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Abstract. In this paper, an adaptive recurrent neural 
control scheme is applied to a wind turbine with 
permanent magnet synchronous generator. Due to the 
variable behavior of wind currents, the angular speed of 
the generator is required at a given value in order to 
extract the maximum available power. In order to develop 
this control structure, a high order recurrent neural 
network is used to model the turbine-generator model 
which is assumed as an unknown system; a learning law is 
obtained using the Lyapunov methodology. Then a 
control law, which stabilizes the reference tracking error 
dynamics, is developed using Control Lyapunov Functions. 
Via simulations, the control scheme is applied to maximum 
power operating point on a small wind turbine. 
Keywords: Neural networks, Wind turbine, Permanent 
magnet synchronous generator, Maximum power control, 
Lyapunov methodology. 
 
Resumen. En este artículo un esquema de control 
adaptable neuronal recurrente es aplicado a una turbina 
de viento con un generador síncrono de imán 
permanente. Debido al comportamiento variable de las 
corrientes de viento, la velocidad angular del generador es 
requerida a un valor específico para poder extraer la 
máxima potencia disponible. Para desarrollar la estructura 
de control, una red neuronal recurrente de alto orden es 
utilizada para modelar el sistema generador-turbina el cual 
es considerado desconocido; una ley de aprendizaje es 
obtenida utilizando el método de Lyapunov. Una ley de 
control, que estabiliza la dinámica del error de seguimiento 
de trayectoria es desarrollada utilizando Funciones de 
Control de Lyapunov. Mediante simulación, el esquema de 
control es aplicado a un punto de operación de máxima 
potencia en una turbina de viento de baja potencia. 
Palabras clave: Redes neuronales, Turbina de viento, 
Generador síncrono de imán permanente, Control de 
máxima potencia, Método de Lyapunov. 
 

 

1 Introduction 
 
Renewable energies such as wind and solar energy 
conversion systems have driven attention during the 
past decade due to the environmental and economic 
concerns along with the reduction in the components 
cost. In remote areas such as rural populations are 
considered as sources that can replace conventional 
combustibles. Wind is a natural resource that 
features many advantages since it is clean and 
considerable reliable in some areas like the coast. In 
the wind energy conversion systems, the control 
problem consists on delivering the maximum power 
available from the wind to ensure the system 
reliability and security in order to deal with the 
variable nature of the generated energy. The crucial 
feature for wind energy generation systems is the 
instantaneous nature of electricity generation. The 
physical laws, which determine power delivery 
across a transmission grid, require a synchronized 
energy balance between power injection at 
generation points and power consumption at 
demand points plus transmission and distribution 
losses. Across the electric network, production and 
consumption are perfectly synchronized without any 
significant allowing for electricity storage. If 
generation and consumption get out of balance, 
even for a moment, both frequency and voltage will 
change with serious consequences for the power 
system and theirs users. 

Since most of the research is actually driven to 
control large scale wind systems, most of the 
conversion topologies are based on doubly fed 
inductions generators. This paper focuses on 
controlling small wind turbines, which have a 
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different impact area such as isolated communities 
and small scale applications. Wind turbines that 
operate at 2 to 10 kW output, generally use a 
permanent magnet synchronous generator (PMSG) 
which has a simple structure and reliable 
performance. The generator is the most important 
component in the generation system which also 
includes the wind turbine and the battery storage or 
grid connection. 

Since the seminal paper [9], there has been 
continually increasing interest in applying Artificial 
Neural Networks (ANN) to identification and control 
since they are excellent approximators for nonlinear 
and stochastic models and have been implemented 
in several practical applications that deal with 
unknown dynamic systems. Lately, the use of 
recurrent neural networks is being developed, which 
allows more efficient modeling of the underlying 
dynamic systems [10] Three representative books 
[11], [14] and [15] have reviewed the application of 
recurrent neural networks for nonlinear system 
identification and control. In particular, [15] discrete 
time recurrent neural networks are applied to 
electrical generators, while [14] analyzes adaptive 
identification and control by means of on-line 
learning, where stability of the closed-loop system is 
established based on the Lyapunov function 
method. In [14], the trajectory tracking problem is 
reduced to a linear model following problem, with 
application to DC electric motors. In [11], analysis of 
Recurrent Neural Networks for identification, 
estimation and control are developed, with 
applications on chaos control, robotics and chemical 
processes. Recently, ANN have been successfully 
applied in identification and control of mechanical 
systems [1]. For wind generation systems, ANN 
have been considered as a convenient analysis tool 
for wind forecasting due to the simplicity of the 
model and the accuracy of the results [17]. For 
control applications, in [18] an ANN based wind 
velocity estimation and maximum power extraction 
control for small wind turbine generation system is 
developed using static networks. In [Chedid et al., 
1999], a Wind Energy Generation System is 
analyzed using conventional and intelligent control 
approaches where an Neuro-Fuzzy scheme showed 
robustness and superior performance compared 
with the traditional control methods. 

Many control applications deal with nonlinear 
processes in presence of uncertainties and 
disturbances. These phenomena must be 
considered for controller design in order to obtain 

the desired closed loop performance. In this article 
we use Recurrent High Order Neural Networks 
(RHONN) for applications to wind energy conversion 
systems, where we consider the presence of 
uncertainties and unmodeled dynamics. We develop 
an adaptive control scheme, which is composed of a 
recurrent neural identifier and a controller, where the 
former is used to build an on-line model for the 
unknown plant, and the latter to force the unknown 
plant to track the reference trajectory. An update law 
for the RHONN weights is proposed via the 
Lyapunov methodology. The control law is 
synthesized using the Lyapunov methodology. The 
proposed control scheme is displayed in Fig. 1. The 
algorithm is tested, via simulations, to control a 1 kW 
wind turbine for maximum power operating point. 
The simulation results verify that the neural 
controller can successfully satisfy the power 
demand. 

 

Fig. 1. Recurrent neural control scheme 

2 System Model Description 

In this work we focus on directly coupled 
synchronous generators. The wind turbine obtains 
power from wind currents and converts it into 
mechanical energy leading the shaft rotation. This 
system is displayed in Fig. 2. The obtained energy is 
proportional to the sweep area, the air density, the 
wind speed and the power coefficient as 
 
 ௠ܲ ൌ ଶܴߨߩ0.5

௪ܸ
ଷܥ௣ሺߠ,  ሻ  (1)ߣ

 
where ߩ is the air density, R is the turbine radius, 
V߱ the wind speed, and Cp(ߠ,  is the coefficient of (ߣ



 
High Order Recurrent Neural Control for Wind Turbine with a Permanent Magnet Synchronous Generator 135 

 

Computación y Sistemas Vol. 14 No. 2, 2010, pp 133-143 
ISSN 1405-5546 

power conversion efficiency which depends on the 
blade pitch angle   and the tip speed ratio  The tip 
speed ratio is defined as 

 
where is the rotor speed. The relationship of Cp 
and   can be generated by experimentation. A 
typical curve is displayed in Fig. 3. As can be seen, 
for each wind speed, the maximum power available 
corresponds to one value of the turbine rotor speed. 
Then, by using a variable speed control scheme, the 
generator can operate at the maximum power. 
 
 
 

 
 

Fig. 2. Composition of a wind turbine system 
 
 
Cp can be determined with the following relationship, 

 
(2) 

 
where  is obtained from 

 
(3) 

The aerodynamic power extracted from the wind is 

related with the torque by then 

                                      (4) 

                                      (5)      

 

 
The generator in small wind turbines is typically a 
Permanent Magnet Synchronous Generator 
(PMSG), which is modeled by the following dynamic 
system 
 

                          (6) 

 
Fig. 3. Power Coefficient versus Tip Speed Ratio 

 
where Jeq is the rotational inertia of the generator, Bm 
is the rotational damping, Te is the electromagnetic 
torque and  is the aerodynamic torque 
transferred from the wind. 

For medium and small scale wind turbines, the 
variable speed wind turbine with multipole 
permanent magnet synchronous generator (PMSG) 
and full-scale power converter is frequently used. 
This synchronous generator connected to a power 
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converter can operate at low speeds and does not 
require a gear transmission and a DC excitation 
system which gives the advantage of the high 
efficiently where its performance highly depends on 
how it is controlled; the control scheme depends on 
the variation of the wind speed which results on the 
change of the PMSG parametric data. The main 
disadvantage of this construction is the high cost of 
the permanent magnet and the fixed excitation of the 
field. 

The PMSG is commonly modeled in the rotor 
reference frame applying the Park's transformation 
[Valenciaga et al., 2000]. The terminal voltage of the 
PMSG is defined by 
 

ൣ ௚ܸ௔௕௖൧ ൌ െൣܴ௚௔௕௖൧ൣ݅௚௔௕௖൧ ൅
݀
ݐ݀

 ௚௔௕௖൧ (7)ߣൣ

௤ܸ ൌ െ ൬ܴ௚ ൅
݀
ݐ݀

௤൰ܮ ݅௤ െ ௚߱ܮௗ݅ௗ ൅ ߱௥(8) ߖ 

ௗܸ ൌ െ ൬ܴ௚ ൅
݀
ݐ݀

ௗ൰ܮ ݅ௗ ൅ ௚߱ܮ௤݅௤ (9) 

where 
 
  Rg Stator phase winding resistance (ߗ) 

 Lq,Ld 
 
Stator inductances in the quadrature axis 
(henry) 

   ߱g 
 
Angular velocity of the generator (rad/s) 

 
 ߖ

 
Magnetic flux linkage (webers). 

 
The dynamic model of the PMSG is derived in 

the two phase synchronous reference frames where 
the q axis is 90° after d with respect to rotating 
frame. The synchronization between the rotating 
frame dq and the three phase reference frame abc is 
hold by a phase link (PLL). The electromagnetic 
torque is expressed by 

௘ܶ ൌ
3
2

ܲ ቀ൫ܮௗ െ ௤൯݅௤݅ௗܮ ൅  ௠݅௤ቁ (10)ߖ

where P is the number of pole pairs in the generator. 
 

The relation between the generator angular 
speed and the mechanical angular velocity ߱m is 
defined by ߱௥ ൌ ఠܲ௠. In general, Ld=Lq=L, then 
 

௘ܶ ൌ
3
2

ܲሺߖ௠݅௤ሻ (11) 

 
And the complete model of the Wind Turbine with 
PMSG is given by  

݀߱௠

ݐ݀
ൌ

1
௔ܬ

൬ ఠܶ െ
3
2

௠݅௤ߖܲ െ  ௠߱௠൰ (12)ܤ

݀
ݐ݀

݅௤ ൌ
ܴ௚

ܮ
݅௤ ൅ ௚߱݅ௗ െ

1
ܮ

߱௥ߖ ൅
1
ܮ ௤ܸ (13) 

݀
ݐ݀

݅ௗ ൌ
ܴ௚

ܮ
݅௤ െ ௚߱݅௤ ൅

1
ܮ ௗܸ (14) 

The real and reactive power can be obtained 
from 

௦ܲ ൌ ௗܸ݅ௗ ൅ ௤ܸ݅௤ 
ܳ௦ ൌ ௗܸ݅௤ െ ௤ܸ݅ௗ 

 

Different control strategies are usually applied to 
the machine-side converter as maximum torque 
control, unity power factor control, and constant 
stator voltage control. In general, the d axis of the 
reference frame is aligned along the permanent 
magnet flux position [Li and Chen, 2008]. In 
maximum torque control, the stator current is 
controlled to have the q-component only, id=0. 
Therefore, the generator provides the maximum 
possible torque without controlling the reactive 
power. 

The control problem is established as follows: for 
a given wind speed we obtain the rotor angular 
speed that renders the maximum power coefficient 
at an optimal tip speed ratio. Then, the control 
algorithm will regulate the load given by Vd,Vq in 
order to maintain a desired output. 
 
3.Recurrent.Higher-Order.Neural 
Networks 

Artificial neural networks have become an useful tool 
for control engineering thanks to their applicability on 
modeling, state estimation and control of complex 
dynamic systems. Using neural networks, control 
algorithms can be developed to be robust to 
uncertainties and modeling errors. 

Neural Networks consist of a number of 
interconnected processing elements or neurons. The 
way in which the neurons are interconnected 
determines its structure. 
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Recurrent networks. In a recurrent neural 
network, the outputs of the neuron are fed back to 
the same neuron or neurons in the preceding layers. 
Signals are transmitted in forward and backward 
directions. Artificial Recurrent Neural Networks are 
mostly based on the Hopfield model [3]. These 
networks are considered as good candidates for 
nonlinear systems applications which deal with 
uncertainties and are attractive due to their easy 
implementation, relatively simple structure, 
robustness and the capacity to adjust their 
parameters on line. 
    In [7], Recurrent Higher-Order Neural Networks 
(RHONN) are defined as 

             (15) 

where   is the th neuron state, L is the number of 

higher-order connections,  is a collection 
of non-ordered subsets of  

 are the adjustable weights of the neural 

network,  are nonnegative integers, and  is a 
vector defined by  

 with 

 being the input to the neural 
network, and S(ڄ) a smooth sigmoid function 

formulated by  . For the sigmoid 
function, is a positive constant and is a small 
positive real number. Hence, S(χ)א[ζ,ζ+1]. As can be 
seen, (15) allows the inclusion of higher-order terms. 
By defining  

 
can be rewritten as 

 
 

where  
 
 
 

 
 

Fig. 4. Recurrent High Order Neural Network 

In this paper, 

 
This means that the same number of inputs and 
states is used. We also assume that the RHONN is 
affine in the control, so that (16) can be rewritten as 

 

Reformulating (16) in a matrix form yields 
 

 
 
where xא Ը n, WאRn×L, z(x)א Ը L, uאRn, and Aא Ը n×n. 
This RHONN structure is shown in Fig. 4. 

For nonlinear identification applications, the term 
yj in (15) can be either an external input or the 
identifier state of a neuron passed through the 
sigmoid function. Depending on the sigmoid function 
input, the RHONN can be classified as a Series-
Parallel structure if z(ڄ) = z(ν), where ν is an external 
input, or a Parallel one if z(ڄ) = z(x), where x is the 
neural network state [14]. This terminology is 
standard in adaptive identification and control [4], 
[9]. The presented results can be extended to 
nonlinear systems with less inputs than states for 
the output tracking problem, where the full state 
measurement is not required, if neural observers are 
implemented [12]. 
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4.Adaptive Recurrent Neural Control 
Scheme 

In this work a RHONN is applied in a direct 
control scheme as can be seen in Fig. 1. The 
RHONN is used as an identifier for the unknown 
model, but the neural network weights will be 
adjusted in function of the tracking error in order to 
develop a control law based on a known structure 
but with adapting weights. This scheme is selected 
due to its easy implementation. Indirect control can 
be implemented using a similar algorithm by first 
doing online identification and then applying the 
control law [13]. For control applications, the 
RHONN features several advantages: the network 
architecture incorporates the nonlinear dynamics 
and having a more complex model compared with 
(15) due to the high order terms captures important 
characteristics of the nonlinear system to identify 
[14]. The stability and convergence properties of the 
RHONN as adequate models for nonlinear dynamic 
systems is further discussed in [7]. 

The nonlinear system (Wind turbine - PMSG) 
model can be described as 

ሶ௣ݔ ൌ ௣݂൫ݔ௣൯ ൅ ݃௣൫ݔ௣൯(19) ݑ 

We propose to model the unknown nonlinear plant 
by the recurrent neural network 

ሶ௣ݔ ൌ ሶ߯ ൅ ߱௣௘௥ ൌ ߯ܣ ൅ ܹݖכሺ߯ሻ ൅ ߱௣௘௥ ൅ ௚ܹ
ݑכ

 
(20) 

where A = -aI, a א Ը⁺, xp א Ըⁿ, χ א Ըⁿ, z(χ) א ԸL, W * א 
Ըn×L, Wg

 Ըm and wper represents the א Ըn×m, u א *
modeling error, with W*, Wg

* being the unknown 
values of the neural network weights which minimize 
the modeling error. 
    In order to derive the learning laws and stability 
analysis, based on the Lyapunov approach, we state 
the next assumption:  

    Assumption 1. There exist unknown but constant 
optimal weights ܹכ  such that the plant is described 
by the neural network plus a minimum bounded 
modeling error term ߱*

per. Then, the state ईp of the 
unknown dynamic system (20) satisfies 

ሶ߯௣ ൌ ௣ݔܣ ൅ ௣൯ݔ൫ݖכܹ  ൅ ߱௣௘௥
כ ൅  ሻ (21)ݑሺ ݐܽݏ

ฮ߱௣௘௥
כ ฮ ൑ ߱௕

כ א Ըା (22) 

where all the elements are as defined earlier. 
 
     Remark 1. The weight matrices ܹכ is assumed to 
be unknown since ii is the optimal set which renders 
the minimum modelling error, defined as ߱௣௘௥

כ
. Due 

to this fact, we use W, as the approximation of the 
weight matrices ܹכ  and ߱௣௘௥

כ , the modelling error, 
corresponds to ܹכ ≠ W 
    Assumption 2. The trajectories of xp are 
continuous and bounded for all t ൐ 0. 
    We will design a robust controller which enforces 
asymptotic stability of the tracking error between the 
plant and the reference signal ݔሶ௥ ൌ ,ݎݔሺ ݎ݂  ሻ asݎݑ

Ղ ׷ ൌ ௣ݔ െ  ௥ (23)ݔ

Its time derivative is 

ሶ݁ ൌ ߯ܣ ൅ ሺ߯ሻݖכܹ ൅ ߱௣௘௥
כ ൅ ௚ܹ

ݑכ െ ௥݂ሺݔ௥,  ௥ሻ (24)ݑ

Now, we proceed to add and subtract the terms 
෡ܹ ,௥ሻݔሺݖ߁  ,݁ܣ ෡ܹ௚ݑ so that  

ሶ݁ ൌ ݁ܣ ൅ ሺ߯ሻݖכܹ െ ෡ܹ௓ሺݔ௥ሻ ൅ ௣௘௥ݓ
כ ൅ ൫ ௚ܹ

כ െ ෡ܹ௚൯ݑ ൅
൫െ ௥݂ሺݔ௥, ሻݑ ൅ ௥ݔܣ ൅ ෡ܹ ௥ሻݔሺݖ ൅ ௚ܹݑ൯ ൅ ൫߯ܣ െ   ௣൯ݔ

(25) 

where ෡ܹ , ෡ܹ௚ are the estimated value for the 
unknown weight matrices ܹכ, Wg

*. 
 
    Let us assume that there exists a function  
,ݐ௥ሺߙ ෡ܹ , ෡ܹ௚ሻ such that 

,ݐ௥൫ߙ ෢ܹ൯ ൌ ሺ෢ܹ
௚ሻିଵ൫ ௥݂ሺݔ௥, ሻݑ െ ௥ݔܣ െ ෢ܹݖሺݔ௥ሻ െ ሺݔ௥

െ  ௣ሻ൯ݔ

(26) 

Then, adding and subtracting to 25) the term 
෡ܹ ,ݐ௥ሺߙ݃ ෡ܹ , ෡ܹ ݃ ሻ and simplifying we obtain  

ሶ݁ ൌ ݁ܣ ൅ ሺ߯ሻݖכܹ െ ෡ܹ ௥ሻݔሺݖ ൅ ߱௣௘௥
כ ൅ ൫ ௚ܹ

כ െ ෡ܹ௚൯ݑ െ
෡ܹ ,ݐ௥ሺߙ݃ ෡ܹ , ෡ܹ ݃ ሻ ൅ ൫߯ܣ െ   ௣൯ݔ

(27) 

Next, let us define ෩ܹ ൌ _ כܹ ෡ܹ  , ෩ܹ௚ ൌ ௚ܹ
כ െ ෡ܹ௚,  

 
෤ݑ ൌ ݑ െ ,ݐ௥ሺߙ ܹሻ so that (27) is reduced to 
 

ሶ݁ ൌ ݁ܣ ൅ ෩ܹ ሺ߯ሻݖ ൅ ܹ൫ݖሺ߯ሻ െ ௥ሻ൯ݔሺݖ ൅ ߱௣௘௥
כ ൅ ෩ܹ௚ݑ

൅ ௚ܹݑ෤ ൅ ൫߯ܣ െ  ௣൯ݔ

(28) 

 
and by defining  ݑ෤ ൌ ଵݑ ൅  ଶ withݑ
 

ଵݑ ൌ ሺ ෡ܹ௚ሻିଵ ൬െ ෡ܹ ቀݖሺ߯ሻ െ ௣൯ቁݔ൫ݖ െ ൫߯ܣ െ  ௣൯൰  (29)ݔ
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equation (28) reduces to 
 

ሶ݁ ൌ ݁ܣ ൅ ෩ܹ ሺ߯ሻݖ ൅ ෡ܹ ቀݖ൫ݔ௣൯ െ ௥ሻቁݔሺݖ ൅ ߱௣௘௥
כ ൅ ෩ܹ௚ݑ

൅ ܹ෢݃  ଶݑ

(30) 

Therefore, the tracking problem reduces to a 
stabilization problem for the error dynamics (30). 

A. Tracking Error Stabilization 

In order to perform the stability analysis for the 
system, the following Lyapunov function is 
formulated 

       ܸ ൌ
1
2

ԡ݁ԡଶ ൅
 ୻ିଵ

2
൛ݎݐ ෩ܹ ் ෩ܹ ൟ ൅

 ௚୻ିଵ

2
൛ݎݐ ෩ܹ௚

் ෩ܹ௚ൟ 

 
           Γ ൌ ݀݅ܽ݃ሼߛଵ, … , ,௡ሽߛ     Γ  ୥ ൌ ݀݅ܽ݃൛ߛ௚ଵ, … ,  ௚௡ൟߛ

 

(31) 

 
Its time derivative, along the trajectories of (30), is 
 

ሶܸ ൌ െܽԡ݁ԡଶ ൅ ்݁ ෩ܹ ሺ߯ሻݖ ൅ ்݁ ෡ܹ ቀݖ൫ݔ௣൯ െ ௥ሻቁݔሺݖ ൅

்݁߱௣௘௥
כ ൅ ்݁ ෩ܹ௚ݑ ൅ ்݁ ෡ܹ௚ݑଶ ൅ Γିଵݎݐ ൜ ෩ܹሶ ்

෩ܹ ൠ ൅

Γ௚
ିଵݎݐ ቊ ෩ܹሶ

௚

்
෩ܹ௚ቋ  

(32) 

Replacing the learning laws 

ݎݐ ൜ ෩ܹሶ ்
෩ܹ ൠ ൌ െΓ்݁ ෩ܹ  ሺ߯ሻݖ

ෝ߱ሶ
௜௝ ൌ െߛ௜݁ݖ൫ݔ௝൯ 

 

(33) 

ݎݐ ቊ ෩ܹሶ
௚

்
෩ܹ௚ቋ ൌ െΓ௚ ்݁ ෩ܹ௚ݑ 

ෝ߱ሶ
௚௜௝ ൌ െߛ௚௜݁௜ݑ௝ 

(34) 

In (32) we obtain 

ሶܸ ൌ െܽԡ݁ԡଶ ൅ ்݁ ෡ܹ ߶௭ሺ݁, ௥ሻݔ ൅ ்݁߱௣௘௥
כ ൅ ்݁ ෡ܹ௚ݑଶ 

(35) 

߶௭ሺ݁, ௥ሻݔ ൌ ௣൯ݔ൫ݖ െ ௥ሻݔሺݖ ൌ ሺ݁ݖ ൅ ௥ሻݔ െ  ௥ሻݔሺݖ
 

Next, we consider the following inequality [10], 
 

்ܻܺ ൅ ்ܻܺ ൑ ்ܺΛܺ ൅ ்ܻΛ  ିଵܻ (36) 

which holds for all matrices X,YאԸnxk and א߉Ըnxn 
with ߉ ൌΛT>0. Applying (36) to ்݁ ෡ܹ ߶ ሺ݁,  ௥ሻ withݔ
߉ ൌI, we obtain 

ሶܸ ൑ െܽԡ݁ԡଶ ൅
1
2

்݁݁ ൅
1
2

ԡ ෡ܹ ԡ^2ԡ߶௭ሺ݁, ௥ሻԡଶݔ

൅ ^ݎ݁݌_்߱݁ כ ൅்݁ ෡ܹ௚ݑଶ 

(37) 

whereฮ ෡ܹ ฮ, is any matrix norm for ෡ܹ . 
 
Since ߮z(e,xr) is Lipschitz with respect to e, then, 
there exists a positive constant L߮ such that 
߮z(e,xr)T≤߮ܮԡ݁ԡ. Hence (37) can be rewritten as 
 

ሶܸ ൌ െܽԡ݁ԡଶ ൅
1
2

ቀ1 ൅ ׎ܮ
ଶ ฮ ෡ܹ ฮ

ଶ
ቁ ԡ݁ԡଶ ൅ ்݁߱௣௘௥

כ

൅ ்݁ ෡ܹ ௚మ
ೠ 

(38) 

  
 
To this end, we define the following control law: 

 (39) 
 
which renders 

ሶܸ ൑ െܽԡ݁ԡଶ െ ቀ1 ൅ ׎ܮ
ଶ ฮܹכ െ ෩ܹ ฮ

ଶ
ቁ 

෍ ൬ߤ௜ െ
1
2

൰

௡

௜ୀଵ

݁௜
ଶ ൅ Ղ்߱ݎ݁݌כ 

                                                                                         (40)           

Considering that the modeling error is bounded by 
above by  ฮ߱௣௘௥

כ ฮ ൑ ߱௕
כ , 

ሶܸ ൑ െܽԡ݁ԡଶ െ ቀ1 ൅ ׎ܮ
ଶ ฮܹכ െ ෩ܹ ฮ

ଶ
ቁ ෍ ൬ߤ௜ െ

1
2

൰

௡

௜ୀଵ

݁௜
ଶ

൅ ԡ்݁ԡ߱௕
כ  

                                                

 

From Corollary 5.2 from [5], there exists a class K∞ 
function ߙe(||e||), such that 

௘ሺԡ݁ԡሻߙ ൌ ܽԡ݁ԡଶ ൅ ቀ1 ൅ ׎ܮ
ଶ ฮܹכ െ ෩ܹ ฮ

ଶ
ቁ ෍ ൬ߤ௜ െ

1
2

൰

௡

௜ୀଵ

݁௜
ଶ 

 

then 

ሶܸ ൑ െߙ௘ሺԡ݁ԡሻ+ԡ்݁ԡ߱௕
כ    

Outside the ball of radius ߙ െ1(߱௕
כ *), we have that ݁ ՜ 

0 when t՜∞ and from (33) ෝ߱௜௝ ሺݐሻ  ՜ 0 then 
 

ଶݑ ൌ െሺ ෡ܹ௚ሻିଵߤ ቀ1 ൅ ೥׎ܮ
ଶ ฮ ෡ܹ ฮ

ଶ
ቁ ߤ  ݁ ൌ ݀݅ܽ݃ ሼߤଵ, … , ,௡ሽߤ ௜ߤ ൐ ଵ

ଶ
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 lim
୲՜∞

W෡ ՜  W෡ ∞ ܽ݊݀ lim
୲՜∞

Ẁ ՜  Ẁ∞ 

 
and Ղ  and ෡ܹ   and uniformly ultimately bounded in  
 

൛൫Ղ, ෡ܹ ൯: ߙሺԡՂԡሻ ൐ ܾ߱
 .ൟכ

 
Now, let us consider the following lemm 

Lemma 1 [4]. For scalar valued functions, 

i) A function ݂ሺݐሻ which is bounded by below and 
not increasing has a limit when t՜∞. 

ii) Consider the non negative scalar functions f(t), 
݃ሺݐሻ defined for all ݐ ൒ 0. If ݂ሺݐሻ ൑ ݃ሺݐሻ, ݐ׊ ൒
0 and ݃ሺݐሻ א ሻݐthen ݂ሺ ݌ܮ א ݌ for all ݌ܮ א ሾ1, ∞ሿ.  

     If ݁ ൌ  0, and ෡ܹ ് 0, our tracking goal is 
achieved. Then, we proceed to prove the 
boundedness of the on-line weights. Since ሶܸ  is a 
negative semidefined function, not increasing and 
bounded by below, from Lemma 1 we have lim

௧՜ஶ
ܸ ՜

∞ܸ. Hence, ∞ܸ exists and it is bounded, then we 
have lim

௧՜ஶ
 W෡ ՜  W෡ ∞ 

Hence ෡ܹ∞ exists and it is bounded 

From (40),   that for all ݁, ܹ ് 0, 

lim
௧՜ஶ

݁ ሺݐሻ ൌ  0 (41) 

Then, the control law to apply to the nonlinear 
system is defined by 

ݑ ൌ ௥ݔ௥ߙ ൅ ଵݑ ൅  ଶ (42)ݑ

ݑ ൌ ሺ ෡ܹ௚ሻିଵ ቀ ௥݂ሺݔ௥, ௥ሻݑ െ ௥ݔܣ െ ෡ܹ ௥ሻݔሺݖ െ ሺݔ௥ െ ௣ሻݔ

െ ෡ܹ ቀݖሺ߯ሻ െ ௣൯ቁݔ൫ݖ െ ൫߯ܣ െ ௣൯ݔ

െ ߤ ቀ1 ൅ ׎ܮ
ଶ ฮ ෡ܹ ฮ

ଶ
ቁ ݁ቁ 

where ߙr (ईr), ݑଵ, ݑଶ are defined in equations (26), 
(29) and (39). This control law guarantees 
asymptotic stability of the error dynamics and 
therefore ensures the tracking of the reference 
signal. 

B Simulation results 
 
To evaluate the control capability of the RHONN 
controller, we now apply the developed approach on 

a small wind energy conversion system. The 
objective is to maximize the power extracted from 
the wind by controlling the rotor speed of the wind 
turbine. The states to control in the PMSG are ݅ௗ 
and ߱௠. The current ݅௤will be driven to zero in order 
to minimize losses in the generator. The angular 
speed ߱௠ will be regulated at the optimum value 
which is obtained by measuring the wind speed and 
fixing the optimal value 7=ߣ. The maximum power 
coefficient of this wind turbine is approximately 
 ௣=0.42. The control signal applied directly to theܥ
machine-side converter is a three-phase sinusoidal 
voltage having the frequency of a PMSG. The 
control inputs are the load voltages in the ݍ െ ݀ 
reference frame. The parameters of the wind turbine 
are the following  
 
R=1.525 m L=0.00585 H 
 ߗ kg/m³ R=0.1 1.25=ߩ
J=0.01 kgڄm² P=8 
  Wb 0.175=ߖ

 
The approach is based on building a recurrent 

neural network identifier which obtains a reduced 
nonlinear model for the dynamics of ݅ௗ and ߱௠ The 
model is described by the following RHONN 

ሶ߯ଵ ൌ െܽଵ߯ଵ ൅ ଵܹݖכሺ߯ଵሻ ൅ ௗܸ 
ሶ߯ଶ ൌ െܽଶ߯ଶ ൅ ଶܹݖכሺ߯ଶሻ ൅ ௤ܸ 

(43) 

or in matrix form 

ሶ߯ ൌ െܽ߯ ൅ ෡ܹ ሺ߯ሻݖ ൅  (44) ݑ

where ܽ௜ ൐ 0; ܹ א Ըଶ୶଺,  ߯ ൌ ሾ݅ௗ, ߱௠ሿT  and 
 

ሺ߯௝ሻ൧ݖൣ
௜

ൌ ቀ݄݊ܽݐ൫݇߯௝൯ቁ
௜
.  

where we consider six high order terms. 
 
     For the speed control, we consider the simplified 
RHONN given by (43), and we select 
 

ܽ  ൌ  ݀݅ܽ݃ሼ17.5,22.5ሽ, ߁ ൌ  ݀݅ܽ݃ሼ0.14,0.10ሽ  
  

݇₁ ൌ  0.085 ݇₂ ൌ  0.008 
 
     Remark 2: The design terms can be selected by 
experimentation. In particular, large values of 
ܽ௜relative to the maximum value of Wij∞ can derive in 
large oscillations. The selection of ݇ଵ and k₂ is 
related with the effectiveness of the adaptation law, 
large values can saturate the sigmoid and produce 
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large oscillation on the weight values. Furthermore, 
the learning rate values  are related directly with 
the control law. If a large value is selected, a fast 
convergence to the minimum error can be achieved 
but at the cost of a large control effort. 
For the control law (42), we choose 10. The 
simulation results are displayed in Fig.  5 to Fig. 8. 
The wind speed profile is displayed in Fig. 5 and 
represents the erratic nature of the input to the 
system. As can be seen in Fig. 7, the neural control 
achieves the desired performance with a tracking 
error not greater than 1%. This remaining tracking 
error is due to the number of high order terms and 
can be reduced by including  more terms in the 
vector z (). In Fig. 9-10 the time evolution of the 
neural network weights is displayed; the neural 
control algorithm ensures the bounded tracking error 
without requiring the convergence of these weights. 
The d  q axis voltage components are displayed in 
Fig. 11. 
 

 
 

 Fig. 5. Wind speed model 
 

    
 

Fig. 6. Time evolution for the rotor angular 
speed 

        

 
      

Fig. 7. Time evolution for id and iq 
 

 
 

 
 

 
               Fig. 8. Tracking error for the rotor angular speed 

 

 
 
 

               Fig. 9. Time evolution for neural network weigths 
W1* 
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Fig. 10. Time evolution for neural network weigths W2כ 

 

 
Fig. 11. Applied input

The neural control scheme features robustness to 
the uncertain nature of the wind speed profile where 
the angular speed required for maximum power 
tracking is accomplished even without knowing the 
wind turbine dynamic model; which is the main 
advantage of this work result in comparison with 
other nonlinear control schemes for maximum power 
tracking [22]. The implementation of high order 
neural networks in the controller is a novel result for 
wind energy generation systems since previous 
results have applied RNN only for prediction as in 
[20] where pitch angle is predicted, [2] where Cp 
curve is predicted, or [22] where the rotor speed is 
forecast from wind measurements but still required 
knowledge of the system model for control 
purposes. 
 
7 Conclusions 
 
 In this paper an adaptive recurrent neural network 
controller is developed in order to implement a 
maximum power tracking scheme for a small wind 
turbine. The dynamical model of the wind turbine is 
presented and a High Order Neural Network is 
designed to model its dynamics. The control scheme 
is composed of a Recurrent Neural Network 
identifier that builds an on-line model for wind 
turbine and PMSG assumed to be unknown. A 
learning adaptation law is derived using the 
Lyapunov methodology. The proposed scheme is 
tested, via simulations, to control the angular speed 
of a 1 kW synchronous generator in the d-q 
reference frame in order to achieve maximum power 
tracking. Further work aims to implement this 

controller in real time laboratory experiments and 
integrating a battery bank to the system. 
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