
and contains the reduction level observed when a 
variant of the genetic algorithm (v2) was used. 

Table 9 shows the variance reduction level 
observed in two random outputs. In this test case 17 
industrial instances of the hot rolling scheduling 
problem were solved with a genetic algorithm. The 
random outputs were the average rolling time 
Avg(%RT) and the average of the time required to 
obtain the best solution Avg(TB). The first column 
indicates the instances used in the experiments, and 
the additional columns are grouped in two sub-
tables, each one with three columns. The structure 
of the sub-tables is similar to that of Table 5. 

The experimental evidence shows that the 
proposed method reduces the variance for 29 out of 
37 instances considered, independently of the 
problem and the solution method employed. This 
means that in 78% of the cases considered a 
variance reduction is observed, which is consistent 
with the forecast established as a consequence of 
the assumption expressed. 

As can be seen, the proposed method can reduce 
the variance of the random outputs for most of the 
instances considered and the overall reduction level 
lies in the range from 14% to 55%. The investment 
of resources required to obtain this reduction level is 
minimum, since it only requires controlling one of the 
random numbers generated by the algorithm. An 
outstanding observed behavior of the method is that 
it simultaneously produces a reduction in the 
variance of all the random outputs of the algorithm. 
In Tables 3, 4 and 8 we can see that the method 
operates simultaneously on several outputs. As we 
can see the proposed method allows to incorporate 
a variance reduction technique in computational 
experiments, independently of the problem solved 
and of the RM algorithm used. 
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Table 5. Variance reduction level observed with the SAT problem and a GRASP algorithm 

 Avg(%E) 
Instance VB VA %R 

uf200-0100 7.40221 1.809563 76% 

uf250-01 3.68832 2.1144068 43% 
uf250-010 4.80004 2.8571141 40% 

f600 9.0066 10.409657 -16% 
f1000 24.0414 9.4095563 61% 

Overall average reduction 41% 
 

Table 6. Variance reduction level observed with the SAT problem and a tabu search algorithm 

 Avg(%E) 
Instance VB VA %R 

uf200-0100 9.13128 4.12374 55% 

uf250-01 15.0622 7.20976 52% 
uf250-010 11.3515 3.35256 70% 

F600 164.599 101.353 38% 

F1000 256.397 101.923 60% 
Overall average reduction 55% 

 
 

Table 7. Variance reduction observed with the Lennard Jones problem and a genetic algorithm (v1) 

 Avg(%E) Avg(NEOF) Avg(NG) 
I VB VA %R VB VA %R VB VA %R 

15 0.05 0.03 40% 61,407  15,761  74% 1.08 0.54 50% 

16 0.05 0.07 -40% 139,689    42,153  70% 3.46 1.27 63% 

17 0 0 0%        9,760      3,789  61% 0.03 0.03 0% 

18 0.06 0.02 67% 250,824  142,806  43% 5.1 3.31 35% 

19 0.78 0.24 69% 294,092  210,221  29% 6.16 2.99 51% 

20 0.49 0.29 41% 280,123  208,500  26% 4.64 2.36 49% 

21 0.45 0.2 56% 411,777  160,780  61% 6.88 2.55 63% 

22 0.82 0.28 66%  462,982  156,176  66% 6.22 1.98 68% 

23 0.97 0.51 47% 338,332  285,224  16% 4.31 3.94 9% 

24 0.46 0.16 65% 462,886  378,918  18% 5.79 5.37 7% 

25 0.26 0.15 42% 198,652  357,526  -80% 3.21 5.3 -65% 

26 0.81 0.19 77% 688,233  228,416  67% 8.72 2.62 70% 

27 0.81 0.23 72% 535,909  129,526  76% 6.38 2.43 62% 

28 0.64 0.27 58% 403,537  194,353  52% 4.99 3.04 39% 

29 0.4 0.42 -5% 495,611  344,752  30% 4.88 3.88 20% 

30 0.41 0.24 41% 1,341,653  112,631  92% 12.74 1.14 91% 

Overall reduction (Avg) 43%  38%  38% 
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Table 8. Variance reduction observed with  the Lennard Jones problem and a genetic algorithm (v2) 

I Avg(%E) Avg(NEOF) Avg(NG) 
 VB VA %R VB VA %R VB BA %R 

15 0.08 0 100%       175,755        71,702  59% 4.2 2.5 40% 
16 0.03 0 100%        37,722        26,511  81% 4.2 0.83 80% 
17 0 0 0%          4,647          2,253  52% 0 0 0% 

18 0.11 0.04 64%       679,707      512,567  25% 14.7 10.8 27% 
19 0.55 0.22 60%       953,268      397,323  58% 18.39 6.59 64% 

20 0.68 0.21 69%    1,758,666   1,021,182  42% 28.48 16.7 41% 
21 0.45 0.25 44%       916,672      997,527  -9% 15.93 13 19% 
22 0.62 0.24 61%    1,547,998      750,757  52% 25.79 11.2 57% 

23 0.33 0.25 24%    2,357,355      986,281  58% 29.86 13.1 56% 
24 0.38 0.28 26%       873,663   1,758,849  -101% 11.43 26.8 -134% 

25 0.29 0.1 66%    1,777,160      391,122  78% 21.61 6.85 68% 
26 0.48 0.18 63%    2,334,290   1,020,252  56% 34.12 13.7 60% 

27 0.54 0.39 28%    3,261,303   1,257,075  61% 44.78 14 69% 
28 0.62 0.28 55%    2,197,110      597,272  73% 26.33 7.46 72% 
29 0.49 0.22 55%    2,885,274      716,521  75% 31.06 8.7 72% 

30 0.27 0.26 4%    4,187,946      722,313  83% 48.33 6.98 86% 
Overall reduction (avg) 51%  42%  42% 

 
 
 

Table 9. Variance reduction observed with  the hot rolling scheduling problem and a genetic algorithm 

 Avg(RT) Avg(TB) 
Instance VB VA %R VB VA %R 

hsm002.txt 0.000229 0.000188 17.90% 28.619 34.049 -18.97% 
hsm003.txt 0.000186 0.000115 38.17% 3.591 2.812 21.69% 
hsm004.txt 0.000180 0.000143 20.56% 4.901 2.275 53.58% 
hsm005.txt 0.000183 0.000149 18.58% 5.089 10.467 -105.68% 
hsm006.txt 0.000394 0.000312 20.81% 4.230 10.849 -156.48% 
hsm007.txt 0.000395 0.000293 25.82% 4.807 3.265 32.08% 
hsm008.txt 0.000472 0.000317 32.84% 4.840 3.031 37.38% 
hsm009.txt 0.000302 0.000332 -9.93% 4.027 3.794 5.79% 
hsm010.txt 0.000288 0.000196 31.94% 5.606 2.063 63.20% 
hsm011.txt 0.000299 0.000161 46.15% 2.586 2.298 11.14% 
hsm012.txt 0.000230 0.000154 33.04% 3.951 2.441 38.22% 
hsm013.txt 0.000217 0.000129 40.55% 2.991 1.954 34.67% 
hsm014.txt 0.000840 0.000626 25.48% 4.187 1.907 54.45% 
hsm015.txt 0.000846 0.000624 26.24% 3.648 1.861 48.99% 
hsm016.txt 0.000835 0.000661 20.84% 4.114 2.102 48.91% 
hsm017.txt 0.000922 0.000494 46.42% 3.148 1.957 37.83% 
hyl001.txt 0.001740 0.000503 71.09% 4.441 2.823 36.43% 

Overall reduction (avg) 29.79%   14.31% 
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6 Conclusions and future work 

In this paper the problem of how to reduce the 
number of required experiments to analyze the 
performance of RM algorithms was approached. 
Traditional approaches propose to apply variance 
reduction methods that depend on the technique, 
the problem and the randomized metaheuristic (RM) 
algorithm used. The solution approach proposed in 
this work consists of developing reduction methods 
which are independent of the problem and of the RM 
algorithm used. In order to validate the proposed 
approach, a general-purpose method based on 
the antithetic variates technique is introduced and it 
was applied to three NP-complete problems and 
three RM algorithms. The experimental evidence 
shows that the proposed method yields a variance 
reduction in 78% of the cases considered. 
Additionally, the method shows the capacity of 
simultaneously reducing the variance of several 
random outputs of the algorithms tested. The overall 
reduction levels on the instances used in the test 
cases lie in the range from 14% to 55%.  

    The proposed method is one of the first 
general-purpose methods that allows to incorporate 
a variance reduction technique in computational 
experiments, independently of the problem solved 
and of the RM algorithm used. The method is 
applicable without significant modifications to any 
type of randomized algorithm. 

    As a future work we are considering to develop 
new general purpose methods to apply other 
variance reduction techniques in the experimental 
algorithms analysis. 
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