

Computación y Sistemas Vol. 14 No. 1, 2010, pp 71-84
ISSN 1405-5546

ABSTRACT of PhD THESIS

Fast Most Similar Neighbor (MSN) classifiers for Mixed Data

Clasificadores Rápidos basados en el Algoritmo del Vecino más Similar
(MSN) para Datos Mezclados

Selene Hernández Rodríguez

Graduated on May 12, 2009
National Institute of Astrophysics, Optics and Electronics

Luis Enrique Erro # 1, Santa María Tonantzintla, C.P. 72840, Puebla, México.
selehdez@ccc.inaoep.mx

José Fco. Martínez Trinidad (Advisor)
Jesús Ariel Carrasco Ochoa (Advisor)

National Institute of Astrophysics, Optics and Electronics
Luis Enrique Erro # 1, Santa María Tonantzintla, C.P. 72840, Puebla, México.

 fmartine@inaoep.mx, ariel@inaoep.mx

Abstract. The k nearest neighbor (k-NN) classifier has
been extensively used in Pattern Recognition because
of its simplicity and its good performance. However, in
large datasets applications, the exhaustive k-NN
classifier becomes impractical. Therefore, many fast k-
NN classifiers have been developed; most of them rely
on metric properties (usually the triangle inequality) to
reduce the number of prototype comparisons. Hence,
the existing fast k-NN classifiers are applicable only
when the comparison function is a metric (commonly
for numerical data). However, in some sciences such as
Medicine, Geology, Sociology, etc., the prototypes are
usually described by qualitative and quantitative
features (mixed data). In these cases, the comparison
function does not necessarily satisfy metric properties.
For this reason, it is important to develop fast k most
similar neighbor (k-MSN) classifiers for mixed data,
which use non metric comparisons functions. In this
thesis, four fast k-MSN classifiers, following the most
successful approaches, are proposed. The experiments
over different datasets show that the proposed
classifiers significantly reduce the number of prototype
comparisons.
Keywords: Nearest neighbor rule, fast nearest neighbor
search, mixed data, non-metric comparison functions.

Resumen. El clasificador k vecinos más cercanos (k-NN)
ha sido ampliamente utilizado dentro del
Reconocimiento de Patrones debido a su simplicidad y
buen funcionamiento. Sin embargo, en aplicaciones en
las cuales el conjunto de entrenamiento es muy
grande, la comparación exhaustiva que realiza k-NN se
vuelve inaplicable. Por esta razón, se han desarrollado
diversos clasificadores rápidos k-NN; la mayoría de los
cuales se basan en propiedades métricas (en particular
la desigualdad triangular) para reducir el número de
comparaciones entre prototipos. Por lo cual, los
clasificadores rápidos k-NN existentes son aplicables

solamente cuando la función de comparación es una
métrica (usualmente con datos numéricos). Sin
embargo, en algunas ciencias como la Medicina,
Geociencias, Sociología, etc., los prototipos
generalmente están descritos por atributos numéricos y
no numéricos (datos mezclados). En estos casos, la
función de comparación no siempre cumple
propiedades métricas. Por esta razón, es importante
desarrollar clasificadores rápidos basados en la
búsqueda de los k vecinos más similares (k-MSN) para
datos mezclados que usen funciones de comparación
no métricas. En esta tesis, se proponen cuatro
clasificadores rápidos k-MSN, siguiendo los enfoques
más exitosos. Los experimentos con diferentes bases de
datos muestran que los clasificadores propuestos
reducen significativamente el número de
comparaciones entre prototipos.
Palabras clave: Regla del vecino más cercano,
Búsqueda rápida del vecino más cercano, datos
mezclados, funciones de comparación no métricas

1 Introducción

The k-NN classifier (Cover & Hart, 1967) has
been widely used in Pattern Recognition,
because of its simplicity and its good
performance. The k-NN classifier uses a training
set (T) of prototypes, whose class is known a
priori. To decide the class of a new prototype, the
k-NN classifier performs an exhaustive
comparison between the prototype to classify and
the prototypes in the training set, assigning to the
new prototype a class, according to the classes
of its k nearest neighbors in T. However, when
the training set is large, the exhaustive

mailto:ariel@inaoep.mx�

72 Selene Hernández Rodríguez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 71-84
ISSN 1405-5546

comparison is expensive and sometimes
inapplicable. Thus, many fast k-NN classifiers
have been designed; different reviews appear in
(Nene & Nayar, 1997; Ramasubramanian et al.,
2000; and Yong-Sheng et al., 2007).

The objective of a fast k-NN classifier is to
reduce the number of comparisons trying to keep
the classification accuracy obtained by k-NN.
Speeding up the k-NN classifier is required
because some applications demand a rapid
response on large datasets, for example online
stock analysis, air traffic control, network traffic
management, intrusion detection, etc. Also, fast
k-NN classifiers are useful for problems with high
dimensionality where the comparison function
could be very expensive (Mico et al., 1994;
Denny & Franklin, 2006), under this context,
reducing the number of comparisons could be
very important. For these reasons, although
nowadays the computers are very fast, the
development of fast k-NN classifiers is currently
an active research area (Adler & Heeringa, 2008;
Panigrahi, 2008). Nevertheless, most of the fast
k-NN classifiers proposed in the literature have
been designed for numerical prototype
descriptions compared through a metric function.
Moreover, in some sciences such as Medicine,
Geology, Sociology, etc., the prototypes are
usually described by numerical and non
numerical features (mixed data) and the
comparison function does not satisfy metric
properties.

Thus, if a metric is not available but a
comparison function that evaluates the similarity
between a pair of prototypes can be defined,
given a new prototype Q to classify, the objective
is to find the k most similar neighbors to Q in a
training set T (with N prototypes, where each
prototype is described by d attributes, which can
be numerical or non numerical), and assign to Q
a class (based on its k most similar neighbours).
However, the exhaustive search of the k-MSN, as
occurs with k-NN, could be very expensive if T is
large. For this reason, it is important to develop
fast k most similar neighbor (k-MSN) classifiers
for mixed data and non metric comparisons
functions.

In this thesis, four fast k-MSN classifiers are
proposed. The first uses a tree structure, the
second and the third are based on a new
Approximating-Eliminating approach for mixed
data. Finally, the last fast k-MSN classifier

proposed in this thesis uses a tree structure and
an Approximating-Eliminating approach. In order
to evaluate the proposed fast k-MSN classifiers,
some experiments over real datasets were
performed, comparing against other fast k-NN
classifiers. From these experimental
comparisons, we could notice that using the
proposed methods competitive classification
accuracy was obtained, but with less prototype
comparisons.

This work is organized as follows: Section 2
provides a brief review of fast k-NN classifiers. In
Section 3-6, our fast k-MSN classifiers (Tree k-
MSN, AEMD, LAEMD, Tree LAEMD) are
introduced. In Section 7, experimental results,
obtained using our classifiers and a comparison
against other fast classifiers, are reported.
Finally, in Section 8 we present our conclusions
and future work.

2 Related work

In order to apply the k-NN classifier to problems
where the training set is large, in the last years,
several fast k-NN classifiers have been
proposed. The objective of a fast k-NN classifier
is to reduce the number of comparisons trying to
keep the classification accuracy obtained by k-
NN.

The fast k-NN classifiers can be divided in
exact and approximated methods. Using exact
fast k-NN classifiers, the same classification
accuracy as using the exhaustive k-NN classifier
are obtained. Approximated methods do not
guarantee to find the k nearest neighbors from
the training set, but they find an approximation
faster than the exact methods.

According to the strategy used to avoid
prototype comparisons, fast k-NN classifiers can
be divided as shown in table 1. From this table,
we can observe that most of the existing fast k-
NN classifiers are proposed to work with
numerical data and metric comparison functions.
For this reason, in this thesis four fast k most
similar neighbor (k-MSN) classifiers for mixed
data and non metric comparisons functions are
proposed. To develop these methods, the most
successful approaches from the state of the art
(Partitioning, Approximating-Eliminating and
Hybrid methods) where followed. The proposed
methods are described in the next sections.

Fast Most Similar Neighbor (MSN) classifiers for Mixed Data 73

Computación y Sistemas Vol. 14 No. 1, 2010, pp 71-84
ISSN 1405-5546

Table 1. Fast k-NN classifiers divided according to the strategy used to avoid prototype comparisons; X means that there was
not any work in that category.

FAST k-NN CLASSIFIERS

1. For metric functions

Exact methods Approximated methods

I. Partial distance search
(Cheng 1984)
(Hwang 1998)

(Athistos, 2005)

II. Projection methods
(Friedman, 1977)
(Yunck, 1976)
(Nene and Nayar, 1997)

X

III. Approximating-Eliminating
AESA (Vidal, 1986), LAESA (Mico et al., 1994)
iAESA (Figueroa et al., 2006)

iAESA probabilístico (Figueroa et al., 2006)

IV. Partitioning and Tree-based methods
Kd-tree (Friedman et al., 1975)
R-tree (Guttamn, 1984)
Modificaciones de R-tree:
 R*-tree (Beckmann, 1990)
 SS-tree (White & Jain, 1996)
 SR-tree (Katayama & Satoh, 1997)
 (Adler & Heeringa, 2008)
FN (Fukunaga, 1975)
Modificaciones de FN:
 (Kalantari, 1983)
 (Omachi, 2000)
 (Gomez-Ballester et al., 2006)
 (Oncina et al., 2007)
Metric trees (Uhlmann, 1991)
Vp-Trees (Yianilos, 1993)
PAT (McNames, 2001)
LBT (Yong-Sheng et al., 2006)
List of Clusters (LC) (Chavez & Navarro, 2005)
Hierarchy of Clusters (Fredriksson, 2007)

BBD-tree (Arya &Mount, 1998)
MS (Moreno-Seco & Mico, 2003)
(Panigrahy, 2008)

V. Hybrid methods (using Partitioning and Approximating-Eliminating)

TLAESA (Mico et al., 1996)
Modificación de TLAESA (Tokoro, 2006)

X

2. For non metric functions

I. Partitioning and Tree-based methods

 DynDex (Goh, et al., 2002)
Cluster based tree (Zhang & Srihari, 2004)

3 Tree k-MSN

The first proposed classifier, Tree k-MSN
(Hernández-Rodríguez-a et al., 2007;
Hernández-Rodríguez-b et al., 2007), consists of
two phases. The first one, or preprocessing
phase, builds a tree structure from the training
set (T). In the second phase, two search
algorithms, which are independent of metric
properties of the comparison function, are
proposed for classifying a new prototype.

3.1 Preprocessing phase of Tree k-MSN

In this phase, the training set is hierarchically
decomposed to create a tree structure (TS). At
the beginning, the root of the tree contains the
whole training set. In order to create the following
levels of the tree, each node n of the tree is
divided in C clusters, in such a way that each
cluster represents a descendant node of n. Each
descendant node is divided again and this
process is repeated until a stop criterion is
satisfied.

74 Selene Hernández Rodríguez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 71-84
ISSN 1405-5546

Since our algorithm is designed to allow mixed
data, instead of using the C-Means algorithm for
building the tree structure, as in the FN classifier,
the C-Means with Similarity Functions algorithm
(CMSF) (García-Serrano & Martínez-Trinidad,
1999), is used. CMSF allows creating C clusters
and computing as representative element of each
cluster a prototype belonging to the cluster (i.e., a
prototype contained in T); besides CMSF allows
using any similarity function.

Each node p of the tree contains three
features: Sp the set of prototypes that belong to p;
Np the number of prototypes in p and unlike FN
and MS classifiers, Repp a representative
prototype of the node, which is on average the
most similar to the rest of prototypes in the node.

A node is marked as a leaf when a stop
criterion is satisfied. In this thesis we used a stop
criterion based on the node size (SC1), which is
used in (Fukunaga & Narendra, 1975; Kalantari &
McDonald, 1983; Mico et al., 1996; Omachi &
Aso, 2000; McNames, 2001; D’Haes et al., 2002;
Gomez-Ballester et al., 2006) and we introduce
two new stop criteria (SC2 and SC3), which take
into account not only the number of prototypes of
the node, but also the class distribution of these
prototypes. The three stop criteria are the
following:
1. Stop criterion 1 (SC1). This criterion is based

on the node size. According to this criterion, if
the number of prototypes contained in a node
is less than a predefined threshold (Np ≤ NoP),
then the node is marked as a leaf. The
objective of this criterion is to obtain leaves
with a few prototypes.
However, when most of the prototypes
contained in a node belong to the same class,
dividing this node could lead to unnecessary
prototype comparisons during the classification
stage, between the prototype to classify and
the representative prototypes of the nodes.
Because all descendant nodes, that would be
created, also would belong to the same class.
Since the objective is to classify a new
prototype trying to avoid prototype
comparisons, we propose a second stop
criterion during the tree construction:

2. Stop criterion 2 (SC2). If most of the
prototypes in a node belong to the same class,
then the node is considered as a leaf and it is
marked with the majority class, even if the set
is not small enough according to the first stop
criterion (Np > NoP). In order to decide how
many prototypes in the node must belong to
the same class, for generalizing the class of a
node, a percentage threshold (PercThres) is
used. In the nodes where this criterion is not

satisfied, only the size of the node is
considered to create leaf nodes (SC1).
When the node is generalized by the majority
class, through SC2, if PercThres=100%, it
means that all prototypes in the node belong to
the same class (the generalized class of the
node). However, when PercThres<100%, an
error is introduced, because some prototypes
in the node do not belong to the majority class.
Therefore, we introduce a third criterion:

3. Stop criterion 3 (SC3). If certain percentage
(PercThres) of the prototypes in a node
belongs to the same class, two nodes are
created. Using the prototypes that belong to
the majority class, a leaf node is created and it
is marked with the majority class. The rest of
the prototypes are assigned to a second node.
In the second node, the size is considered to
decide if the node is a leaf (if Np ≤ NoP) or if
the node will be divided again. In the nodes
where SC3 criterion is not satisfied, only the
size of the node is considered to create leaf
nodes (SC1).
Using SC2 and SC3 the number of prototype
comparisons (during the classification stage) is
reduced, because if during the tree traversal a
leaf node (marked with the majority class) is
reached, then only the representative
prototype of the node, with the corresponding
majority class, is used to update the list of the
k most similar neighbors (only one
comparison), instead of comparing the
prototype to classify against all the prototypes
contained in the leaf.

3.2 Classification phase of Tree k-MSN

In this phase, in order to avoid an exhaustive tree
traversal, fast k-NN classifiers rely on pruning
rules (based on metric properties). As we are
looking for a method applicable when the
comparison function does not satisfy metric
properties, pruning rules based on the triangular
inequality cannot be used; therefore, we propose
to stop the search when a leaf of the tree is
reached. In the first search algorithm (DF
search), we propose to use a depth-first search
strategy and in the second search algorithm (BF
search), we propose to use a best-first search
strategy. The two proposed algorithms for
searching the k-MSN are described below:
1. DF search: It begins at the root of the tree,

following the path of the most similar node and
finishes when a leaf is reached. As each node
of the tree is represented by a prototype of the
training set, with known class, a list of the k-
MSN is stored and updated during the tree

Fast Most Similar Neighbor (MSN) classifiers for Mixed Data 75

Computación y Sistemas Vol. 14 No. 1, 2010, pp 71-84
ISSN 1405-5546

traversal. When the first leaf node l is reached,
if l is marked with the majority class, then only
the representative prototype Repl is used to
update the k-MSN (because most of the
prototypes in the node belong to the same
class). If the node is not marked with the
majority class, then an exhaustive search in
the node is done and the list of k-MSN is
updated. After a leaf is processed, if the list of
k-MSN does not have k elements, then the
tree traversal follows backtracking steps to
explore nodes closer to Q, until k most similar
neighbours are found.

2. BF search: It begins at the root of the tree,
comparing Q against the descendant nodes of
the root, which are added to a list
(List_tree_traversal). After that,
List_tree_traversal is sorted in such a way the
most similar node to Q is in the first place. The
most similar node (first element) is eliminated
from List_tree_traversal and its descendant
nodes are compared against Q, and added to
List_tree_traversal, which is sorted again. The
search finishes when the first element of

List_tree_traversal is a leaf. In this search, it is
possible to reconsider nodes in levels of the
tree already traversed if the first node of
List_tree_traversal belongs to a previous level
in the tree.
During the tree traversal, another list (List_k-
MSN) containing the k current MSN is stored
and updated. After a leaf is processed (in a
similar way than in the local search), if List_k-
MSN does not contain k elements (MSN), then
the first element in List_tree_traversal is
considered to follow a new route. The process
stops when List_k-MSN contains k elements
(MSN). However, using both search strategies
(DF and BF), in practical problems where the
training set is large, it is quite difficult that
List_k-MSN does not have k elements (MSN)
when the first leaf is reached.
After finding k-MSN, the majority class is

assigned to the new sample Q.
In figure 1 the difference between both search
algorithms is shown. As we can see, BF
search allows evaluating nodes in already
traversed levels.

Figure 1. Example of the search algorithms

4 AEMD

The second fast k-MSN classifier proposed in this
thesis, AEMD (Hernandez-Rodríguez-c et al.,
2008), is based on a new Approximating-
Eliminating approach for Mixed Data. AEMD also
consists of two phases: preprocessing and
classification, which are described in the next
sections.

4.1 Preprocessing phase of AEMD

In this stage, AEMD computes and stores the
next information which is used during the

classification phase to reduce the number of
comparisons between prototypes:
1. Similarity binary array (SimArray). In this

thesis, we proposed computing and storing an
array of similarities per attribute among the
prototypes in the training set (T), where
SimArray[Pa,Pb,xi]=1 if the prototypes Pa and
Pb are similar regarding the attribute xi, i∈[1,d]
and otherwise SimArray[Pa,Pb,xi]=0, Pa,Pb∈T.
In order to evaluate the similarity per attribute
between two prototypes, different approaches
can be applied. In this thesis, the following
criteria were used:

 (1)
If the attribute xi is not numeric:

DF search

BF search

76 Selene Hernández Rodríguez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 71-84
ISSN 1405-5546

(2)

If the attribute xi is numeric:

(3)

Where σi is the standard deviation of the
attribute xi in T. The required space to store
SimArray is |T| * |T| * d, but each element is a
bit, therefore |T| * |T| words of d bits are
needed for storing SimArray.

2. Similarity threshold (SimThres). This value is

used during the tree traversal algorithm to
decide if a representative prototype of a node
of the tree can be used to prune nodes in the
tree. In this thesis SimThres is computed as
follows: let Setc be the set of prototypes that
belong to class c (c=1,…, number of classes in
T) and ClassAvgSim be defined as follows:

(4)

SimThres is computed as the average value of
similarity for all the classes:

 (5)

3. A representative prototype per class (RPc).

Taking advantage of the class information, we
propose to use a representative prototype
(RPc) for each class in the training set. These
prototypes are used to obtain a first
approximation of the k most similar neighbors
during the classification phase, before
performing TS tree traversal algorithm. In this
thesis, to compute RPc, let Setc be the set of
prototypes that belong to class c. For each Pi
in Setc:

(6)

Where Sim is a similarity comparison function.
Thus, the representative prototype for each
class is the one that maximizes ASim function:

 (7)

Where i=1...|Setc|, c=1,...,NoClasses and
NoClasses is the number of classes in T.

4.2 Classification phase of AEMD

Given a new prototype Q to classify, SM, RPc and
SimThres (computed during the preprocessing
phase) are used to avoid prototype comparisons.
The classification phase of AEMD, which is
depicted in Figure 2, is based on Approximating-
Eliminating steps for mixed data, which are not
based on the triangle inequality. This stage is as
follows:
Initial approximating step. At the beginning of the
algorithm, the prototype Q is compared against
the class representative prototypes per class
(RPc), to obtain a first approximation to the k
most similar neighbors and, in particular, the
current most similar neighbor (CurrentMSN). After
that, all RPc are eliminated from T.

If Sim(Q,CurrentMSN) ≥ SimThres, then the
prototype CurrentMSN is used to eliminate
prototypes from T (Eliminating step). In other
case, the Approximating step is performed.
Eliminating step. In this step, CurrentMSN is used
to eliminate prototypes from T. First, a binary
representation (BR) containing the similarity per
attribute, between Q and CurrentMSN is created as
follows:

() =MSNCurrent,QBRi

() ()() dixQXC iii ,1,Current, MSN =
(8)

Thus, BRi(Q,CurrentMSN)=1, if Q and

CurrentMSN are similar in the attribute xi and
BRi(Q,CurrentMSN)=0, in other case. Using BR,
those prototypes in T, which are not similar to
CurrentMSN at least, in the same attributes in
which CurrentMSN is similar to Q, are eliminated
from T (using SimArray(CurrentMSN,Pa)).

After the Initial approximation and the
Eliminating steps, if T is not empty, the
approximation step is performed.
Approximating step. In this step, a new prototype
MSN’∈T is randomly selected, compared against
Q, eliminated from T and used to update the
current k most similar neighbors. If Sim(Q,MSN’)
< SimThres, a new MSN’ is randomly selected
(Approximating step). Otherwise, if Sim(Q,MSN’)
≥ SimThres , the prototype MSN’ is used to
eliminate prototypes from T (Eliminating step).

This process is repeated until the set T is
empty. After finding the k most similar neighbors,
the majority class is assigned to Q.

Fast Most Similar Neighbor (MSN) classifiers for Mixed Data 77

Computación y Sistemas Vol. 14 No. 1, 2010, pp 71-84
ISSN 1405-5546

Fig. 2. Diagram of the classification stage of AEMD

5 LAEMD

The third fast k-MSN classifier LAEMD is a
modification of AEMD, which aims to reduce the
storage space required by AEMD, following the
ideas of LAESA (Mico et al., 1994). In the
preprocessing phase, LAEMD selects a subset of
base prototypes (BP) from T, and the distances
between the prototypes in T and the prototypes in
BP are computed and stored in SimArray, which
is smaller than SimArray (used in AEDM), since
|BP|<<|T|.

In LAESA, the BP selection consists in finding
the farthest prototype in average to the remaining
prototypes (not yet selected as BP) and this
process is repeated until a predefined number
(m) of BP have been selected.

Since, an important step for the performance
of LAESA classifiers is the BP selection
algorithm, in this thesis two BP selection
algorithms (Hernández-Rodríguez-d et al., 2008)
are introduced:
1. BP selection using class information

(BPClass). In this algorithm, taking advantage
of the class information, the BP set is created
by selecting roughly the same number of
elements from each class, in order to obtain a
balanced subset. To select the prototypes for a
class, such prototypes which are the most
similar, on average, to the rest of the
prototypes from the same class are selected;

this process is repeated for each class to
select the BP set.

2. BP selection using representative prototypes
of the tree TS (BPNodesTS). In this case, the
TS tree structure is used to select some
prototypes from the training set. The set of
base prototypes (BP) is composed by the
representative prototypes of the nodes of TS
tree. In this case, if the number of nodes in the
tree is bigger than m, then only the
representative prototypes of the first m nodes,
found by a breath search, are selected.
Breadth search is used, in order to consider
the nodes from the first levels of the tree, since
the nodes in the first levels of the tree
represent more prototypes than nodes in
deeper levels.

6 Tree LAEMD

In this section, the proposed fast k-MSN classifier
Tree LAEMD (Hernández-Rodríguez-e et al.,
2008) is introduced. Tree LAEMD is based on a
hybrid approach, which uses a tree structure and
new Approximating-Eliminating steps, for mixed
data and any non metric comparison function.
Tree LAEMD consists of two phases:
preprocessing and classification.

New prototype (Q) to classify:

Initial approximation step
(RPc are used to update the k MSN and the

Eliminating step

Classification step
The majority class of the k MSN is assigned to Q

Approximating step

Sim(Q,CurrentMSN)≥SimThres

T≠Ø

yes

no

yes

no

78 Selene Hernández Rodríguez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 71-84
ISSN 1405-5546

6.1 Preprocessing phase of Tree LAEMD

In the preprocessing phase, we proposed to
compute and store a tree structure, a Boolean tri-
dimensional array, a representative prototype per
class and a similarity threshold, as follows:
1. Tree structure (TS), which is described in

Section 3.1.
2. Boolean tri-dimensional array

(SimArrayNodesTS). This array stores the
similarity between the representative
prototypes of the nodes in TS tree. This array
is smaller than the one used in AESA,
because the number of nodes in TS tree is
smaller than the number of elements in the
training set. Besides, this array is used during
the classification phase to prune nodes during
the tree traversal.

In this case,
SimArrayNodesTS[Repa,Repb,xi]=1, if the
representative prototypes Repa and Repb (of
the nodes a and b) are similar regarding the
attribute xi (i=1,…,d, where d is the number of
attributes in the prototypes) and otherwise
SimArrayNodesTS[Repa,Repb,xi]=0. In order to
evaluate the similarity per attribute between
two prototypes, the criteria described in
Section 4.1, were used.

3. Similarity threshold between prototypes
(SimThres). This value is used during the tree
traversal algorithm to decide if a representative
prototype of a node of the tree TS can be used
to prune nodes in the tree and it is computed
as described in Section 4.1.

4. A representative prototype per class (RPc).
These values are computed as described in
Section…4.1

Figure 3. General diagram of Tree LAEMD classifier

6.2 Classification phase of Tree LAEMD

In the classification phase, given a new query Q
to classify TS, SimThres, SimArrayNodesTS, and
RPc, computed during the preprocessing phase,
are used to avoid prototype comparison, as
follows:

1. Initial approximating step. In this step, the
representative prototypes per class (RPc) are
compared against Q to obtain a first
approximation of the k most similar neighbors.

2. Tree traversal step. In order to update the k
most similar neighbors, two algorithms to
traverse the tree (Approximating step) are
proposed:

New prototype to classify (Q):

Classification phase Preprocessing phase

Training set
(T)

The following is computed:

1. Tree structure (TS)

2. Boolean tri-dimensional array
 (SimArrayNodesTS)

3. Similarity threshold between
 prototypes (SimThres)

4. Representative prototypes
 per class (RPc)

Initial approximation of the k MSN to Q
(using RPc)

Tree traversal algorithm to update the k MSN
to Q (using TS, SimThres and SimArray)

Final decision of the class of Q

Fast Most Similar Neighbor (MSN) classifiers for Mixed Data 79

Computación y Sistemas Vol. 14 No. 1, 2010, pp 71-84
ISSN 1405-5546

• Depth First Search, DFSAE
• Best First Search, BFSAE

During the tree traversal algorithm, if a
representative prototype (Rep) of a node is
similar enough to Q (Sim(Q,Rep)>SimThres),
then all nodes whose representative
prototypes are dissimilar to Rep are pruned,
using the information about the similarity
between representative prototypes stored in
SimArrayNodesTS (Eliminating step).

3. Classification step. Finally, the majority class
of the k MSN is assigned to Q.

In Figure 3, a general diagram of Tree LAEMD
classifier is depicted.

7 Experimental results

In order to evaluate the performance of the
proposed classifiers (Tree k-MSN, AEMD,
LAEMD and Tree LAEMD), they are compared
against the exhaustive k-NN algorithm (Cover &
Hart, 1967) and the following tree-based fast k-
NN classifiers:

1. Adapted FN classifier (Fukunaga &
Narendra, 1975)

2. Adapted GB classifier using GR pruning
rule (Gómez-Ballester et al., 2006)

3. Adapted ONC classifier (Oncina et al.,
2007)

4. Adapted MS classifier (Moreno-Seco et
al., 2003)

5. Cluster tree (Zhang & Srihari, 2004)

To compare FN, GB, ONC and MS classifiers
with our proposed fast k-MSN classifier, we
adapted these classifiers. The adaptation
consisted in the use of the same tree structure
(TS) proposed in Section 3.1 and the same
function, suitable to work with mixed data,
instead of a distance function. In this way, only
the search algorithm of the fast k-NN classifiers,
is compared.

Besides, since GB tree traversal search
algorithm was proposed for a binary tree, in our
GR adaptation the pruning rule is applied to all of
the C-1 sibling nodes. When a leaf node is
reached, as it could contain more than one
prototype, a local exhaustive comparison is
performed to find the k-MSN.

Since Cluster tree is proposed to work with
any dissimilarity, we use this classifier with the
same comparison functions for mixed data.

Also, the following Approximating-Eliminating-
approach fast k-NN classifiers were compared:

1. AESA classifier (Vidal, 1986)
2. LAESA classifier (Mico et al., 1994), using

m=20% of the prototypes in the dataset
3. iAESA classifier (Figueroa et al., 2006)
4. Probabilistic iAESA classifier (Figueroa et

al., 2006)

Finally, the following fast k-NN classifiers
based on the hybrid-approach were also
considered:

1. TLAESA (Mico et al., 1996)
2. Modified TLAESA (Tokoro, 2006)

To compare Approximating-Eliminating and

hybrid-approaches, the same comparison
function for mixed data was used. In this work,
the dissimilarity function HVDM (Wilson &
Martínez, 2000), was used for the experiments.
This comparison function was selected because
it allows comparing mixed data and it is not a
metric function since it does not satisfy the
triangle inequality property.

For the experiments, 10 datasets from the UCI
repository (Blake & Merz, 1998) were used (see
Table 2).

In order to compare the different classifiers,
the accuracy (Acc) and the percentage of
comparisons between prototypes (Comp), were
considered. The accuracy was computed as
follows:

(9)

Where, NoCorrectPrototypes is the number of

correctly classified prototypes in the testing set
and NoTestPrototypes is the size of the testing
set. The percentage of comparisons between
prototypes was computed as follows:

(10)

Where NoCompFastClassifier is the number of

comparisons done by the fast k-NN classifier,
and NoTrainingPrototypes is the size of the
training set. According to (10), the exhaustive
classifier does the 100% of the comparisons.

80 Selene Hernández Rodríguez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 71-84
ISSN 1405-5546

Table 2. Datasets used in this section

Dataset
No. of

prototypes

No. of
numerical
features

No. of non
numerical
features

Classes
Missing

data

Hepatitis 155 6 13 2 yes
Zoo 101 1 16 7 no
Flag 194 3 25 8 no
Echocardiogram 132 9 2 2 yes
Hayes 132 0 4 3 no
Soybean-large 307 0 35 19 yes
Bridges 108 0 11 7 yes
Glass 214 9 0 7 no
Iris 150 4 0 3 no
Wine 178 13 0 3 no

In all the experiments ten-fold-cross-validation

was used. According to this technique, the
dataset is divided in ten partitions; nine of them
are used for training and the last partition is used
as testing set. This process is repeated ten times,
in such a way that each partition is used once as
testing set.

In (Hernandez-Rodriguez et al., 2007) different
experiments for choosing a value of the
parameter C and PercThres were done. In our
experiments, C=3, NoP=10% of the dataset, and
PercThres=100% were used, since in
(Hernandez-Rodriguez et al., 2007), the fast k-
NN classifiers reached their best results with
these values.

In table 3, the results (Acc and Comp)
obtained with the different tree-based fast k-NN
classifiers, are shown. From this table, we can

notice that the adapted FN, GB and ONC
become approximate methods (the classification
accuracy is not the same as using the exhaustive
k-NN) using HVDM function, which occurs
because this comparison function does not
satisfy the triangle inequality property. From table
2, we can also notice that Cluster tree, which is
the only fast k-NN classifier in the state of the art,
proposed to work with non metric functions,
reduced more the number of prototype
comparisons required to classify a new query
(from 100% to 37.18%). However, the
classification accuracy was decreased from
81.12% (obtained by k-NN) to 73.57%. From all
the tree-based fast k-NN classifiers, ONC
obtained the best results (i.e. classification
accuracy did not decrease and the percentage of
comparisons was reduced from 100% to 36.37%)

Table 3. Classification accuracy (Acc) and percentage of comparisons (Comp), obtained by the exhaustive k-NN search and the

tree-based fast k-NN classifiers, using HVDM function and k=1 MSN

Datasets k-NN
Adapted FN

classifier
Adapted GB

classifier
Adapted ONC

classifier
Adapted MS

classifier
Cluster tree

Acc Com Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp

Hepatitis 81,75 100 81,13 118,99 81,13 87,50 81,13 71,89 81,08 95,86 77,88 42,01
Zoo 97,00 100 97,00 24,68 97,00 23,46 97,00 22,16 97,00 21,86 95,00 41,63
Flag 53,21 100 53,71 56,97 53,71 53,10 53,18 46,52 54,26 43,43 48,47 44,09
Echocard. 82,69 100 82,69 121,01 82,69 84,01 82,69 72,82 84,18 93,43 83,24 41,75
Hayes 84,29 100 84,29 28,31 84,29 21,14 84,29 16,59 83,57 27,45 67,31 27,45
Soybean-L 90,54 100 91,18 26,56 91,18 19,90 91,18 16,85 89,88 25,02 83,33 20,22
Bridges 63,36 100 64,27 93,65 64,27 53,34 65,18 50,65 63,27 54,25 40,27 36,82
Glass 68,18 100 68,18 35,96 68,18 27,04 68,18 20,16 67,71 34,36 60,30 34,64
Iris 94,67 100 94,67 21,12 94,67 19,87 94,67 18,21 95,33 19,37 86,67 37,41
Wine 95,46 100 95,46 43,78 95,46 32,66 95,46 27,88 94,35 34,31 93,24 45,85
Avg. 81,12 100 81,26 57,10 81,26 42,20 81,30 36,37 81,06 44,93 73,57 37,18

In table 4, the results (Acc and Comp)

obtained with different Approximating-Eliminating
and Hybrid approaches for fast k-NN classifiers,
are shown. From this table, we can notice that
AESA, LAESA, iAESA, TLAESA and modified
TLAESA also become approximate methods,
using HVDM function. From table 3, it can also
be observed that probabilistic iAESA reduced
more the number of prototype comparisons

required to classify a new query (from 100%,
done by the k-NN to 22.45%).

In table 5, the results obtained with the fast k-
MSN classifiers proposed in this work: Tree k-
MSN (using DF search to traverse the tree),
AEMD, LAEMD (using the algorithm BPNodesTS
to select base prototypes), Tree LAEMD (using
the DFSAE tree traversal algorithm), are
presented. From this table, it is possible to notice
that all the proposed classifiers obtained similar

Fast Most Similar Neighbor (MSN) classifiers for Mixed Data 81

Computación y Sistemas Vol. 14 No. 1, 2010, pp 71-84
ISSN 1405-5546

classification accuracy than all the other
evaluated methods (enlisted in tables 3 and 4)
but achieved a biggest reduction in the number of
prototype comparisons. Among the proposed
classifiers, Tree LAEMD obtained the best
results. Additionally, a t-student test (Dietterich,
1998) with a confidence level of 95%, was done.

From this test, we noticed that the classification
accuracy difference between the proposed
classifiers and all other evaluated fast k-NN
classifiers is not statistically significant, while the
prototype comparison reduction (done by Tree k-
MSN, AEMD, LAEMD and Tree LAEMD) is
statistically significant.

Table 4. Classification accuracy (Acc) and percentage of comparisons (Comp), obtained by Approximating-Eliminating and
Hybrid-approach fast k-NN classifiers, using HVDM function and k=1 MSN

Datasets AESA LAESA TLAESA
Modified
TLAESA

iAESA
Probabilistic

iAESA

Acc Com Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp

Hepatitis 81,68 51,03 80,61 60,73 81,64 84,64 81,03 68,26 81,64 49,37 80,29 37,85
Zoo 97,00 21,34 96,00 25,23 95,75 55,77 95,78 27,34 97,20 21,04 95,42 18,56
Flag 53,60 27,23 52,82 27,57 52,01 49,25 50,19 42,94 52,53 27,15 52,00 25,93
Echocard. 82,54 64,34 82,08 67,39 82,25 75,84 82,12 38,30 82,92 63,18 82,34 63,04
Hayes 83,71 21,23 80,71 21,84 80,73 49,44 80,48 25,49 82,31 21,02 81,84 20,62
Soybean-L 89,87 2,07 89,87 5,12 89,87 38,44 87,23 18,35 89,03 2,05 90,23 2,04
Bridges 63,21 24,23 60,37 26,23 59,37 48,45 59,49 38,92 60,64 24,71 60,60 24,57
Glass 68,18 13,20 68,18 24,53 68,18 49,54 68,18 22,39 68,18 11,92 67,32 11,25
Iris 94,67 8,23 94,67 10,68 94,67 42,54 94,67 13,29 94,67 8,05 94,00 8,01
Wine 95,46 14,23 95,46 14,75 95,46 36,45 95,46 13,52 95,46 13,58 95,41 12,58
Avg. 80,99 24,71 80,08 28,41 79,99 53,04 79,46 30,88 80,46 24,21 79,95 22,45

Table 5. Classification accuracy (Acc) and percentage of comparisons (Comp), obtained by the proposed fast k-MSN

classifiers, using HVDM function and k=1 MSN

Datasets Tree k-MSN AEDM LAEDM Tree LAEDM

Acc Comp Acc Comp Acc Comp Acc Comp

Hepatitis 83,71 9,54 81,31 14,63 81,64 18,96 81,59 13,23
Zoo 96,00 19,68 97,10 18,61 97,00 32,85 96,00 12,79
Flag 52,21 13,20 53,63 16,23 52,00 17,44 52,47 9,73
Echocard. 79,62 16,50 82,62 17,51 82,62 21,16 81,49 13,05
Hayes 83,52 18,19 83,85 14,52 83,85 18,42 82,17 10,67
Soybean 85,26 9,72 90,54 11,52 90,54 16,25 89,37 7,83
Bridges 60,36 15,80 61,85 17,62 60,64 17,96 60,60 8,32
Glass 67,73 12,91 67,01 14,99 68,18 15,72 68,18 8,38
Iris 92,67 15,66 94,09 14,82 94,09 15,62 94,67 10,37
Wine 91,57 13,80 95,00 14,62 95,00 18,51 95,46 12,07
Avg. 79,27 14,50 80,70 15,50 80,56 19,29 80,20 10,64

In Figure 4, a graph of the accuracy (Acc)
against the number of prototype comparisons
(Comp) is shown. From this graph, we can notice
that all the classifiers obtained similar average
classification accuracy, except Cluster tree which
obtained the lowest classification accuracy

results. However, the proposed classifiers (Tree
k-MSN, AEMD, LAEMD and Tree LAEMD), did
the smallest number of prototype comparisons.
All the experiments were repeated, using k=3 and
k=5 and the performance of the fast k-NN
classifiers....were....similar

.

82 Selene Hernández Rodríguez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 71-84
ISSN 1405-5546

Figure 4. Classification accuracy (Acc) against percentage of comparisons (Comp)

obtained by the different fast k-NN/k-MSN classifiers, using HVDM similarity function and k=1 MSN

8 Conclusions

The development of fast k-NN classifiers has
been an active research area in the last years,
but most of these classifiers rely on metric
properties to reduce the number of prototype
comparisons. Moreover, very few work has been
focused on applications where the comparison
function does not satisfy metric properties. For
this reason, in this thesis some fast k most similar
neighbor (k-MSN) classifiers for mixed data and
non metric comparisons functions were
proposed. To develop these methods, the most
successful approaches from the state of the art
were followed.

In order to make comparisons, other tree-
based fast k-NN classifiers were adapted using
our proposed tree structure and the same
comparison function, to allow them working on
mixed data, because of under these
circumstances the original algorithms cannot be
applied. Also, other methods based on
Approximating-Eliminating and Hybrid
approaches were considered for comparisons. In
these cases, the original algorithms were tested
using the same comparison function for mixed
data.

Based on our experimental results, in
comparison with the exhaustive classifier, and
the other fast k-NN classifiers (FN, GB, ONC,

MS, AESA, LAESA, iAESA, probabilistic iAESA,
TLAESA, modified TLAESA and Cluster tree), the
proposed classifiers (Tree k-MSN, AEMD,
LAEMD and Tree LAEMD), obtained a big
reduction on the number of comparisons between
prototypes, which is of particular importance in
applications where a fast response is required.

Among the proposed fast k-MSN classifiers,
using Tree LAEMD the best results were
obtained. However, it is important to remark that
Tree LAEMD requires more storage space than
Tree k-MSN. For this reason, the selection of
Tree k-MSN or Tree LAEMD would depend on
the size of the particular problem. The proposed
classifier LAEMD is applicable when the
comparison function is very expensive, because
the preprocessimg stage required by LAEMD is
faster than the preprocessing stage required by
Tree LAEMD.

Finally, we can conclude that for large mixed
datasets and non-metric prototype comparison
functions, the proposed classifiers are the best
option.

As future work, we plan to look for other
pruning rules (elimination criteria), not based on
metric properties, which would allow us to reduce
even more the number of prototype comparisons
for AEMD, LAEMD and Tree LAEMD.

Proposed fast
k-MSN classifiers

Fast Most Similar Neighbor (MSN) classifiers for Mixed Data 83

Computación y Sistemas Vol. 14 No. 1, 2010, pp 71-84
ISSN 1405-5546

References

1. Adler, M., & Heeringa, B. (2008). Search Space

Reductions for Nearest-Neighbor Queries. Theory and
Applications of Models of Computation. Lecture Notes
in Computer Science, 4978, 554-567.

2. Arya, S., Mount, D., Netanyahu, N., Silverman, R., &
Wu, A. (1998). An optimal algorithm for approximate
nearest neighbor searching in high dimensions.
Journal of the ACM, 45(6), 891-923.

3. Athitsos, V., Alon, J., & Sclaroff, S. (2005). Efficient
Nearest Neighbour Classification Using Cascade of
Approximate with Similarity Measures. IEEE
Conference on Computer Vision and Pattern
Recognition 2005, Washington, USA, 486-493.

4. Beckmann, N., Kriegel, H., Schneider, R., & Seeger,
B. (1990). The R*-Tree: An Efficient and Robust
Access Method for Points and Rectangles. ACM
SIGMOD Record 19 (2), New Jersey, USA, 322-331.

5. Blake, C., & Merz, C. (1998). UCI Repository of
machine learning databases.

6. [http://archive.ics.uci.edu/ml/datasets.html],
Department of Information and Computer Science,
University of California, Irvine, CA, January 2006.

7. Chávez E., & Navarro G. (2005). A compact space
decomposition for effective metric indexing. Pattern
Recognition Letters, 26(9), 1363-1376.

8. Cheng, D., Gersho, A., Ramamurthi, B., & Shoham,
Y. (1984). Fast search algorithms for vector
quantization and pattern matching. IEEE International
Conference on Acoustics, Speech and Signal
Processing, California, USA, 372-375.

9. Cover, T. M., & Hart, P. E. (1967). Nearest neighbor
pattern classification. IEEE Transactions on
Information Theory, 13(1), 21-27.

10. Denny, M., & Franklin, M.J. (2006). Operators for
Expensive Functions in Continuous Queries. 22nd
International Conference on Data Engineering
ICDE´06, Georgia, USA, 147-147.

11. Dietterich, T. (1998). Statistical Tests for comparing
Supervised Classification Learning Algorithms. Neural
Computation, 10(7), 1895-1923.

12. D’haes, W., Dyck, D., and Rodel, X. (2002)
PCA-based branch and bound search algorithms for
computing k nearest neighbors. Pattern Recognition
Letters, 24(9-10), 1437-1451.

13. Figueroa, K., Chávez, E., Navarro, G., and
Paredes, R. (2006). On the last cost for proximity
searching in metric spaces. Workshop on
Experimental Algorithms. Lecture Notes in Computer
Science, 4007, 279-290.

14. Fredriksson K. (2007). Engineering efficient metric
indexes. Pattern Recognition Letters, 28(1), 75-84.

15. Friedman J. H., Bentley J. L., & Finkel R. A. (1977).
An algorithm for finding best matches in logarithmic
expected time. ACM Transactions on Mathematical
Software, 3(3), 209-226.

16. Fukunaga, K., & Narendra, P. (1975). A branch and
bound algorithm for computing k-nearest neighbors.
IEEE Transactions on Computers, C-24(7), 750-753.

17. García-Serrano, J. R., & Martínez-Trinidad, J. F.
(1999). Extension to C-Means Algorithm for the use of
Similarity Functions. European Conference on
Principles of Data Mining and Knowledge Discovery.
Lectures Notes in Artificial Intelligence, 1704, 354-359.

18. Goh K., Li B., & Chang E. (2002). DynDex: A
Dynamic and Non-metric Space Indexer. Proceedings

of the tenth ACM international conference on
Multimedia, Juan-les-Pins, France, 466-475.

19. Gómez-Ballester, E., Mico, L., and Oncina, J.
(2006). Some approaches to improve tree-based
nearest neighbor search algorithms. Pattern
Recognition, 39(2), 171-179.

20. Guttman, A. (1984). R-trees: A Dynamic Index
Structure for Spatial Searching. ACM SIGMOD
International Conference on Management of Data,
New York, USA, 47-57.

21. Hernández-Rodríguez, S., Martínez-Trinidad,
J., & Carrasco-Ochoa, A. (2007). Fast k Most Similar
Neighbor Classifier for Mixed Data Based on a Tree
Structure. Iberoamerican congress on Pattern
Recognition. Lecture Notes in Computer Science,
4756, 407-416.

22. Hernández-Rodríguez, S., Martínez-Trinidad,
J., & Carrasco-Ochoa, A. (2007). Fast Most Similar
Neighbor Classifier for Mixed Data. The 20th Canadian
Conference on Artificial Intelligence. Lecture Notes in
Artificial Intelligence, 4509, 146-158.

23. Hernández-Rodríguez, S., Martínez-Trinidad,
J., & Carrasco-Ochoa, A. (2008). Fast k Most Similar
Neighbor Classifier for Mixed Data based on
Approximating and Eliminating. Pacific-Asia
Conference on Knowledge Discovery and Data Mining.
Lecture Notes in Artificial Intelligence, 5012, 697-704.

24. Hernández-Rodríguez, S., Martínez-Trinidad,
J., & Carrasco-Ochoa, A. (2008). Fast k Most Similar
Neighbor Classifier for Mixed Data based on a Tree
Structure and Approximating-Eliminating. 13th
Iberoamerican congress on Pattern Recognition:
Progress in Pattern Recognition, Image Analysis and
Applications, Lecture Notes in Computer Science,
5197, 364-371.

25. Hernández-Rodríguez, S., Martínez-Trinidad,
J., & Carrasco-Ochoa, A. (2008). On the Selection of
Base Prototypes for LAESA and TLAESA Classifier.
19th International Conference on Pattern Recognition.
Florida, USA, 407-416.

26. Hwang W., & Wen K. (2002). Fast kNN classification
algorithm based on partial distance search. Electronics
Letters, 34(21), 2062-2063.

27. Kalantari, I., & McDonald, G. (1983) A data
structure and an algorithm for the nearest point
problem. IEEE Transactions on Software Engineering,
9(5), 631-634.

28. Katayama, N., & Satoh, S. (1997). The sr-tree: An
index structure for high-dimensional nearest neighbor
queries. ACM SIGMOD International Conference on
Management of Data, Tucson, Arizona, USA, 369-380.

29. McNames, J. (2001). A Fast Nearest Neighbor
Algorithm Based on a Principal Axis Search Tree.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(9), 964-976.

30. Micó, L., Oncina, J., and Vidal, E. (1994). A
new version of the nearest-neighbour approximating
and eliminating search algorithm (AESA) with linear
preprocessing-time and memory requirements. Pattern
Recognition Letters, 15(1), 9-17.

31. Mico, L., Oncina, J., & Carrasco, R. (1996). A fast
Branch and Bound nearest neighbor classifier in metric
spaces. Pattern Recognition Letters, 17(7), 731-739.

32. Moreno-Seco, F., Mico, L., & Oncina, J. (2003).
Approximate Nearest Neighbor Search with the
Fukunaga and Narendra Algorithm and its Application
to Chromosome Classification. Iberoamerican

javascript:AL_get(this,%20'jour',%20'Neural%20Comput.');�
javascript:AL_get(this,%20'jour',%20'Neural%20Comput.');�

84 Selene Hernández Rodríguez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 71-84
ISSN 1405-5546

congress on Pattern Recognition, Lecture Notes in
Computer Science 2905, 322-328.

33. Nene, S. A., & Nayar, S. K. (1997). A simple algorithm
for nearest neighbour search in high dimensions. IEEE
Transactions in Pattern Analysis and Machine
Intelligence, 19(9), 989-1003.

34. Omachi, S., & Aso, H. (2000). A fast algorithm for a k-
NN Classifier based on branch and bound method and
computational quantity estimation. Systems and
Computers in Japan, 31(6), 1-9.

35. Oncina, J., Thollard, F., Gómez-Ballester, E. Micó,
L., & Moreno-Seco, F. (2007). A Tabular Pruning Rule
in Tree-Based Fast Nearest Neighbor Search
Algorithms. Iberian Conference on Pattern Recognition
and Image Analysis. Lecture Notes in Computer
Science, 4478, 306-313.

36. Panigrahi, R. (2008). An Improved Algorithm Finding
Nearest Neighbor Using Kd-trees. 8th Latin American
conference on Theoretical informatics. Lecture Notes
in Computer Science, 4957, 387-398.

37. Ramasubramanian, V., & Paliwal, K. (2000). Fast
Nearest-Neighbor Search Algorithms based on
Approximation-Elimination search. Pattern Recognition
33(9), 1497-1510.

38. Tokoro, K., Yamaguchi, K., & Masuda, S. (2006).
Improvements of TLAESA Nearest Neighbour Search
Algorithm and Extension to Approximation Search. 29th
Australasian Computer Science Conference, Hobart,
Australia, 48, 77-83.

39. Uhlmann, J. (1991). Metric trees. Applied
Mathematics Letters, 4(5), 61-62.

40. Vidal, E. (1986). An algorithm for finding nearest
neighbours in (approximately) constant average time
complexity. Pattern Recognition Letters, 4(3), 145-157.

41. White, D., & Jain, R. (1996). Similarity indexing with
the ss-tree. ICDE '96: Twelfth International Conference
on Data Engineering, Washington, USA, 516-523.

42. Wilson, D., & Martínez, T. (2000). Reduction
techniques for instance based learning algorithms.
Machine Learning, 38, 257-286.

43. Yianilos, P. (1993). Data structures and algorithms for
nearest neighbor search in general metric spaces.
SODA '93: Fourth annual ACM-SIAM Symposium on
Discrete algorithms, Philadelphia, USA, 311-321.

44. Yong-Sheng, C., Yi-Ping, H., & Chiou-Shann, F.
(2007). Fast and versatile algorithm for nearest
neighbor search based on lower bound tree, Pattern
Recognition Letters, 40(2), 360-375.

45. Yunck T. (1976). A technique to identify nearest
neighbors. IEEE Transactions on Systems, Man and
Cybernetics, 6(10), 678-683.

46. Zhang B., & Srihari S. (2004). Fast k- nearest
neighbour classification using cluster-based tree. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 26(4), 5

Selene Hernández
Rodríguez

Received her B. S. degree in Computer Science from the
Computer Science faculty of the Autonomous University of
Puebla (BUAP), Mexico in 2004; her M.Sc. degree in
Computer Science from the National Institute of
Astrophysics, Optics and Electronics (INAOE), Mexico, in
2006 and her Ph.D. degree in Computer Science from
INAOE, Mexico, in 2009. Her research interests are
Pattern Recognition, Machine Learning, Data Mining and
Supervised Classification.

José Francisco
Martínez Trinidad

Received his B.S. degree in Computer Science from
Physics and Mathematics School of the Autonomous
University of Puebla (BUAP), Mexico in 1995, his M.Sc.
degree in Computer Science from the faculty of Computers
Science of the Autonomous University of Puebla, Mexico
in 1997 and his Ph.D. degree in the Center for Computing
Research of the National Polytechnic Institute (CIC, IPN),
Mexico in 2000. Professor Martinez-Trinidad
edited/authored four books and over fifty journal and
conference papers, on subjects related to Pattern
Recognition.

 Received his Ph.D. degree in Computer Science from the
Center for Computing Research of the National
Polytechnic Institute (CIC-IPN), Mexico, in 2001. Currently,
he is a full time researcher at the National Institute for
Astrophysics, Optics and Electronics (INAOE) of Mexico.
His current research interests include Sensitivity Analysis,
Logical Combinatorial Patter Recognition, Testor Theory,
Feature Selection, Prototype Selection and Clustering.

Jesús Ariel Carrasco Ochoa

