
 
 

Computación y Sistemas Vol. 14 No. 1, 2010, pp 71-84 
ISSN 1405-5546 

 

ABSTRACT of PhD THESIS 
 

Fast Most Similar Neighbor (MSN) classifiers for Mixed Data 

Clasificadores Rápidos basados en el Algoritmo del Vecino más Similar 
(MSN)  para Datos Mezclados 

 
Selene Hernández Rodríguez 

Graduated on May 12, 2009 
National Institute of Astrophysics, Optics and Electronics 

Luis Enrique Erro # 1, Santa María Tonantzintla, C.P. 72840, Puebla, México. 
selehdez@ccc.inaoep.mx 

 
José Fco. Martínez Trinidad (Advisor) 
Jesús Ariel Carrasco Ochoa (Advisor) 

National Institute of Astrophysics, Optics and Electronics 
Luis Enrique Erro # 1, Santa María Tonantzintla, C.P. 72840, Puebla, México. 

 fmartine@inaoep.mx, ariel@inaoep.mx 
 
 
 
 

Abstract. The k nearest neighbor (k-NN) classifier has 
been extensively used in Pattern Recognition because 
of its simplicity and its good performance. However, in 
large datasets applications, the exhaustive k-NN 
classifier becomes impractical. Therefore, many fast k-
NN classifiers have been developed; most of them rely 
on metric properties (usually the triangle inequality) to 
reduce the number of prototype comparisons. Hence, 
the existing fast k-NN classifiers are applicable only 
when the comparison function is a metric (commonly 
for numerical data). However, in some sciences such as 
Medicine, Geology, Sociology, etc., the prototypes are 
usually described by qualitative and quantitative 
features (mixed data). In these cases, the comparison 
function does not necessarily satisfy metric properties. 
For this reason, it is important to develop fast k most 
similar neighbor (k-MSN) classifiers for mixed data, 
which use non metric comparisons functions. In this 
thesis, four fast k-MSN classifiers, following the most 
successful approaches, are proposed. The experiments 
over different datasets show that the proposed 
classifiers significantly reduce the number of prototype 
comparisons. 
Keywords: Nearest neighbor rule, fast nearest neighbor 
search, mixed data, non-metric comparison functions.  
 
 
Resumen. El clasificador k vecinos más cercanos (k-NN) 
ha sido ampliamente utilizado dentro del 
Reconocimiento de Patrones debido a su simplicidad y 
buen funcionamiento. Sin embargo, en aplicaciones en 
las cuales el conjunto de entrenamiento es muy 
grande, la comparación exhaustiva que realiza k-NN se 
vuelve inaplicable. Por esta razón, se han desarrollado 
diversos clasificadores rápidos k-NN; la mayoría de los 
cuales se basan en propiedades métricas (en particular 
la desigualdad triangular) para reducir el número de 
comparaciones entre prototipos. Por lo cual, los 
clasificadores rápidos k-NN existentes son aplicables 

solamente cuando la función de comparación es una 
métrica (usualmente con datos numéricos). Sin 
embargo, en algunas ciencias como la Medicina, 
Geociencias, Sociología, etc., los prototipos 
generalmente están descritos por atributos numéricos y 
no numéricos (datos mezclados). En estos casos, la 
función de comparación no siempre cumple 
propiedades métricas. Por esta razón, es importante 
desarrollar clasificadores rápidos basados en la 
búsqueda de los k vecinos más similares (k-MSN) para 
datos mezclados que usen funciones de comparación 
no métricas. En esta tesis, se proponen cuatro 
clasificadores rápidos k-MSN, siguiendo los enfoques 
más exitosos. Los experimentos con diferentes bases de 
datos muestran que los clasificadores propuestos 
reducen significativamente el número de 
comparaciones entre prototipos. 
Palabras clave: Regla del vecino más cercano, 
Búsqueda rápida del vecino más cercano, datos 
mezclados, funciones de comparación no métricas 
 
 
1 Introducción 
 
The k-NN classifier (Cover & Hart, 1967) has 
been widely used in Pattern Recognition, 
because of its simplicity and its good 
performance. The k-NN classifier uses a training 
set (T) of prototypes, whose class is known a 
priori. To decide the class of a new prototype, the 
k-NN classifier performs an exhaustive 
comparison between the prototype to classify and 
the prototypes in the training set, assigning to the 
new prototype a class, according to the classes 
of its k nearest neighbors in T. However, when 
the training set is large, the exhaustive 
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comparison is expensive and sometimes 
inapplicable. Thus, many fast k-NN classifiers 
have been designed; different reviews appear in 
(Nene & Nayar, 1997; Ramasubramanian et al., 
2000; and Yong-Sheng et al., 2007). 

The objective of a fast k-NN classifier is to 
reduce the number of comparisons trying to keep 
the classification accuracy obtained by k-NN. 
Speeding up the k-NN classifier is required 
because some applications demand a rapid 
response on large datasets, for example online 
stock analysis, air traffic control, network traffic 
management, intrusion detection, etc. Also, fast 
k-NN classifiers are useful for problems with high 
dimensionality where the comparison function 
could be very expensive (Mico et al., 1994; 
Denny & Franklin, 2006), under this context, 
reducing the number of comparisons could be 
very important. For these reasons, although 
nowadays the computers are very fast, the 
development of fast k-NN classifiers is currently 
an active research area (Adler & Heeringa, 2008; 
Panigrahi, 2008). Nevertheless, most of the fast 
k-NN classifiers proposed in the literature have 
been designed for numerical prototype 
descriptions compared through a metric function. 
Moreover, in some sciences such as Medicine, 
Geology, Sociology, etc., the prototypes are 
usually described by numerical and non 
numerical features (mixed data) and the 
comparison function does not satisfy metric 
properties.  

Thus, if a metric is not available but a 
comparison function that evaluates the similarity 
between a pair of prototypes can be defined, 
given a new prototype Q to classify, the objective 
is to find the k most similar neighbors to Q in a 
training set T (with N prototypes, where each 
prototype is described by d attributes, which can 
be numerical or non numerical), and assign to Q 
a class (based on its k most similar neighbours). 
However, the exhaustive search of the k-MSN, as 
occurs with k-NN, could be very expensive if T is 
large. For this reason, it is important to develop 
fast k most similar neighbor (k-MSN) classifiers 
for mixed data and non metric comparisons 
functions.  

In this thesis, four fast k-MSN classifiers are 
proposed. The first uses a tree structure, the 
second and the third are based on a new 
Approximating-Eliminating approach for mixed 
data. Finally, the last fast k-MSN classifier 

proposed in this thesis uses a tree structure and 
an Approximating-Eliminating approach. In order 
to evaluate the proposed fast k-MSN classifiers, 
some experiments over real datasets were 
performed, comparing against other fast k-NN 
classifiers. From these experimental 
comparisons, we could notice that using the 
proposed methods competitive classification 
accuracy was obtained, but with less prototype 
comparisons. 

This work is organized as follows: Section 2 
provides a brief review of fast k-NN classifiers. In 
Section 3-6, our fast k-MSN classifiers (Tree k-
MSN, AEMD, LAEMD, Tree LAEMD) are 
introduced. In Section 7, experimental results, 
obtained using our classifiers and a comparison 
against other fast classifiers, are reported. 
Finally, in Section 8 we present our conclusions 
and future work. 
 
 
2 Related work 
 
In order to apply the k-NN classifier to problems 
where the training set is large, in the last years, 
several fast k-NN classifiers have been 
proposed. The objective of a fast k-NN classifier 
is to reduce the number of comparisons trying to 
keep the classification accuracy obtained by k-
NN. 

The fast k-NN classifiers can be divided in 
exact and approximated methods. Using exact 
fast k-NN classifiers, the same classification 
accuracy as using the exhaustive k-NN classifier 
are obtained. Approximated methods do not 
guarantee to find the k nearest neighbors from 
the training set, but they find an approximation 
faster than the exact methods. 

According to the strategy used to avoid 
prototype comparisons, fast k-NN classifiers can 
be divided as shown in table 1. From this table, 
we can observe that most of the existing fast k-
NN classifiers are proposed to work with 
numerical data and metric comparison functions. 
For this reason, in this thesis four fast k most 
similar neighbor (k-MSN) classifiers for mixed 
data and non metric comparisons functions are 
proposed. To develop these methods, the most 
successful approaches from the state of the art 
(Partitioning, Approximating-Eliminating and 
Hybrid methods) where followed. The proposed 
methods are described in the next sections.
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Table 1. Fast k-NN classifiers divided according to the strategy used to avoid prototype comparisons; X means that there was 
not any work in that category. 

 

FAST k-NN CLASSIFIERS 

1. For metric functions 

Exact methods Approximated methods 

 

I. Partial distance search 
(Cheng 1984) 
(Hwang 1998) 

(Athistos, 2005) 

II. Projection methods 
(Friedman, 1977) 
(Yunck, 1976) 
(Nene and Nayar, 1997) 

X 

III. Approximating-Eliminating 
AESA (Vidal, 1986), LAESA (Mico et al., 1994) 
iAESA (Figueroa et al., 2006) 

iAESA probabilístico (Figueroa et al., 2006) 

IV. Partitioning and Tree-based methods 
Kd-tree (Friedman et al., 1975) 
R-tree (Guttamn, 1984) 
Modificaciones de R-tree: 
        R*-tree (Beckmann, 1990) 
        SS-tree (White & Jain, 1996) 
        SR-tree (Katayama & Satoh, 1997) 
        (Adler & Heeringa, 2008) 
FN (Fukunaga, 1975) 
Modificaciones de FN: 
        (Kalantari, 1983) 
        (Omachi, 2000) 
        (Gomez-Ballester et al., 2006) 
        (Oncina et al., 2007) 
Metric trees (Uhlmann, 1991) 
Vp-Trees (Yianilos, 1993) 
PAT (McNames, 2001) 
LBT (Yong-Sheng et al., 2006) 
List of Clusters (LC) (Chavez & Navarro, 2005) 
Hierarchy of Clusters (Fredriksson, 2007) 

BBD-tree (Arya &Mount, 1998) 
MS (Moreno-Seco & Mico, 2003) 
(Panigrahy, 2008) 

V. Hybrid methods (using Partitioning and Approximating-Eliminating) 

TLAESA (Mico et al., 1996) 
Modificación de TLAESA (Tokoro, 2006) 

X 

2. For non metric functions 

 
I. Partitioning and Tree-based methods 

 DynDex (Goh, et al., 2002) 
Cluster based tree  (Zhang & Srihari, 2004) 

 
 
 
3 Tree k-MSN 
 
The first proposed classifier, Tree k-MSN 
(Hernández-Rodríguez-a et al., 2007; 
Hernández-Rodríguez-b et al., 2007), consists of 
two phases. The first one, or preprocessing 
phase, builds a tree structure from the training 
set (T). In the second phase, two search 
algorithms, which are independent of metric 
properties of the comparison function, are 
proposed for classifying a new prototype. 
 
 
 

3.1 Preprocessing phase of Tree k-MSN 
 
In this phase, the training set is hierarchically 
decomposed to create a tree structure (TS). At 
the beginning, the root of the tree contains the 
whole training set. In order to create the following 
levels of the tree, each node n of the tree is 
divided in C clusters, in such a way that each 
cluster represents a descendant node of n. Each 
descendant node is divided again and this 
process is repeated until a stop criterion is 
satisfied.  
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Since our algorithm is designed to allow mixed 
data, instead of using the C-Means algorithm for 
building the tree structure, as in the FN classifier, 
the C-Means with Similarity Functions algorithm 
(CMSF) (García-Serrano & Martínez-Trinidad, 
1999), is used. CMSF allows creating C clusters 
and computing as representative element of each 
cluster a prototype belonging to the cluster (i.e., a 
prototype contained in T); besides CMSF allows 
using any similarity function. 

Each node p of the tree contains three 
features: Sp the set of prototypes that belong to p; 
Np the number of prototypes in p and unlike FN 
and MS classifiers, Repp a representative 
prototype of the node, which is on average the 
most similar to the rest of prototypes in the node. 

A node is marked as a leaf when a stop 
criterion is satisfied. In this thesis we used a stop 
criterion based on the node size (SC1), which is 
used in (Fukunaga & Narendra, 1975; Kalantari & 
McDonald, 1983; Mico et al., 1996; Omachi & 
Aso, 2000; McNames, 2001; D’Haes et al., 2002; 
Gomez-Ballester et al., 2006) and we introduce 
two new stop criteria (SC2 and SC3), which take 
into account not only the number of prototypes of 
the node, but also the class distribution of these 
prototypes. The three stop criteria are the 
following: 
1. Stop criterion 1 (SC1). This criterion is based 

on the node size. According to this criterion, if 
the number of prototypes contained in a node 
is less than a predefined threshold (Np ≤ NoP), 
then the node is marked as a leaf. The 
objective of this criterion is to obtain leaves 
with a few prototypes. 
However, when most of the prototypes 
contained in a node belong to the same class, 
dividing this node could lead to unnecessary 
prototype comparisons during the classification 
stage, between the prototype to classify and 
the representative prototypes of the nodes. 
Because all descendant nodes, that would be 
created, also would belong to the same class. 
Since the objective is to classify a new 
prototype trying to avoid prototype 
comparisons, we propose a second stop 
criterion during the tree construction: 

2. Stop criterion 2 (SC2). If most of the 
prototypes in a node belong to the same class, 
then the node is considered as a leaf and it is 
marked with the majority class, even if the set 
is not small enough according to the first stop 
criterion (Np > NoP). In order to decide how 
many prototypes in the node must belong to 
the same class, for generalizing the class of a 
node, a percentage threshold (PercThres) is 
used. In the nodes where this criterion is not 

satisfied, only the size of the node is 
considered to create leaf nodes (SC1). 
When the node is generalized by the majority 
class, through SC2, if PercThres=100%, it 
means that all prototypes in the node belong to 
the same class (the generalized class of the 
node). However, when PercThres<100%, an 
error is introduced, because some prototypes 
in the node do not belong to the majority class. 
Therefore, we introduce a third criterion: 

3. Stop criterion 3 (SC3). If certain percentage 
(PercThres) of the prototypes in a node 
belongs to the same class, two nodes are 
created. Using the prototypes that belong to 
the majority class, a leaf node is created and it 
is marked with the majority class. The rest of 
the prototypes are assigned to a second node. 
In the second node, the size is considered to 
decide if the node is a leaf (if Np ≤ NoP) or if 
the node will be divided again. In the nodes 
where SC3 criterion is not satisfied, only the 
size of the node is considered to create leaf 
nodes (SC1).  
Using SC2 and SC3 the number of prototype 
comparisons (during the classification stage) is 
reduced, because if during the tree traversal a 
leaf node (marked with the majority class) is 
reached, then only the representative 
prototype of the node, with the corresponding 
majority class, is used to update the list of the 
k most similar neighbors (only one 
comparison), instead of comparing the 
prototype to classify against all the prototypes 
contained in the leaf. 

 
3.2 Classification phase of Tree k-MSN 
 
In this phase, in order to avoid an exhaustive tree 
traversal, fast k-NN classifiers rely on pruning 
rules (based on metric properties). As we are 
looking for a method applicable when the 
comparison function does not satisfy metric 
properties, pruning rules based on the triangular 
inequality cannot be used; therefore, we propose 
to stop the search when a leaf of the tree is 
reached. In the first search algorithm (DF 
search), we propose to use a depth-first search 
strategy and in the second search algorithm (BF 
search), we propose to use a best-first search 
strategy. The two proposed algorithms for 
searching the k-MSN are described below: 
1. DF search: It begins at the root of the tree, 

following the path of the most similar node and 
finishes when a leaf is reached. As each node 
of the tree is represented by a prototype of the 
training set, with known class, a list of the k-
MSN is stored and updated during the tree 
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traversal. When the first leaf node l is reached, 
if l is marked with the majority class, then only 
the representative prototype Repl is used to 
update the k-MSN (because most of the 
prototypes in the node belong to the same 
class). If the node is not marked with the 
majority class, then an exhaustive search in 
the node is done and the list of k-MSN is 
updated. After a leaf is processed, if the list of 
k-MSN does not have k elements, then the 
tree traversal follows backtracking steps to 
explore nodes closer to Q, until k most similar 
neighbours are found. 

2. BF search: It begins at the root of the tree, 
comparing Q against the descendant nodes of 
the root, which are added to a list 
(List_tree_traversal). After that, 
List_tree_traversal is sorted in such a way the 
most similar node to Q is in the first place. The 
most similar node (first element) is eliminated 
from List_tree_traversal and its descendant 
nodes are compared against Q, and added to 
List_tree_traversal, which is sorted again. The 
search finishes when the first element of 

List_tree_traversal is a leaf. In this search, it is 
possible to reconsider nodes in levels of the 
tree already traversed if the first node of 
List_tree_traversal belongs to a previous level 
in the tree.  
During the tree traversal, another list (List_k-
MSN) containing the k current MSN is stored 
and updated. After a leaf is processed (in a 
similar way than in the local search), if List_k-
MSN does not contain k elements (MSN), then 
the first element in List_tree_traversal is 
considered to follow a new route. The process 
stops when List_k-MSN contains k elements 
(MSN). However, using both search strategies 
(DF and BF), in practical problems where the 
training set is large, it is quite difficult that 
List_k-MSN does not have k elements (MSN) 
when the first leaf is reached. 
After finding k-MSN, the majority class is 

assigned to the new sample Q. 
In figure 1 the difference between both search 
algorithms is shown. As we can see, BF 
search allows evaluating nodes in already 
traversed levels. 

 
Figure 1. Example of the search algorithms 

 
 
4 AEMD 
 
The second fast k-MSN classifier proposed in this 
thesis, AEMD (Hernandez-Rodríguez-c et al., 
2008), is based on a new Approximating-
Eliminating approach for Mixed Data. AEMD also 
consists of two phases: preprocessing and 
classification, which are described in the next 
sections. 
 
4.1 Preprocessing phase of AEMD 
 
In this stage, AEMD computes and stores the 
next information which is used during the 

classification phase to reduce the number of 
comparisons between prototypes: 
1. Similarity binary array (SimArray). In this 

thesis, we proposed computing and storing an 
array of similarities per attribute among the 
prototypes in the training set (T), where 
SimArray[Pa,Pb,xi]=1 if the prototypes Pa and 
Pb are similar regarding the attribute xi, i∈[1,d] 
and otherwise SimArray[Pa,Pb,xi]=0, Pa,Pb∈T. 
In order to evaluate the similarity per attribute 
between two prototypes, different approaches 
can be applied. In this thesis, the following 
criteria were used: 

    (1) 
If the attribute xi is not numeric: 

DF search 

BF search 
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(2) 

If the attribute xi is numeric: 
 
 
 

(3) 

 
Where σi is the standard deviation of the 
attribute xi in T. The required space to store 
SimArray is |T| * |T| * d, but each element is a 
bit, therefore |T| * |T| words of d bits are 
needed for storing SimArray. 

 
2. Similarity threshold (SimThres). This value is 

used during the tree traversal algorithm to 
decide if a representative prototype of a node 
of the tree can be used to prune nodes in the 
tree. In this thesis SimThres is computed as 
follows: let Setc be the set of prototypes that 
belong to class c (c=1,…, number of classes in 
T) and ClassAvgSim be defined as follows: 

 

    
(4) 

 
SimThres is computed as the average value of 
similarity for all the classes: 
 

    (5) 
 
3. A representative prototype per class (RPc). 

Taking advantage of the class information, we 
propose to use a representative prototype 
(RPc) for each class in the training set. These 
prototypes are used to obtain a first 
approximation of the k most similar neighbors 
during the classification phase, before 
performing TS tree traversal algorithm. In this 
thesis, to compute RPc, let Setc be the set of 
prototypes that belong to class c. For each Pi 
in Setc: 

 

    
(6) 

 
Where Sim is a similarity comparison function. 
Thus, the representative prototype for each 
class is the one that maximizes ASim function: 

    (7) 

 
Where i=1...|Setc|, c=1,...,NoClasses and 
NoClasses is the number of classes in T. 

 

 
4.2 Classification phase of AEMD 
 
Given a new prototype Q to classify, SM, RPc and 
SimThres (computed during the preprocessing 
phase) are used to avoid prototype comparisons. 
The classification phase of AEMD, which is 
depicted in Figure 2, is based on Approximating-
Eliminating steps for mixed data, which are not 
based on the triangle inequality. This stage is as 
follows: 
Initial approximating step. At the beginning of the 
algorithm, the prototype Q is compared against 
the class representative prototypes per class 
(RPc), to obtain a first approximation to the k 
most similar neighbors and, in particular, the 
current most similar neighbor (CurrentMSN). After 
that, all RPc are eliminated from T.  

If Sim(Q,CurrentMSN) ≥ SimThres, then the 
prototype CurrentMSN is used to eliminate 
prototypes from T (Eliminating step). In other 
case, the Approximating step is performed. 
Eliminating step. In this step, CurrentMSN is used 
to eliminate prototypes from T. First, a binary 
representation (BR) containing the similarity per 
attribute, between Q and CurrentMSN is created as 
follows: 
 

( ) =MSNCurrent,QBRi  

( ) ( )( ) dixQXC iii ,1,Current, MSN =  
(8) 

 
Thus, BRi(Q,CurrentMSN)=1, if Q and  

CurrentMSN are similar in the attribute xi and 
BRi(Q,CurrentMSN)=0, in other case. Using BR, 
those prototypes in T, which are not similar to 
CurrentMSN at least, in the same attributes in 
which CurrentMSN is similar to Q, are eliminated 
from T (using SimArray(CurrentMSN,Pa)). 

After the Initial approximation and the 
Eliminating steps, if T is not empty, the 
approximation step is performed. 
Approximating step. In this step, a new prototype 
MSN’∈T is randomly selected, compared against 
Q, eliminated from T and used to update the 
current k most similar neighbors. If Sim(Q,MSN’) 
< SimThres, a new MSN’ is randomly selected 
(Approximating step). Otherwise, if  Sim(Q,MSN’) 
≥ SimThres , the prototype MSN’ is used to 
eliminate prototypes from T (Eliminating step). 

This process is repeated until the set T is 
empty. After finding the k most similar neighbors, 
the majority class is assigned to Q. 
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Fig. 2. Diagram of the classification stage of AEMD 

 
 
 
5 LAEMD 
 
The third fast k-MSN classifier LAEMD is a 
modification of AEMD, which aims to reduce the 
storage space required by AEMD, following the 
ideas of LAESA (Mico et al., 1994). In the 
preprocessing phase, LAEMD selects a subset of 
base prototypes (BP) from T, and the distances 
between the prototypes in T and the prototypes in 
BP are computed and stored in SimArray, which 
is smaller than SimArray (used in AEDM), since 
|BP|<<|T|. 

In LAESA, the BP selection consists in finding 
the farthest prototype in average to the remaining 
prototypes (not yet selected as BP) and this 
process is repeated until a predefined number 
(m) of BP have been selected. 

Since, an important step for the performance 
of LAESA classifiers is the BP selection 
algorithm, in this thesis two BP selection 
algorithms (Hernández-Rodríguez-d et al., 2008) 
are introduced: 
1. BP selection using class information 

(BPClass). In this algorithm, taking advantage 
of the class information, the BP set is created 
by selecting roughly the same number of 
elements from each class, in order to obtain a 
balanced subset. To select the prototypes for a 
class, such prototypes which are the most 
similar, on average, to the rest of the 
prototypes from the same class are selected; 

this process is repeated for each class to 
select the BP set.  

2. BP selection using representative prototypes 
of the tree TS (BPNodesTS). In this case, the 
TS tree structure is used to select some 
prototypes from the training set. The set of 
base prototypes (BP) is composed by the 
representative prototypes of the nodes of TS 
tree. In this case, if the number of nodes in the 
tree is bigger than m, then only the 
representative prototypes of the first m nodes, 
found by a breath search, are selected. 
Breadth search is used, in order to consider 
the nodes from the first levels of the tree, since 
the nodes in the first levels of the tree 
represent more prototypes than nodes in 
deeper levels. 

 
6 Tree LAEMD 
 
In this section, the proposed fast k-MSN classifier 
Tree LAEMD (Hernández-Rodríguez-e et al., 
2008) is introduced. Tree LAEMD is based on a 
hybrid approach, which uses a tree structure and 
new Approximating-Eliminating steps, for mixed 
data and any non metric comparison function. 
Tree LAEMD consists of two phases: 
preprocessing and classification.  
 
 
 

New prototype (Q) to classify: 

Initial approximation step 
(RPc are used to update the k MSN and the 

 

Eliminating step 

Classification step 
The majority class of the k MSN is assigned to Q 

Approximating step 

Sim(Q,CurrentMSN)≥SimThres 

T≠Ø 

yes 

no 

yes 

no 
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6.1 Preprocessing phase of Tree LAEMD 
 
In the preprocessing phase, we proposed to 
compute and store a tree structure, a Boolean tri-
dimensional array, a representative prototype per 
class and a similarity threshold, as follows: 
1. Tree structure (TS), which is described in 

Section 3.1. 
2. Boolean tri-dimensional array 

(SimArrayNodesTS). This array stores the 
similarity between the representative 
prototypes of the nodes in TS tree. This array 
is smaller than the one used in AESA, 
because the number of nodes in TS tree is 
smaller than the number of elements in the 
training set. Besides, this array is used during 
the classification phase to prune nodes during 
the tree traversal. 

In this case, 
SimArrayNodesTS[Repa,Repb,xi]=1, if the 
representative prototypes Repa and Repb (of 
the nodes a and b) are similar regarding the 
attribute xi (i=1,…,d, where d is the number of 
attributes in the prototypes) and otherwise 
SimArrayNodesTS[Repa,Repb,xi]=0. In order to 
evaluate the similarity per attribute between 
two prototypes, the criteria described in 
Section 4.1, were used. 

3. Similarity threshold between prototypes 
(SimThres). This value is used during the tree 
traversal algorithm to decide if a representative 
prototype of a node of the tree TS can be used 
to prune nodes in the tree and it is computed 
as described in Section 4.1. 

4. A representative prototype per class (RPc). 
These values are computed as described in 
Section…4.1 

 

 
Figure 3. General diagram of Tree LAEMD classifier 

 
6.2 Classification phase of Tree LAEMD 
 
In the classification phase, given a new query Q 
to classify TS, SimThres, SimArrayNodesTS, and 
RPc, computed during the preprocessing phase, 
are used to avoid prototype comparison, as 
follows: 

1. Initial approximating step. In this step, the 
representative prototypes per class (RPc) are 
compared against Q to obtain a first 
approximation of the k most similar neighbors. 

2. Tree traversal step. In order to update the k 
most similar neighbors, two algorithms to 
traverse the tree (Approximating step) are 
proposed: 

New prototype to classify (Q): 

Classification phase Preprocessing phase 

Training set 
(T) 

The following is computed: 

1. Tree structure (TS) 

2. Boolean tri-dimensional array 
    (SimArrayNodesTS) 

3. Similarity threshold between  
    prototypes (SimThres) 

4. Representative prototypes 
     per class (RPc) 

Initial approximation of the k MSN to Q 
(using RPc) 

Tree traversal algorithm to update the k MSN 
to Q (using TS, SimThres and SimArray) 

Final decision of the class of Q 
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• Depth First Search, DFSAE 
• Best First Search, BFSAE 

During the tree traversal algorithm, if a 
representative prototype (Rep) of a node is 
similar enough to Q (Sim(Q,Rep)>SimThres), 
then all nodes whose representative 
prototypes are dissimilar to Rep are pruned, 
using the information about the similarity 
between representative prototypes stored in 
SimArrayNodesTS (Eliminating step). 

3. Classification step. Finally, the majority class 
of the k MSN is assigned to Q. 

 
In Figure 3, a general diagram of Tree LAEMD 
classifier is depicted. 
 
 
7 Experimental results 
 
In order to evaluate the performance of the 
proposed classifiers (Tree k-MSN, AEMD, 
LAEMD and Tree LAEMD), they are compared 
against the exhaustive k-NN algorithm (Cover & 
Hart, 1967) and the following tree-based fast k-
NN classifiers: 

1. Adapted FN classifier (Fukunaga & 
Narendra, 1975) 

2. Adapted GB classifier using GR pruning 
rule (Gómez-Ballester et al., 2006) 

3. Adapted ONC classifier (Oncina et al., 
2007) 

4. Adapted MS classifier (Moreno-Seco et 
al., 2003) 

5. Cluster tree (Zhang & Srihari, 2004) 
 

To compare FN, GB, ONC and MS classifiers 
with our proposed fast k-MSN classifier, we 
adapted these classifiers. The adaptation 
consisted in the use of the same tree structure 
(TS) proposed in Section 3.1 and the same 
function, suitable to work with mixed data, 
instead of a distance function. In this way, only 
the search algorithm of the fast k-NN classifiers, 
is compared. 

Besides, since GB tree traversal search 
algorithm was proposed for a binary tree, in our 
GR adaptation the pruning rule is applied to all of 
the C-1 sibling nodes. When a leaf node is 
reached, as it could contain more than one 
prototype, a local exhaustive comparison is 
performed to find the k-MSN. 

Since Cluster tree is proposed to work with 
any dissimilarity, we use this classifier with the 
same comparison functions for mixed data. 

Also, the following Approximating-Eliminating-
approach fast k-NN classifiers were compared: 

1. AESA classifier (Vidal, 1986) 
2. LAESA classifier (Mico et al., 1994), using 

m=20% of the prototypes in the dataset 
3. iAESA classifier (Figueroa et al., 2006) 
4. Probabilistic iAESA classifier (Figueroa et 

al., 2006) 
 

Finally, the following fast k-NN classifiers 
based on the hybrid-approach were also 
considered: 

1. TLAESA (Mico et al., 1996) 
2. Modified TLAESA (Tokoro, 2006) 

 
To compare Approximating-Eliminating and 

hybrid-approaches, the same comparison 
function for mixed data was used. In this work, 
the dissimilarity function HVDM (Wilson & 
Martínez, 2000), was used for the experiments. 
This comparison function was selected because 
it allows comparing mixed data and it is not a 
metric function since it does not satisfy the 
triangle inequality property.  

For the experiments, 10 datasets from the UCI 
repository (Blake & Merz, 1998) were used (see 
Table 2). 

In order to compare the different classifiers, 
the accuracy (Acc) and the percentage of 
comparisons between prototypes (Comp), were 
considered. The accuracy was computed as 
follows: 

 

 
(9) 

 
Where, NoCorrectPrototypes is the number of 

correctly classified prototypes in the testing set 
and NoTestPrototypes is the size of the testing 
set. The percentage of comparisons between 
prototypes was computed as follows: 
 

 
(10) 

 
Where NoCompFastClassifier is the number of 

comparisons done by the fast k-NN classifier, 
and NoTrainingPrototypes is the size of the 
training set. According to (10), the exhaustive 
classifier does the 100% of the comparisons. 
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Table 2. Datasets used in this section 
 

Dataset 
No. of 

prototypes 

No. of 
numerical 
features 

No. of non 
numerical 
features 

Classes 
Missing 

data 

Hepatitis 155 6 13 2 yes 
Zoo  101 1 16 7 no 
Flag 194 3 25 8 no 
Echocardiogram 132 9 2 2 yes 
Hayes 132 0 4 3 no 
Soybean-large 307 0 35 19 yes 
Bridges 108 0 11 7 yes 
Glass 214 9 0 7 no 
Iris 150 4 0 3 no 
Wine 178 13 0 3 no 

 
In all the experiments ten-fold-cross-validation 

was used. According to this technique, the 
dataset is divided in ten partitions; nine of them 
are used for training and the last partition is used 
as testing set. This process is repeated ten times, 
in such a way that each partition is used once as 
testing set. 

In (Hernandez-Rodriguez et al., 2007) different 
experiments for choosing a value of the 
parameter C and PercThres were done. In our 
experiments, C=3, NoP=10% of the dataset, and 
PercThres=100% were used, since in 
(Hernandez-Rodriguez et al., 2007), the fast k-
NN classifiers reached their best results with 
these values. 

In table 3, the results (Acc and Comp) 
obtained with the different tree-based fast k-NN 
classifiers, are shown. From this table, we can 

notice that the adapted FN, GB and ONC 
become approximate methods (the classification 
accuracy is not the same as using the exhaustive 
k-NN) using HVDM function, which occurs 
because this comparison function does not 
satisfy the triangle inequality property. From table 
2, we can also notice that Cluster tree, which is 
the only fast k-NN classifier in the state of the art, 
proposed to work with non metric functions, 
reduced more the number of prototype 
comparisons required to classify a new query 
(from 100% to 37.18%). However, the 
classification accuracy was decreased from 
81.12% (obtained by k-NN) to 73.57%. From all 
the tree-based fast k-NN classifiers, ONC 
obtained the best results (i.e. classification 
accuracy did not decrease and the percentage of 
comparisons was reduced from 100% to 36.37%) 

 
Table 3. Classification accuracy (Acc) and percentage of comparisons (Comp), obtained by the exhaustive k-NN search and the 

tree-based fast k-NN classifiers, using HVDM function and k=1 MSN 
 

Datasets k-NN  
Adapted FN 

classifier 
Adapted GB 

classifier 
Adapted ONC 

classifier 
Adapted MS 

classifier 
Cluster tree 

Acc Com Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp 

Hepatitis 81,75 100 81,13 118,99 81,13 87,50 81,13 71,89 81,08 95,86 77,88 42,01 
Zoo 97,00 100 97,00 24,68 97,00 23,46 97,00 22,16 97,00 21,86 95,00 41,63 
Flag 53,21 100 53,71 56,97 53,71 53,10 53,18 46,52 54,26 43,43 48,47 44,09 
Echocard. 82,69 100 82,69 121,01 82,69 84,01 82,69 72,82 84,18 93,43 83,24 41,75 
Hayes 84,29 100 84,29 28,31 84,29 21,14 84,29 16,59 83,57 27,45 67,31 27,45 
Soybean-L 90,54 100 91,18 26,56 91,18 19,90 91,18 16,85 89,88 25,02 83,33 20,22 
Bridges 63,36 100 64,27 93,65 64,27 53,34 65,18 50,65 63,27 54,25 40,27 36,82 
Glass 68,18 100 68,18 35,96 68,18 27,04 68,18 20,16 67,71 34,36 60,30 34,64 
Iris 94,67 100 94,67 21,12 94,67 19,87 94,67 18,21 95,33 19,37 86,67 37,41 
Wine 95,46 100 95,46 43,78 95,46 32,66 95,46 27,88 94,35 34,31 93,24 45,85 
Avg. 81,12 100 81,26 57,10 81,26 42,20 81,30 36,37 81,06 44,93 73,57 37,18 

 
In table 4, the results (Acc and Comp) 

obtained with different Approximating-Eliminating 
and Hybrid approaches for fast k-NN classifiers, 
are shown. From this table, we can notice that 
AESA, LAESA, iAESA, TLAESA and modified 
TLAESA also become approximate methods, 
using HVDM function. From table 3, it can also 
be observed that probabilistic iAESA reduced 
more the number of prototype comparisons 

required to classify a new query (from 100%, 
done by the k-NN to 22.45%). 

In table 5, the results obtained with the fast k-
MSN classifiers proposed in this work: Tree k-
MSN (using DF search to traverse the tree), 
AEMD, LAEMD (using the algorithm BPNodesTS 
to select base prototypes), Tree LAEMD (using 
the DFSAE tree traversal algorithm), are 
presented. From this table, it is possible to notice 
that all the proposed classifiers obtained similar 
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classification accuracy than all the other 
evaluated methods (enlisted in tables 3 and 4) 
but achieved a biggest reduction in the number of 
prototype comparisons. Among the proposed 
classifiers, Tree LAEMD obtained the best 
results. Additionally, a t-student test (Dietterich, 
1998) with a confidence level of 95%, was done. 

From this test, we noticed that the classification 
accuracy difference between the proposed 
classifiers and all other evaluated fast k-NN 
classifiers is not statistically significant, while the 
prototype comparison reduction (done by Tree k-
MSN, AEMD, LAEMD and Tree LAEMD) is 
statistically significant. 

 
 

Table 4. Classification accuracy (Acc) and percentage of comparisons (Comp), obtained by Approximating-Eliminating and 
Hybrid-approach fast k-NN classifiers, using HVDM function and k=1 MSN 

 

Datasets AESA LAESA TLAESA 
Modified 
TLAESA 

iAESA 
Probabilistic 

iAESA 

Acc Com Acc Comp Acc Comp Acc Comp Acc Comp Acc Comp 

Hepatitis 81,68 51,03 80,61 60,73 81,64 84,64 81,03 68,26 81,64 49,37 80,29 37,85 
Zoo 97,00 21,34 96,00 25,23 95,75 55,77 95,78 27,34 97,20 21,04 95,42 18,56 
Flag 53,60 27,23 52,82 27,57 52,01 49,25 50,19 42,94 52,53 27,15 52,00 25,93 
Echocard. 82,54 64,34 82,08 67,39 82,25 75,84 82,12 38,30 82,92 63,18 82,34 63,04 
Hayes 83,71 21,23 80,71 21,84 80,73 49,44 80,48 25,49 82,31 21,02 81,84 20,62 
Soybean-L 89,87 2,07 89,87 5,12 89,87 38,44 87,23 18,35 89,03 2,05 90,23 2,04 
Bridges 63,21 24,23 60,37 26,23 59,37 48,45 59,49 38,92 60,64 24,71 60,60 24,57 
Glass 68,18 13,20 68,18 24,53 68,18 49,54 68,18 22,39 68,18 11,92 67,32 11,25 
Iris 94,67 8,23 94,67 10,68 94,67 42,54 94,67 13,29 94,67 8,05 94,00 8,01 
Wine 95,46 14,23 95,46 14,75 95,46 36,45 95,46 13,52 95,46 13,58 95,41 12,58 
Avg. 80,99 24,71 80,08 28,41 79,99 53,04 79,46 30,88 80,46 24,21 79,95 22,45 

 
 

 
Table 5. Classification accuracy (Acc) and percentage of comparisons (Comp), obtained by the proposed fast k-MSN 

classifiers, using HVDM function and k=1 MSN 
 

Datasets  Tree k-MSN AEDM LAEDM Tree LAEDM 

Acc Comp Acc Comp Acc Comp Acc Comp 

Hepatitis 83,71 9,54 81,31 14,63 81,64 18,96 81,59 13,23 
Zoo 96,00 19,68 97,10 18,61 97,00 32,85 96,00 12,79 
Flag 52,21 13,20 53,63 16,23 52,00 17,44 52,47 9,73 
Echocard. 79,62 16,50 82,62 17,51 82,62 21,16 81,49 13,05 
Hayes 83,52 18,19 83,85 14,52 83,85 18,42 82,17 10,67 
Soybean 85,26 9,72 90,54 11,52 90,54 16,25 89,37 7,83 
Bridges 60,36 15,80 61,85 17,62 60,64 17,96 60,60 8,32 
Glass 67,73 12,91 67,01 14,99 68,18 15,72 68,18 8,38 
Iris 92,67 15,66 94,09 14,82 94,09 15,62 94,67 10,37 
Wine 91,57 13,80 95,00 14,62 95,00 18,51 95,46 12,07 
Avg. 79,27 14,50 80,70 15,50 80,56 19,29 80,20 10,64 

 
 
 

In Figure 4, a graph of the accuracy (Acc) 
against the number of prototype comparisons 
(Comp) is shown. From this graph, we can notice 
that all the classifiers obtained similar average 
classification accuracy, except Cluster tree which 
obtained the lowest classification accuracy 

results. However, the proposed classifiers (Tree 
k-MSN, AEMD, LAEMD and Tree LAEMD), did 
the smallest number of prototype comparisons. 
All the experiments were repeated, using k=3 and 
k=5 and the performance of the fast k-NN 
classifiers....were....similar

. 
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Figure 4. Classification accuracy (Acc) against percentage of comparisons (Comp)  

obtained by the different fast k-NN/k-MSN classifiers, using HVDM similarity function and k=1 MSN 
 
 
 
8 Conclusions 
 
The development of fast k-NN classifiers has 
been an active research area in the last years, 
but most of these classifiers rely on metric 
properties to reduce the number of prototype 
comparisons. Moreover, very few work has been 
focused on applications where the comparison 
function does not satisfy metric properties. For 
this reason, in this thesis some fast k most similar 
neighbor (k-MSN) classifiers for mixed data and 
non metric comparisons functions were 
proposed. To develop these methods, the most 
successful approaches from the state of the art 
were followed. 

In order to make comparisons, other tree-
based fast k-NN classifiers were adapted using 
our proposed tree structure and the same 
comparison function, to allow them working on 
mixed data, because of under these 
circumstances the original algorithms cannot be 
applied. Also, other methods based on 
Approximating-Eliminating and Hybrid 
approaches were considered for comparisons. In 
these cases, the original algorithms were tested 
using the same comparison function for mixed 
data. 

Based on our experimental results, in 
comparison with the exhaustive classifier, and 
the other fast k-NN classifiers (FN, GB, ONC, 

MS, AESA, LAESA, iAESA, probabilistic iAESA, 
TLAESA, modified TLAESA and Cluster tree), the 
proposed classifiers (Tree k-MSN, AEMD, 
LAEMD and Tree LAEMD), obtained a big 
reduction on the number of comparisons between 
prototypes, which is of particular importance in 
applications where a fast response is required. 

Among the proposed fast k-MSN classifiers, 
using Tree LAEMD the best results were 
obtained. However, it is important to remark that 
Tree LAEMD requires more storage space than 
Tree k-MSN. For this reason, the selection of 
Tree k-MSN or Tree LAEMD would depend on 
the size of the particular problem. The proposed 
classifier LAEMD is applicable when the 
comparison function is very expensive, because 
the preprocessimg stage required by LAEMD is 
faster than the preprocessing stage required by 
Tree LAEMD. 

Finally, we can conclude that for large mixed 
datasets and non-metric prototype comparison 
functions, the proposed classifiers are the best 
option. 

As future work, we plan to look for other 
pruning rules (elimination criteria), not based on 
metric properties, which would allow us to reduce 
even more the number of prototype comparisons 
for AEMD, LAEMD and Tree LAEMD. 

 
 

Proposed fast 
k-MSN classifiers 
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