

Computación y Sistemas Vol. 14 No. 2, 2010, pp 151-163
ISSN 1405-5546

Fault-Tolerance and Load-Balance Tradeoff in a Distributed
Storage System

Estudio de la Interdependencia entre Tolerancia a Fallas y Balance de Carga
en un Sistema de Almacenamiento Distribuido

Moisés Quezada Naquid, Ricardo Marcelín Jiménez and Miguel López Guerrero

Department of Electrical Engineering , Universidad Autónoma Metropolitana - Iztapalapa
09340 - México City, Mexico

moises@arte.izt.uam.mx, {calu, milo}@xanum.uam.mx

Article received or September 1, 2008; accepted on September 25, 2009

Abstract. In recent years distributed storage systems have
been the object of increasing interest by the research
community. They promise improvements on information
availability, security and integrity. Nevertheless, at this
point in time, there is no a predominant approach, but a
wide spectrum of proposals in the literature. In this paper
we report our findings with a combination of redundancy
techniques intended to simultaneously provide fault
tolerance and load balance in a small-scale distributed
storage system. Based on our analysis, we provide general
guidelines for system designers and developers under
similar conditions.
Keywords: IDA, storage schemes, failures, recovery,
simulations.

Resumen. En los últimos años los sistemas de
almacenamiento distribuido han sido objeto de un gran
interés por parte de la comunidad de investigadores. Estos
sistemas prometen mejoras en cuanto a integridad,
seguridad y disponibilidad de la información. Sin embargo,
hasta este momento no existe un enfoque predominante,
aunque hay diversas propuestas en la literatura. En este
artículo reportamos los resultados de nuestras
investigaciones con una combinación de técnicas de
redundancia que tienen el propósito de proveer
simultáneamente tolerancia a fallas y balance de carga en
un sistema de almacenamiento distribuido de pequeña
escala. Con base en nuestro análisis proporcionamos líneas
directrices generales para diseñadores y desarrolladores de
sistemas similares.
Palabras clave: IDA, esquemas de almacenamiento, fallas,
recuperación, simulaciones.

1 Introduction

Trends confirm the ever-increasing demand for
information services. However, successful
deployment of various of such services largely

relies on storage resources that must include,
among their key features, fault tolerance, privacy
and load balance. Thus, storage has become a
driving force of research and development and,
furthermore, distributed storage appears to be the
ideal support for many applications.
 A distributed storage system is a collection of
interconnected storage devices that contribute with
their individual capacities to create an extended
system offering improved features. The importance
of this emerging technology has been underlined in
recent research works [14, 7]. Although the simplest
function of such a system is to spread a collection of
files across the storage devices attached to a
network, desirable attributes of quality must also be
incorporated.
 In a previous paper [8] we introduced a collection
of space-redundancy techniques, called storage
schemes. They are intended to support robust
recording of subsequent global states in a distributed
computation. In the present work we apply these
ideas to a storage network in order to achieve load
balance. As for fault tolerance, we complement our
design with an erasure coding technique, namely the
Information Dispersal Algorithm (IDA) due to Rabin
[9]. Both approaches have been independently used
in the past in a number of applications, but to the
authors’ best knowledge, there are no studies
reporting their combined performance in order to
provide distributed storage services. In this paper we
report our experiences with this combined
framework. In particular, we evaluate the effect of
diverse parameters on the system’s mean time to
failure.

152 Moisés Quezada Naquid, Ricardo Marcelín Jiménez and Miguel López Guerrero

Computación y Sistemas Vol. 14 No. 2, 2010, pp 151-163
ISSN 1405-5546

 The remaining of this paper is organized as
follows. In Section 2, we present an overview of
related works. For the sake of clarity, in Section 3
we provide a summary of all relevant concepts. The
system description and the simulation framework are
presented in Section 4 and Section 5, respectively.
We detail assumptions and experiments in Section
6. In Section 7 we discuss how relevant factors are
interrelated and how they affect global performance.
We end this paper with some conclusions and
comments on our current work directions, in Section
8.

2 Related work

In recent years, distributed storage has attracted
the attention of several groups. However, in spite of
the large amount of proposals found in the
literature, only a few of them share common
elements with the kind of system described in this
work. Furthermore, some systems have been
announced, but they are still under development
and comparisons are not possible at this point in
time. This is the case of the Celeste system which
was proposed by Sun Microsystems and is based
on peer-to-peer (P2P) networking technologies [3].
Some other systems have been developed with a
specific application in mind. This is the case of
Bigtable [4], which was tailor-made for Google
product support and therefore, related information
is scarce. Probably, the Cleversafe [6] project is the
most related with our proposal. It is also based on a
proprietary version of IDA and was released as free
software under the GPL license.

A common feature found in distributed storage is
the usage of information redundancy in order to
provide fault tolerance and, particularly, integrity. In
this context, the simplest strategy consists of file
replication. This technique is used, for instance, in
PAST [11], which was conceived as a global-scale
storage system. Designers considered file
replication as the key element to achieve high
availability and robustness. Another proposal based
on file replication is Farsite [1]. Here, clients
contribute with their individual capacities in order to
support a collective repository. In contrast, there
exist systems like OceanStore [7] or Intermemory
[5], where information redundancy is implemented
using file fragmentation and error correcting codes.
In this approach, a file to be stored is split into

several blocks. Afterwards, each block is
transformed using a particular coding technique
(e.g., Reed-Solomon, network codes and fountain
codes). In the last step, the coded blocks are
allocated to a given set of storage devices.
 The selection of a particular strategy for providing
information redundancy has a great impact on
operational issues such as cost and management.
Replication offers a very simple retrieval mechanism,
but it might require an excessive cost on storage
space. In contrast, block coding can provide similar
levels of availability, using a very limited amount of
storage. Nevertheless, tracking all pieces that make
up each and every “puzzle” may become a
tremendous challenge. Recent studies [10] suggest
that when devices offer a long-term stable service,
systems might profit from “conservative” block
coding. On the other side, systems where devices
offer intermittent service should be built on the basis
of “aggressive” replication. Intermediate solutions,
with combined replication and block-coding
techniques, are also suggested in order to facilitate
information retrieval and tracking.
 We end this section by mentioning that load
balance is an issue that has been addressed in the
last years, but only for big scale storage systems.
Many recent works on P2P networks show that
balance is achieved using uniform random
allocation. Over the long term, with this simple
mechanism, the load statistics of individual devices
can be fit to normal distributions [2].

3 Background concepts

Let us start by providing a formal definition of a
storage scheme. Let },...,,{ 21 vcccV  be a set of v
storage devices, from now on called nodes. A
storage scheme is an ordered collection

},...,,{ 110  bBBBB of b subsets of V , that is used

for distributed storage operation in a cyclic fashion.
That is, subsequent storage requests i and 1i are
handled by the subsets biB mod and biB mod)1( ,

respectively. The subsets, that we call committees,
are created from the set of nodes according to an
arbitrarily defined rule. More formally, such a rule
can be specified by means of an indicator function

}1 ,0{: BV so that for vi ,...,1 and

1,...,0  bj , the function),(ji Bc equals 1 if

Fault-Tolerance and Load-Balance Tradeoff in a Distributed Storage System 153

Computación y Sistemas Vol. 14 No. 2, 2010, pp 151-163
ISSN 1405-5546

ji Bc  and 0 otherwise. The following

observations are in order:

a) A node may belong to one or more committees.
Furthermore, if each node belongs to the same

number of committees, the summation 




1

0

),(
b

j
ji Bc

equals a constant quantity r for all i .

b) Different committees from B may not have the
same number of member nodes. However, if all
committees have the same number of nodes, the

summation 


v

i
ji Bc

1

),( equals a constant quantity

k for all j .

 Some properties of storage schemes are worth
mentioning. A storage scheme is balanced if the
summations provided in previous observations a)
and b) lead to constant values (i.e., parameters k
and r simultaneously exist). This is a desirable
property for a storage scheme since it guarantees
load balance. Another related concept is that of
saturation. A storage scheme is unsaturated if the
number of committees each node belongs to is less
than the total number of existing committees. In the
case of a balanced system, this means that br  .
This property guarantees that no node will be
permanently working. Table 1 shows a particular
example where 6 nodes make up a storage scheme
with 6 committees. Each node is part of 5r
committees and each committee has 5k
elements. Such scheme is both, balanced and
unsaturated.
 The storage scheme considered in this work is
created as follows. Assume we have a set V of v
nodes, then B consists of all the subsets of size k ,
selected from V . Thus, the total number of
committees that make up B equals the

combinatorial number .







k

v
 Let us call this policy “all

k out of v ”, or kv for short. Notice that any node is

part of 











1

1

k

v
r

committees, but does not

participate in 






 
k

v 1
 committees. Therefore, kv is a

balanced and unsaturated storage scheme. The
resulting set of committees is scheduled to work in a
round-robin fashion. In paper [8] this approach was
used to store subsequent global states in a
distributed computation. Active components were
also assumed to work as storage nodes. During the
i-th storage step, each component takes a
synchronized “snapshot” of its local state. Then it
forwards its information to some node in biB mod .

Since kv is unsaturated, it is guaranteed that, when
a component crashes, there is at least one
committee that remains unaffected. Thus, the

computation can be resumed from the last global
state recorded in the unaffected committee.
 The idea of a balanced system is intended to
reflect a fair load assignment. Meanwhile, the idea of
an unsaturated system introduces a redundant
collection of committees. We call space redundancy
an excess of physical devices either organized as
redundant parts, or as spare parts.
 Besides storage schemes and space
redundancy, this work proposes to use the
Information Dispersal Algorithm (IDA) in order to
provide information integrity [9]. Let F be a file to
be stored in a kv storage scheme. By using IDA, F
is transformed into k files, called dispersals, each of

size mF / , where 1 mk . Dispersals are sent to

the next scheduled committee so that each node in
the committee receives one of the k dispersals.
From the algorithm properties it is granted that if up
to mk  dispersals are lost, the original file can be

Table 1. The “all 5 out of 6” storage scheme

 C1 C2 C3 C4 C5 C6

B0

    

B1
     

B2
     

B3

    

B4     

B5     

154 Moisés Quezada Naquid, Ricardo Marcelín Jiménez and Miguel López Guerrero

Computación y Sistemas Vol. 14 No. 2, 2010, pp 151-163
ISSN 1405-5546

reconstructed from the m surviving dispersals. It is
worth mentioning that not only can the file F be
recovered, but also any missing dispersal can be
recovered, provided that m dispersals remain
available.
 A very important matter that we address in this
work is the quest of what we could call a “good”
combination of IDA parameters),(mk . Let us recall

that a given combination, say)3 ,5(, means that an

initial file F is transformed into 5dispersals and can
be recovered from any 3 of them. It also means that
each dispersal is 3/1 the size of F and, therefore,
there is an excess of information, or information
redundancy, equal to 3/2 .
 Table 2 shows all possible combinations of IDA
parameters for 7,...,2k and 6,...,1m . Each entry

represents a 2-tuple) ,(mk , with its corresponding

redundancy kmk /)( . If we read by rows, the

rightmost entry represents the combination
supporting the biggest number of losses or missing
dispersals, for fixed k . Nevertheless, the price to
pay is the excess of redundant information which, in
the extreme case)1 ,(k , implies that each dispersal

is actually a replica of F . If we read by columns
instead, each column represents all the possibilities
that may withstand the same number of losses, i.e.
the i-th column (from left to right) describes all
combinations that support up to i losses. It is clear
that a given entry supports the same number of
losses that any lower entry in the same column, but
at the price of a higher redundancy.
We will focus our work on systems featured by the
second column, which means that we parameterize
IDA in order to support up to 2 losses.

Table 2. IDA parameter combinations
and their redundancy levels

4 System description

In this work we consider a low-cost fault-tolerant
distributed storage system. The structure of this
proposal is illustrated in Fig. 1. It consists of the
following components:

 Clients: These are the users that generate

service requests such as storage, retrieval and
deletion, using standard communication
procedures.

 Network gateway: This component serves as the

interface between the clients and the storage
network. All requests arrive at the gateway
which, in turn, dispatches appropriate information
to other system components in order to fulfill a
service.

 Storage network: It is a collection of sv 

storage nodes, connected through a Fast
Ethernet switch. Initially, v nodes are configured
to work as active nodes organized according to a
kv+IDA storage scheme. Actual storage takes
place in these components. The remaining s
nodes are spares that do not take part in any
ordinary storage operation. They are intended to
replace an active node when it fails.

Fault-Tolerance and Load-Balance Tradeoff in a Distributed Storage System 155

Computación y Sistemas Vol. 14 No. 2, 2010, pp 151-163
ISSN 1405-5546

Fig. 1. System architecture of the distributed storage

network

 In addition to the already-mentioned client
operations, the system has to carry out management
and recovery procedures. Management is related to
the support of client’s accounts. Recovery is
triggered when an active node crashes. In the latter
case a spare node is immediately selected in order
to replace the one that failed. Let us recall that each
active node stores the dispersals of the
corresponding committees it belongs to. Thus, all
pertinent information from other active nodes has to
be retrieved in order to fully reconstruct the
information previously available in the node to be
replaced. We also consider that a repair procedure
is in effect. It is possible to repair a node that
crashed to become fully operational again. A
repaired component returns to the system as a
spare node. While recovery is in process, client
services and management are temporally put off.
 In spite of the recovery procedure, there are two
possible conditions that may lead to a system break-
down or collapse. First, when the spare node in
charge of recovery is unable to retrieve the minimum
number of dispersals from a committee. Second,
when another active nodes crashes, but there are no
more available spares.

5 Simulation framework

We want to estimate the system’s mean time to
failure (MTTF), this is the expected time that the
system takes to go from start to collapse. Clearly,
this characteristic depends on several parameters
including the underlying kv scheme features, the IDA
parameters, the number of spare nodes, and also
individual node’s lifetime and repair time.
 In order to carry out our assessment, we
developed a discrete-event simulation model. Our
simulations are based on two types of entities:
ordinary nodes and a supernode. We provide Figure
2 and Figure 3 to show the state-machine pseudo
code of the corresponding entities.
 An ordinary node, or node for short, represents
either an active or spare node. When simulation
starts, v nodes are selected to work as active nodes
whereas the remaining s become spare nodes. In
either case individual lifetimes are modelled using
random variables. When a node fails, it is taken out
of the system to be repaired. Repairing time is also
assumed to follow another exponential random
distribution. Once the repair finishes, the repaired
node becomes part of the spare stock. When an
active node fails, a spare node is selected and is
given the task of recovering the information in the
node that failed. It is important to note that, during
this operation, the selected spare node may also
crash. Furthermore, it might be the case that failures
lead to a shortage of spare nodes. As we described
before, there are two possible conditions to declare
collapse: either, a dispersal reconstruction is
impossible, or a required spare is unavailable.
 The supernode is a theoretical resource that
simplifies our description and models the (otherwise)
distributed control. Its operations include node’s
initialization, kv scheme installation, creation of
committees, monitoring, failure detection, trigger and
supervision of the recovery procedures. The
supernode distributes the recovery procedures
among available active nodes. Once each one of
them has finished the task it was in charge, the
supernode selects a spare node to receive and store
the recovered information. Finally, the supernode
notifies to all components of the system, when a
collapse occurs.

156 Moisés Quezada Naquid, Ricardo Marcelín Jiménez and Miguel López Guerrero

Computación y Sistemas Vol. 14 No. 2, 2010, pp 151-163
ISSN 1405-5546

6 Assumptions and experiment design

Based on the description previously given, we
programmed a set of experiments using the
OMNeT++ [13] simulation tool. We considered the
following assumptions: i) the system is working at its
maximum capacity, i.e. each node has a total
capacity of 100 GB and this amount is available for
storage, ii) the time to recover the contents of a node
is linearly dependent on its capacity, iii) transmission
time is negligible compared to the processing time
(see Ref. [12] for a thorough discussion on this
issue), iv) the lifetime of any ordinary node is
modelled by independent and identically distributed
(i.i.d.) exponential random variables and, v) repair
times are also represented by i.i.d. exponential
random variables.
 We recognize that there might be other sources
of failure, such as faulty power supplies or other
electronic components that may shorten the
system’s MTTF. Nevertheless, we only focus on

aspects that may affect information integrity,
according to our definition of system collapse.

Regarding the underlying communications
network, we assume that although communication
failures may affect service availability, information
integrity is always preserved. This is a realistic
assumption due to the error control procedures
commonly performed by logical-link and transport
layers of the protocol stack. They ensure error-free
data transfer and, therefore, network failures do not
affect data integrity.
 For a fixed committee size k equals to 5, our
experiment design included 4 parameters: a) initial
number of active nodes, b) initial number of spares,
c) node’s lifetime and d) node’s repair time. Each
parameter was tested under 3 different levels, which
means that we performed 81 different experiments.
Each experiment was repeated 10,000 times with
different initial conditions (i.e., seeds for random
number generation). All results are reported with a
99% confidence interval.

Fault-Tolerance and Load-Balance Tradeoff in a Distributed Storage System 157

Computación y Sistemas Vol. 14 No. 2, 2010, pp 151-163
ISSN 1405-5546

Fig. 2. State machine description of an ORDINARY NODE

state N0
<1> upon reception of INIT_ACTIVE/INIT_SPARE from programmer
<2> lifetime = random_function1(lambda1);
<3> send CRASH to myself in lifetime
<4> state = N1/N2
state N1
<5> upon reception of HELP_RECOVER(j,B) from super
<6> for each node in committee B
<7> send NEED_DISPERSALS(j,B) now
<8> committee_members[B]=0
<9> available_dispersals[B]=0
<10> upon reception of NEED_DISPERSALS(j,B) from l
<11> send DISPERSALS(j,B) to l now (?)
<12> upon reception of DISPERSALS(j,B) from l
<13> committee_members[B]++
<14> available_dispersals[B]++
<15> if (committee_members[B]==k)
<16> then if (available_dispersals[B]≥m)
<17> then send RECOVERED(j,B) to super now
<18> else send UNRECOVERED(j,B) to super now
<19> upon reception of DOWN from l
<20> committee_members[B]++
<21> if (committee_members[B]==k)
<22> then if (available_dispersals[B]≥m)
<23> then send RECOVERED(j,B) to super now
<24> else send UNRECOVERED(j,B) to super now
state N1/N2
<25> upon reception of CRASH from myself
<26> repairtime = random_function2(lambda2);
<27> send CRASH to super now
<28> send REPAIRED to myself in repairtime
<29> state = N3
state N2
<30> upon reception of CONTENTS(j) from super
<31> myself replaces j
<32> state = N1
state N3
<33> upon reception of REPAIRED from myself
<34> lifetime = random_function1(lambda1);
<35> send REPAIRED to super now
<36> state = N2
<37> upon reception of NEED_DISPERSALS(j,B) from l
<38> send DOWN to l now

158 Moisés Quezada Naquid, Ricardo Marcelín Jiménez and Miguel López Guerrero

Computación y Sistemas Vol. 14 No. 2, 2010, pp 151-163
ISSN 1405-5546

state S0
< 1> upon reception of START from programmer
< 2> select v nodes to be in Actives
< 3> select s nodes to be in Spares
< 4> send INIT_ACTIVE to each node in Actives now
< 5> send INIT_SPARE to each node in Spares now
< 6> start clock
< 7> state = S1
state S1
< 8> upon reception of CRASH from j
< 9> if j in Actives
<10> then dismiss j from Actives
<11> for each committee B where j worked
<12> select() a coordinator node in Actives
<13> send HELP_RECOVER(j,B) to coordinator now
<14> recover[j]=0
<15> else dismiss j from Spares
<16> upon reception of RECOVERED(j,B) from l
<17> recover[j]++
<18> save B in C[j]
<19> if (recover[j]==number of committees where j worked)
<20> then if (j’=find_spare())
<21> then send CONTENTS(j, C[j]) to j’ now (?)
<22> insert j’ in Actives
<23> j’ replaces j
<24> else send COLLAPSE to each node
<25> send REPORT to super now
<26> state = S2
<27> upon reception of UNRECOVERED(j,B) from l
<28> send COLLAPSE to each node
<29> send REPORT to super
<30> state = S2
<31> upon reception of REPAIRED from l
<32> insert l in Spares
state S2
<33> upon reception of REPORT from super
<34> report elapsed time
<35> stop

Fig. 3. State machine description of the SUPERNOD

Fault-Tolerance and Load-Balance Tradeoff in a Distributed Storage System 159

Computación y Sistemas Vol. 14 No. 2, 2010, pp 151-163
ISSN 1405-5546

7 Results and analysis

Figure 4 shows the results of an experiment that we
identify as case “a”. The figure shows the
corresponding histogram obtained from sample data
and we compare it to a fitted exponential pdf in solid
line. The mean value equals 4,981.60 years, the
longest MTTF obtained in our tests. In contrast, Fig.
5 shows the results of another experiment that we
call case “b”. Again, we show the histogram and a
fitted exponential pdf in solid line. This time, the
mean value equals 8.85 years, the shortest MTTF
recorded. As it can be seen, the exponential
distribution is a good fit for the system’s MTTF.
 Table 3 summarizes the mean-time-to-failure
values for each experiment carried out in this work. It
is divided in 3 main vertical and 3 main horizontal
sections, corresponding to the values of active and
spare nodes under testing, respectively. Each of the
9 possible combinations of active and spare nodes is
further divided in order to represent the full set of
parameters including node’s lifetime and repair time.
Results are shown in bold face type. Those with
labels “a” and “b” represent the results of the cases
already introduced. We will now proceed to
systematically analyze the complete set of results.

Fig. 4. Longest MTTF

Fig. 5. Shortest MTTF

 Our first remark is about the number of active
nodes. Let us read Table 3 by rows. We will find that
for any fixed combination of spares, lifetime and
repairing time values, those systems having 6 active
nodes offer the best available performance. As we
just mentioned, we assumed a fixed committee size
k equals to 5, therefore using only 5 active nodes
prevents an unsaturated kv storage scheme. It
means that there is a single committee involved on
every storage operation. A missing node affects this
committee and the whole storage system. In
contrast, a bigger number of active nodes enables
load balance, since it is granted that any node does
not work in, at least, one committee. Nevertheless, it
is known from reliability theory, that a bigger number
of active nodes also accelerates the overall failure
rate. Let us recall that recovery is a critical operation
where the system becomes vulnerable. Indeed,
collapse happens during recovery, when the system
is unable to cope with a number of failures beyond
its capacity. Therefore, the optimal number of active
nodes seems to be a trade off between load balance
and the pace at which the system is able to deal with
failures.

160 Moisés Quezada Naquid, Ricardo Marcelín Jiménez and Miguel López Guerrero

Computación y Sistemas Vol. 14 No. 2, 2010, pp 151-163
ISSN 1405-5546

Table 3. Experimental results

active nodes

5 6 7

spares
lifetime
(hours)

repair
(hours)

MTTF
(years)

spares
lifetime
(hours)

repair
(hours)

MTTF
(years)

spares
lifetime
(hours)

repair
(hours)

MTTF
(years)

1

5000

5 25.89

1

5000

5 91.68

1

5000

5 59.58

10 25.92 10 82.28 10 32.92

20 25.21 20 38.53 20 b 8.85

10000

5 185.50

10000

5 672.22

10000

5 400.75

10 183.13 10 575.06 10 170.33

20 181.95 20 192.70 20 36.47

20000

5 1277.92

20000

5 4875.28

20000

5 2493.63

10 1291.20 10 3652.66 10 782.19

20 1289.37 20 864.89 20 148.71

2

5000

5 25.67

2

5000

5 90.70

2

5000

5 70.56

10 25.80 10 91.99 10 70.62

20 26.00 20 90.08 20 66.17

10000

5 179.27

10000

5 676.45

10000

5 529.61

10 182.36 10 679.46 10 502.92

20 181.68 20 670.28 20 492.14

20000

5 1295.09

20000

5 4889.68

20000

5 3697.95

10 1284.74 10 4929.65 10 3689.86

20 1268.90 20 4973.56 20 3479.42

3

5000

5 25.48

3

5000

5 93.12

3

5000

5 71.40

10 25.29 10 91.26 10 69.98

20 25.93 20 91.23 20 68.86

10000

5 181.20

10000

5 685.69

10000

5 523.27

10 179.05 10 675.29 10 531.73

20 180.39 20 695.05 20 515.81

20000

5 1291.61

20000

5 4924.65

20000

5 3805.19

10 1318.80 10 a 4981.60 10 3758.70

20 1279.99 20 4841.71 20 3787.54

Fault-Tolerance and Load-Balance Tradeoff in a Distributed Storage System 161

Computación y Sistemas Vol. 14 No. 2, 2010, pp 151-163
ISSN 1405-5546

Our second remark is about the impact of repair time
on system’s performance. We will now read Table 3
by columns. Let us call an entry set to the 3
consecutive results corresponding to any fixed
combination of active nodes, spares and lifetime;
these are the smallest squares enclosing results in
Table 3. Compare now 2 entry sets corresponding to
two different spares. We will realize that for 2 or
more spares, the impact of repairing time is
marginal. This result implies that a sufficient spare
supply is more important than a potentially slow
repair procedure. Our third remark is about the
number of spares. It is closely connected with our
previous comment. Again, we propose to compare
entry sets on the same column. For those entries
having the same parameter values but the spares,
we will find out that, within the limits of accuracy,
entries do not change for either 2 or 3 spares. In
other words, from the system´s point of view, 3
spares seem to be a useless excess of redundancy
as they provide the same support achieved with only
2 spares.
 Based on our last two remarks, we suggest to
simplify the reading of Table 3. Let us focus on the
sections corresponding to 2 spares only. For the
entry sets in this part of the table we have already
noticed that the influence of repair time on system's
performance, is rather negligible. Thus, we can
dismiss this parameter and represent the 3
consecutive results that make up an entry set by its
mean value. Once we have finished this pre-
processing, we are prepared to present our final
remark, about the importance of lifetime. Our results
show that for a given set of storage nodes, a twofold
increase their individual lifetime produces about a
sevenfold increase on the overall system's MTTF.

8 Conclusions and future work

In this work we presented a performance study
intended to evaluate the mean time to failure of a
distributed storage system. We tested a particular
approach that makes use of both space and
information redundancy. An advantage of this
combination stands on the fact that both are
parameterized techniques, therefore, they allow us
to experiment with different amounts of redundant
resources.

 System operation can be briefly described as
follows. A set of autonomous stations with storage
capacities, called storage nodes, is connected
through a fast Ethernet switch. Initially nodes are
classified in active or spare nodes. Subsets of active
nodes, called committees, are scheduled to work
according to a distributed procedure called storage
scheme. The committees that make up our proposal
are all the subsets of active nodes having a fixed
size.
 When a storage request arrives at the system, a
given committee is called according to a fixed and
cyclic order. A file to be stored is transformed into a
certain number of dispersals using Rabin´s IDA.
Each member of the selected committee is in charge
of storing one of the resulting dispersals. Recall that
the original file, or any of its dispersals, can be
rebuilt provided that a given amount of redundant
information remains available. If an active node
crashes, two actions take place. First, a distributed
control starts the recovery procedure using the
surviving active nodes. Then, one spare replaces
then missing element and stores the recovered
information. Second, the missing element
undergoes a repair procedure. Once it becomes
operational again, it is regarded as a spare node.
 We tested the effect of 4 different parameters on
the system’s performance. These parameters are
the number of active nodes, the number of spares,
the individual node’s lifetime and repair time. Our
study mainly shows that the number of active
components defines a compromise between load
balance and the overall failure rate. As for spares,
they are important up to a certain operational point
where their availability compensates the repair
procedure. Beyond this point, an excess of spares
does not pay back any further improvement.
Nevertheless, the most influential parameter turned
out to be the node’s lifetime. Also, it is worth
mentioning that even under the worst combination of
parameters, our design renders a mean time to
failure longer than the summation of individual
lifetimes.
 We have settled the basis of a construction
method for distributed storage emphasizing on the
reutilization of local resources. This approach
revaluates the infrastructure already deployed and
allows small groups to build up their own solutions
according to their particular needs. For future
research, we are already studying the best approach

162 Moisés Quezada Naquid, Ricardo Marcelín Jiménez and Miguel López Guerrero

Computación y Sistemas Vol. 14 No. 2, 2010, pp 151-163
ISSN 1405-5546

to scale up our system. Preliminary work suggests
that we may borrow some ideas from P2P networks,
to build a federation of local storage systems.

References

1. Adya, A., Bolosky, W. J., Castro, M., Cermark, G.,

Chaiken, R., Douceur, J. R., Howell, J., Lorch, J. R.,
Theimer, M. & Wattenhofer R. P. (2002). FARSITE:
Federated, Available, and Reliable Storage for an
Incompletely Trusted Environment. 5th Symposium on
Operating Systems Design and Implementation (OSDI),
Boston, USA, 1-14.

2. Bhagwan, R., Moore, D., Savage, S. & Voelker, G. M.
(2003). Replication strategies for highly available peer-
to-peer storage. In Schiper, A., Shvartsman, A.A.,
Weatherspoon, H., Zhao, B.Y. (Eds.) Future Directions
in Distributed Computing (153-158). New Jersey:
Springer.

3. Celeste: An Automatic Storage System (s.f.). Retrieved
from
http://hub.opensolaris.org/bin/view/Project+celeste/Web
Home

4. Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C.,
Wallach, D. A., Burrows, M., Chandra, T., Fikes, A. &
Gruber, R. E.(2006). Bigtable: A Distributed Storage
System for Structured Data. 7th Symposium on
Operating Systems Design and Implementation (OSDI),
Seattle, USA, 205-218.

5. Chen, Y., Edler, J., Goldberg, A. V., Gottlieb, A.,
Sobti, S. & Yianilos, P. N. (1999). A Prototype
implementation of Archival Intermemory. 4th ACM
Conference on Digital Libraries, California, USA, 28-37.

6. Cleversafe (s.f.). Retrieved from
http://www.cleversafe.org

7. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S.,
Eaton, P., Geels, D., Gummadi, R., Rhea, S.,
Weatherspoon, H., Weimer, W., Wells, C. & Zhao, B.
(2000) OceanStore: An Architecture for Global-Scale
Persistent Storage. ACM SIGPLAN Notice, 35 (11), New
York, USA, 190-201.

8. Marcelín-Jiménez, R., Rajsbaum, S. & Stevens, B.
(2006). Cyclic Storage for Fault-tolerant Distributed
Executions. IEEE Transactions on Parallel and
Distributed Systems, 17(9), 1028-1036.

9. Rabin, M. O. (1989). Efficient Dispersal of Information
for Security, Load Balancing and Fault Tolerance.
Journal of the ACM, 38(2), 335-348.

10. Rodrigues, R. & Liskov, B. (2005). High Availability in
DHT’s: Erasure Coding vs Replication. Peer-to-Peer
Systems IV. 4th International Workshop on Peer-to-Peer
Systems, Lecture Notes on Computer Science , 3640,
226-239.

11. Rowstron, A. & Druschel, P. (2001). Storage
management and caching in PAST, a large-scale,
persistent, peer-to-peer storage utility. ACM SIGOPS
Operating Systems Review, 35(5), 188-201.

12. Quezada-Naquid, M., Marcelín-Jiménez, R. & López-
Guerrero, M. (2007). Service Policies for a Storage
Services Dispatcher in a Distributed Fault-Tolerant
Storage Network and their Performance Evaluation.
Canadian Conference on Electrical and Computer
Engineering (CCECE ‘07), Vancouver, Canada, 34-40.

13. OMNeT++: Discrete Event Simulation System (s.f.).
Retrieved from http://omnetpp.org/

14. Yianilos, P. & Sobti, S. (2001). The Evolving Field of
Distributed Storage. IEEE Internet Computing. 5 (5), 35-
39

Moisés Quezada Naquid

Received the B.Sc. degree in Electronics Engineering in 2005
and the M.Sc. in Information Technologies in 2007, both from
the Metropolitan Autonomous University (UAM, Mexico City).
Currently, he is an Associate Professor with UAM. His
research interests are distributed computing,
telecommunication networks and digital systems.

Ricardo Marcelín Jiménez

Received his B.Sc. in Electronics Engineering from the
Metropolitan Autonomous University (UAM, Mexico City) in
1987, the M.Sc. in Computer Eng. from the National
Polytechnic Institute (CINVESTAV-IPN) in 1992 and the PhD
degree in Computer Science from the National Autonomous
University of Mexico (UNAM) in 2004. He is a full professor
with tenure at the Department of Electrical Engineering at
UAM. His research interests are in the theory and practice of
distributed computing, specially issues related to coordination
and fault tolerance. Dr. Marcelín-Jiménez is a SNI member,
level I

Fault-Tolerance and Load-Balance Tradeoff in a Distributed Storage System 163

Computación y Sistemas Vol. 14 No. 2, 2010, pp 151-163
ISSN 1405-5546

Miguel López Guerrero

Received his B.Sc. in Mechanical-Electrical Engineering in
1995 and the M.Sc. in Electrical Engineering in 1998, both
with honors from the National Autonomous University of
Mexico. He received his Ph.D. in Electrical Engineering from
the University of Ottawa in 2004. Currently, he is an Associate
Professor with the Metropolitan Autonomous University
(Mexico City). His research interests span several aspects of
telecommunication networks including network traffic
modeling, medium access control and mobility-related studies.

