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Abstract. In recent years distributed storage systems have 
been the object of increasing interest by the research 
community. They promise improvements on information 
availability, security and integrity. Nevertheless, at this 
point in time, there is no a predominant approach, but a 
wide spectrum of proposals in the literature. In this paper 
we report our findings with a combination of redundancy 
techniques intended to simultaneously provide fault 
tolerance and load balance in a small-scale distributed 
storage system. Based on our analysis, we provide general 
guidelines for system designers and developers under 
similar conditions. 
Keywords: IDA, storage schemes, failures, recovery, 
simulations. 
 
Resumen. En los últimos años los sistemas de 
almacenamiento distribuido han sido objeto de un gran 
interés por parte de la comunidad de investigadores. Estos 
sistemas prometen mejoras en cuanto a integridad, 
seguridad y disponibilidad de la información. Sin embargo, 
hasta este momento no existe un enfoque predominante, 
aunque hay diversas propuestas en la literatura. En este 
artículo reportamos los resultados de nuestras 
investigaciones con una combinación de técnicas de 
redundancia que tienen el propósito de proveer 
simultáneamente tolerancia a fallas y balance de carga en 
un sistema de almacenamiento distribuido de pequeña 
escala. Con base en nuestro análisis proporcionamos líneas 
directrices generales para diseñadores y desarrolladores de 
sistemas similares.  
Palabras clave: IDA, esquemas de almacenamiento, fallas, 
recuperación, simulaciones. 

1 Introduction 

Trends confirm the ever-increasing demand for 
information services. However, successful 
deployment of various of such services largely 

relies on storage resources that must include, 
among their key features, fault tolerance, privacy 
and load balance. Thus, storage has become a 
driving force of research and development and, 
furthermore, distributed storage appears to be the 
ideal support for many applications.  
     A distributed storage system is a collection of 
interconnected storage devices that contribute with 
their individual capacities to create an extended 
system offering improved features. The importance 
of this emerging technology has been underlined in 
recent research works [14, 7]. Although the simplest 
function of such a system is to spread a collection of 
files across the storage devices attached to a 
network, desirable attributes of quality must also be 
incorporated.  
     In a previous paper [8] we introduced a collection 
of space-redundancy techniques, called storage 
schemes. They are intended to support robust 
recording of subsequent global states in a distributed 
computation. In the present work we apply these 
ideas to a storage network in order to achieve load 
balance. As for fault tolerance, we complement our 
design with an erasure coding technique, namely the 
Information Dispersal Algorithm (IDA) due to Rabin 
[9]. Both approaches have been independently used 
in the past in a number of applications, but to the 
authors’ best knowledge, there are no studies 
reporting their combined performance in order to 
provide distributed storage services. In this paper we 
report our experiences with this combined 
framework. In particular, we evaluate the effect of 
diverse parameters on the system’s mean time to 
failure.  
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     The remaining of this paper is organized as 
follows. In Section 2, we present an overview of 
related works. For the sake of clarity, in Section 3 
we provide a summary of all relevant concepts. The 
system description and the simulation framework are 
presented in Section 4 and Section 5, respectively. 
We detail assumptions and experiments in Section 
6. In Section 7 we discuss how relevant factors are 
interrelated and how they affect global performance. 
We end this paper with some conclusions and 
comments on our current work directions, in Section 
8. 

2 Related work 

In recent years, distributed storage has attracted 
the attention of several groups. However, in spite of 
the large amount of proposals found in the 
literature, only a few of them share common 
elements with the kind of system described in this 
work. Furthermore, some systems have been 
announced, but they are still under development 
and comparisons are not possible at this point in 
time. This is the case of the Celeste system which 
was proposed by Sun Microsystems and is based 
on peer-to-peer (P2P) networking technologies [3]. 
Some other systems have been developed with a 
specific application in mind. This is the case of 
Bigtable [4], which was tailor-made for Google 
product support and therefore, related information 
is scarce. Probably, the Cleversafe [6] project is the 
most related with our proposal. It is also based on a 
proprietary version of IDA and was released as free 
software under the GPL license.   

A common feature found in distributed storage is 
the usage of information redundancy in order to 
provide fault tolerance and, particularly, integrity. In 
this context, the simplest strategy consists of file 
replication. This technique is used, for instance, in 
PAST [11], which was conceived as a global-scale 
storage system. Designers considered file 
replication as the key element to achieve high 
availability and robustness. Another proposal based 
on file replication is Farsite [1]. Here, clients 
contribute with their individual capacities in order to 
support a collective repository. In contrast, there 
exist systems like OceanStore [7] or Intermemory 
[5], where information redundancy is implemented 
using file fragmentation and error correcting codes. 
In this approach, a file to be stored is split into 

several blocks. Afterwards, each block is 
transformed using a particular coding technique 
(e.g., Reed-Solomon, network codes and fountain 
codes). In the last step, the coded blocks are 
allocated to a given set of storage devices.  
     The selection of a particular strategy for providing 
information redundancy has a great impact on 
operational issues such as cost and management. 
Replication offers a very simple retrieval mechanism, 
but it might require an excessive cost on storage 
space. In contrast, block coding can provide similar 
levels of availability, using a very limited amount of 
storage. Nevertheless, tracking all pieces that make 
up each and every “puzzle” may become a 
tremendous challenge. Recent studies [10] suggest 
that when devices offer a long-term stable service, 
systems might profit from “conservative” block 
coding. On the other side, systems where devices 
offer intermittent service should be built on the basis 
of “aggressive” replication. Intermediate solutions, 
with combined replication and block-coding 
techniques, are also suggested in order to facilitate 
information retrieval and tracking.  
     We end this section by mentioning that load 
balance is an issue that has been addressed in the 
last years, but only for big scale storage systems. 
Many recent works on P2P networks show that 
balance is achieved using uniform random 
allocation. Over the long term, with this simple 
mechanism, the load statistics of individual devices 
can be fit to normal distributions [2]. 

3 Background concepts 

Let us start by providing a formal definition of a 
storage scheme. Let },...,,{ 21 vcccV  be a set of v
storage devices, from now on called nodes. A 
storage scheme is an ordered collection 

},...,,{ 110  bBBBB of b subsets of V , that is used 

for distributed storage operation in a cyclic fashion. 
That is, subsequent storage requests i and 1i  are 
handled by the subsets biB mod  and biB mod)1(  , 

respectively. The subsets, that we call committees, 
are created from the set of nodes according to an 
arbitrarily defined rule. More formally, such a rule 
can be specified by means of an indicator function 

}1 ,0{: BV  so that for vi ,...,1  and 

1,...,0  bj , the function ),( ji Bc  equals 1 if 
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ji Bc   and 0  otherwise. The following 

observations are in order: 
 
a) A node may belong to one or more committees. 
Furthermore, if each node belongs to the same 

number of committees, the summation 




1

0

),(
b

j
ji Bc  

equals a constant quantity r for all i . 
 
b) Different committees from B  may not have the 
same number of member nodes. However, if all 
committees have the same number of nodes, the 

summation 


v

i
ji Bc

1

),(  equals a constant quantity 

k  for all j . 

 
     Some properties of storage schemes are worth 
mentioning. A storage scheme is balanced if the 
summations provided in previous observations a) 
and b) lead to constant values (i.e., parameters k  
and r  simultaneously exist). This is a desirable 
property for a storage scheme since it guarantees 
load balance. Another related concept is that of 
saturation. A storage scheme is unsaturated if the 
number of committees each node belongs to is less 
than the total number of existing committees. In the 
case of a balanced system, this means that br  . 
This property guarantees that no node will be 
permanently working. Table 1 shows a particular 
example where 6 nodes make up a storage scheme 
with 6 committees. Each node is part of 5r  
committees and each committee has 5k  
elements. Such scheme is both, balanced and 
unsaturated. 
     The storage scheme considered in this work is 
created as follows. Assume we have a set V of v  
nodes, then B consists of all the subsets of size k , 
selected from V . Thus, the total number of 
committees that make up B  equals the 

combinatorial number .







k

v
 Let us call this policy “all 

k out of v ”, or kv for short. Notice that any node is 

part of 











1

1

k

v
r

 
committees, but does not 

participate in 






 
k

v 1
 committees. Therefore, kv is a 

balanced and unsaturated storage scheme. The 
resulting set of committees is scheduled to work in a 
round-robin fashion. In paper [8] this approach was 
used to store subsequent global states in a 
distributed computation. Active components were 
also assumed to work as storage nodes. During the 
i-th storage step, each component takes a 
synchronized “snapshot” of its local state. Then it 
forwards its information to some node in biB mod . 

Since kv is unsaturated, it is guaranteed that, when 
a component crashes, there is at least one 
committee that remains unaffected. Thus, the 

computation can be resumed from the last global 
state recorded in the unaffected committee.  
     The idea of a balanced system is intended to 
reflect a fair load assignment. Meanwhile, the idea of 
an unsaturated system introduces a redundant 
collection of committees. We call space redundancy 
an excess of physical devices either organized as 
redundant parts, or as spare parts.   
     Besides storage schemes and space 
redundancy, this work proposes to use the 
Information Dispersal Algorithm (IDA) in order to 
provide information integrity [9]. Let F  be a file to 
be stored in a kv storage scheme. By using IDA, F  
is transformed into k  files, called dispersals, each of 

size mF / , where 1 mk . Dispersals are sent to 

the next scheduled committee so that each node in 
the committee receives one of the k  dispersals. 
From the algorithm properties it is granted that if up 
to mk   dispersals are lost, the original file can be 

Table 1. The “all 5 out of 6” storage scheme 
 

 C1 C2 C3 C4 C5 C6 

B0
 

      

B1
       

B2
       

B3
 

      

B4       

B5       



 
154  Moisés Quezada Naquid, Ricardo Marcelín Jiménez and Miguel López Guerrero 
 

 
Computación y Sistemas Vol. 14 No. 2, 2010, pp 151-163 
ISSN 1405-5546  

  
 

reconstructed from the m surviving dispersals. It is 
worth mentioning that not only can the file F  be 
recovered, but also any missing dispersal can be 
recovered, provided that m  dispersals remain 
available.  
     A very important matter that we address in this 
work is the quest of what we could call a “good” 
combination of IDA parameters ),( mk . Let us recall 

that a given combination, say )3 ,5( , means that an 

initial file F is transformed into 5dispersals and can 
be recovered from any 3  of them. It also means that 
each dispersal is 3/1  the size of F and, therefore, 
there is an excess of information, or information 
redundancy, equal to 3/2 .  
     Table 2 shows all possible combinations of IDA 
parameters for 7,...,2k  and 6,...,1m . Each entry 

represents a 2-tuple ) ,( mk , with its corresponding 

redundancy kmk /)(  . If we read by rows, the 

rightmost entry represents the combination 
supporting the biggest number of losses or missing 
dispersals, for  fixed k . Nevertheless, the price to 
pay is the excess of redundant information which, in 
the extreme case )1 ,(k , implies that each dispersal 

is actually a replica of F . If we read by columns 
instead, each column represents all the possibilities 
that may withstand the same number of losses, i.e. 
the i-th column (from left to right) describes all 
combinations that support up to i  losses. It is clear 
that a given entry supports the same number of 
losses that any lower entry in the same column, but 
at the price of a higher redundancy.  
We will focus our work on systems featured by the 
second column, which means that we parameterize 
IDA in order to support up to 2 losses.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. IDA parameter combinations  
and their redundancy levels 

 

 

4 System description 

In this work we consider a low-cost fault-tolerant 
distributed storage system. The structure of this 
proposal is illustrated in Fig. 1. It consists of the 
following components: 
 
 Clients: These are the users that generate 

service requests such as storage, retrieval and 
deletion, using standard communication 
procedures. 

 
 Network gateway: This component serves as the 

interface between the clients and the storage 
network. All requests arrive at the gateway 
which, in turn, dispatches appropriate information 
to other system components in order to fulfill a 
service.  

 
 Storage network: It is a collection of sv 

storage nodes, connected through a Fast 
Ethernet switch. Initially, v nodes are configured 
to work as active nodes organized according to a 
kv+IDA storage scheme. Actual storage takes 
place in these components. The remaining s 
nodes are spares that do not take part in any 
ordinary storage operation. They are intended to 
replace an active node when it fails. 
 



 

Fault-Tolerance and Load-Balance Tradeoff in a Distributed Storage System 155 
 

Computación y Sistemas Vol. 14 No. 2, 2010, pp 151-163 
ISSN 1405-5546 

 

  
Fig. 1. System architecture of the distributed storage 

network 
 

     In addition to the already-mentioned client 
operations, the system has to carry out management 
and recovery procedures. Management is related to 
the support of client’s accounts. Recovery is 
triggered when an active node crashes. In the latter 
case a spare node is immediately selected in order 
to replace the one that failed. Let us recall that each 
active node stores the dispersals of the 
corresponding committees it belongs to. Thus, all 
pertinent information from other active nodes has to 
be retrieved in order to fully reconstruct the 
information previously available in the node to be 
replaced. We also consider that a repair procedure 
is in effect. It is possible to repair a node that 
crashed to become fully operational again. A 
repaired component returns to the system as a 
spare node. While recovery is in process, client 
services and management are temporally put off.  
     In spite of the recovery procedure, there are two 
possible conditions that may lead to a system break-
down or collapse. First, when the spare node in 
charge of recovery is unable to retrieve the minimum 
number of dispersals from a committee. Second, 
when another active nodes crashes, but there are no 
more available spares. 
 
 
 

 

5 Simulation framework 

We want to estimate the system’s mean time to 
failure (MTTF), this is the expected time that the 
system takes to go from start to collapse. Clearly, 
this characteristic depends on several parameters 
including the underlying kv scheme features, the IDA 
parameters, the number of spare nodes, and also 
individual node’s lifetime and repair time.  
     In order to carry out our assessment, we 
developed a discrete-event simulation model. Our 
simulations are based on two types of entities: 
ordinary nodes and a supernode. We provide Figure 
2 and Figure 3 to show the state-machine pseudo 
code of the corresponding entities.  
     An ordinary node, or node for short, represents 
either an active or spare node. When simulation 
starts, v  nodes are selected to work as active nodes 
whereas the remaining s become spare nodes. In 
either case individual lifetimes are modelled using 
random variables. When a node fails, it is taken out 
of the system to be repaired. Repairing time is also 
assumed to follow another exponential random 
distribution. Once the repair finishes, the repaired 
node becomes part of the spare stock. When an 
active node fails, a spare node is selected and is 
given the task of recovering the information in the 
node that failed. It is important to note that, during 
this operation, the selected spare node may also 
crash. Furthermore, it might be the case that failures 
lead to a shortage of spare nodes. As we described 
before, there are two possible conditions to declare 
collapse: either, a dispersal reconstruction is 
impossible, or a required spare is unavailable.  
     The supernode is a theoretical resource that 
simplifies our description and models the (otherwise) 
distributed control. Its operations include node’s 
initialization, kv scheme installation, creation of 
committees, monitoring, failure detection, trigger and 
supervision of the recovery procedures. The 
supernode distributes the recovery procedures 
among available active nodes. Once each one of 
them has finished the task it was in charge, the 
supernode selects a spare node to receive and store 
the recovered information. Finally, the supernode 
notifies to all components of the system, when a 
collapse occurs. 
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6 Assumptions and experiment design  

Based on the description previously given, we 
programmed a set of experiments using the 
OMNeT++ [13] simulation tool. We considered the 
following assumptions: i) the system is working at its 
maximum capacity, i.e. each node has a total 
capacity of 100 GB and this amount is available for 
storage, ii) the time to recover the contents of a node 
is linearly dependent on its capacity, iii) transmission 
time is negligible compared to the processing time 
(see Ref. [12] for a thorough discussion on this 
issue), iv) the lifetime of any ordinary node is 
modelled by independent and identically distributed 
(i.i.d.) exponential random variables and, v) repair 
times are also represented by i.i.d. exponential 
random variables.  
     We recognize that there might be other sources 
of failure, such as faulty power supplies or other 
electronic components that may shorten the 
system’s MTTF. Nevertheless, we only focus on 

aspects that may affect information integrity, 
according to our definition of system collapse.  

Regarding the underlying communications 
network, we assume that although communication 
failures may affect service availability, information 
integrity is always preserved. This is a realistic 
assumption due to the error control procedures 
commonly performed by logical-link and transport 
layers of the protocol stack. They ensure error-free 
data transfer and, therefore, network failures do not 
affect data integrity. 
     For a fixed committee size k equals to 5, our 
experiment design included 4 parameters: a) initial 
number of active nodes, b) initial number of spares, 
c) node’s lifetime and d) node’s repair time. Each 
parameter was tested under 3 different levels, which 
means that we performed 81 different experiments. 
Each experiment was repeated 10,000 times with 
different initial conditions (i.e., seeds for random 
number generation). All results are reported with a 
99% confidence interval. 
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Fig. 2. State machine description of an ORDINARY NODE 

 

state N0 
<1> upon reception of INIT_ACTIVE/INIT_SPARE from programmer 
<2>  lifetime = random_function1(lambda1); 
<3>  send CRASH to myself in lifetime 
<4>  state = N1/N2 
state N1 
<5> upon reception of HELP_RECOVER(j,B) from super 
<6>  for each node in committee B 
<7>   send NEED_DISPERSALS(j,B) now 
<8>  committee_members[B]=0 
<9>  available_dispersals[B]=0 
<10> upon reception of NEED_DISPERSALS(j,B) from l 
<11>  send DISPERSALS(j,B) to l now (?) 
<12> upon reception of DISPERSALS(j,B) from l 
<13>  committee_members[B]++ 
<14>  available_dispersals[B]++ 
<15>  if (committee_members[B]==k) 
<16>  then if ( available_dispersals[B]≥m) 
<17>   then  send RECOVERED(j,B) to super now 
<18>   else send UNRECOVERED(j,B) to super now 
<19> upon reception of DOWN from l 
<20>  committee_members[B]++ 
<21>  if (committee_members[B]==k) 
<22>  then if ( available_dispersals[B]≥m) 
<23>   then  send RECOVERED(j,B) to super now 
<24>   else send UNRECOVERED(j,B) to super now 
state N1/N2 
<25> upon reception of CRASH from myself 
<26>  repairtime = random_function2(lambda2); 
<27>  send CRASH to super now 
<28>  send REPAIRED to myself in repairtime 
<29>  state = N3 
state N2 
<30> upon reception of CONTENTS(j) from super 
<31>  myself replaces j  
<32>  state = N1 
state N3 
<33> upon reception of REPAIRED from myself 
<34>  lifetime = random_function1(lambda1); 
<35>  send REPAIRED to super now 
<36>  state = N2 
<37> upon reception of NEED_DISPERSALS(j,B) from l 
<38>  send DOWN to l now 
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state S0 
< 1> upon reception of START from programmer 
< 2>  select v nodes to be in Actives 
< 3>  select s nodes to be in Spares           
< 4>  send INIT_ACTIVE to each node in Actives now 
< 5>  send INIT_SPARE to each node in Spares now 
< 6>  start clock 
< 7>  state = S1 
state S1 
< 8> upon reception of CRASH from j 
< 9>  if j in Actives 
<10>  then dismiss j from Actives 
<11>   for each committee B where j worked 
<12>    select() a coordinator node in Actives 
<13>    send HELP_RECOVER(j,B) to coordinator now  
<14>   recover[j]=0 
<15>  else dismiss j from Spares 
<16> upon reception of RECOVERED(j,B) from l 
<17>  recover[j]++ 
<18>  save B in C[j] 
<19>  if (recover[j]==number of committees where j worked) 
<20>  then if (j’=find_spare()) 
<21>   then  send CONTENTS(j, C[j]) to j’ now (?) 
<22>    insert j’ in Actives 
<23>    j’ replaces j 
<24>   else send COLLAPSE to each node 
<25>    send REPORT to super now  
<26>    state = S2 
<27> upon reception of UNRECOVERED(j,B) from l 
<28>  send COLLAPSE to each node 
<29>  send REPORT to super 
<30>  state = S2 
<31> upon reception of REPAIRED from l 
<32>  insert l in Spares 
state S2 
<33> upon reception of REPORT from super 
<34>  report elapsed time 
<35>  stop 

 
Fig. 3. State machine description of the SUPERNOD
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7 Results and analysis 

Figure 4 shows the results of an experiment that we 
identify as case “a”. The figure shows the 
corresponding histogram obtained from sample data 
and we compare it to a fitted exponential pdf in solid 
line. The mean value equals 4,981.60 years, the 
longest MTTF obtained in our tests. In contrast, Fig. 
5 shows the results of another experiment that we 
call case “b”. Again, we show the histogram and a 
fitted exponential pdf in solid line. This time, the 
mean value equals 8.85 years, the shortest MTTF 
recorded. As it can be seen, the exponential 
distribution is a good fit for the system’s MTTF. 
     Table 3 summarizes the mean-time-to-failure 
values for each experiment carried out in this work. It 
is divided in 3 main vertical and 3 main horizontal 
sections, corresponding to the values of active and 
spare nodes under testing, respectively. Each of the 
9 possible combinations of active and spare nodes is  
further divided in order to represent the full set of 
parameters including node’s lifetime and repair time. 
Results are shown in bold face type. Those with 
labels “a” and “b” represent the results of the cases 
already introduced. We will now proceed to 
systematically analyze the complete set of results. 
 

 
 

Fig. 4. Longest MTTF 

 

 
 

Fig. 5. Shortest MTTF 
 
     Our first remark is about the number of active 
nodes. Let us read Table 3 by rows. We will find that 
for any fixed combination of spares, lifetime and 
repairing time values, those systems having 6 active 
nodes offer the best available performance. As we 
just mentioned, we assumed a fixed committee size 
k equals to 5, therefore using only 5 active nodes 
prevents an unsaturated kv storage scheme. It 
means that there is a single committee involved on 
every storage operation. A missing node affects this 
committee and the whole storage system. In 
contrast, a bigger number of active nodes enables 
load balance, since it is granted that any node does 
not work in, at least, one committee. Nevertheless, it 
is known from reliability theory, that a bigger number 
of active nodes also accelerates the overall failure 
rate. Let us recall that recovery is a critical operation 
where the system becomes vulnerable. Indeed, 
collapse happens during recovery, when the system 
is unable to cope with a number of failures beyond 
its capacity. Therefore, the optimal number of active 
nodes seems to be a trade off between load balance 
and the pace at which the system is able to deal with 
failures.  
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Table 3. Experimental results 
 

active nodes 

5 6 7 

spares 
lifetime 
(hours) 

repair 
(hours) 

MTTF 
(years) 

spares 
lifetime 
(hours) 

repair 
(hours) 

MTTF 
(years) 

spares 
lifetime 
(hours) 

repair 
(hours) 

MTTF 
(years) 

1 

5000 

5 25.89 

1 

5000 

5 91.68 

1 

5000 

5 59.58 

10 25.92 10 82.28 10 32.92 

20 25.21 20 38.53 20 b 8.85 

10000 

5 185.50 

10000 

5 672.22 

10000 

5 400.75 

10 183.13 10 575.06 10 170.33 

20 181.95 20 192.70 20 36.47 

20000 

5 1277.92 

20000 

5 4875.28 

20000 

5 2493.63 

10 1291.20 10 3652.66 10 782.19 

20 1289.37 20 864.89 20 148.71 

2 

5000 

5 25.67 

2 

5000 

5 90.70 

2 

5000 

5 70.56 

10 25.80 10 91.99 10 70.62 

20 26.00 20 90.08 20 66.17 

10000 

5 179.27 

10000 

5 676.45 

10000 

5 529.61 

10 182.36 10 679.46 10 502.92 

20 181.68 20 670.28 20 492.14 

20000 

5 1295.09 

20000 

5 4889.68 

20000 

5 3697.95 

10 1284.74 10 4929.65 10 3689.86 

20 1268.90 20 4973.56 20 3479.42 

3 

5000 

5 25.48 

3 

5000 

5 93.12 

3 

5000 

5 71.40 

10 25.29 10 91.26 10 69.98 

20 25.93 20 91.23 20 68.86 

10000 

5 181.20 

10000 

5 685.69 

10000 

5 523.27 

10 179.05 10 675.29 10 531.73 

20 180.39 20 695.05 20 515.81 

20000 

5 1291.61 

20000 

5 4924.65 

20000 

5 3805.19 

10 1318.80 10 a 4981.60 10 3758.70 

20 1279.99 20 4841.71 20 3787.54 
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Our second remark is about the impact of repair time 
on system’s performance. We will now read Table 3 
by columns. Let us call an entry set to the 3 
consecutive results corresponding to any fixed 
combination of active nodes, spares and lifetime; 
these are the smallest squares enclosing results in 
Table 3. Compare now 2 entry sets corresponding to 
two different spares. We will realize that for 2 or 
more spares, the impact of repairing time is 
marginal. This result implies that a sufficient spare 
supply is more important than a potentially slow 
repair procedure. Our third remark is about the 
number of spares. It is closely connected with our 
previous comment.  Again, we propose to compare 
entry sets on the same column. For those entries 
having the same parameter values but the spares, 
we will find out that, within the limits of accuracy, 
entries do not change for either 2 or 3 spares.  In 
other words, from the system´s point of view, 3 
spares seem to be a useless excess of redundancy 
as they provide the same support achieved with only 
2 spares.  
     Based on our last two remarks, we suggest to 
simplify the reading of Table 3. Let us focus on the 
sections corresponding to 2 spares only. For the 
entry sets in this part of the table we have already 
noticed that the influence of repair time on system's 
performance, is rather negligible. Thus, we can 
dismiss this parameter and represent the 3 
consecutive results that make up an entry set by its 
mean value. Once we have finished this pre-
processing, we are prepared to present our final 
remark, about the importance of lifetime. Our results 
show that for a given set of storage nodes, a twofold 
increase their individual lifetime produces about a 
sevenfold increase on the overall system's MTTF.  

8 Conclusions and future work 

In this work we presented a performance study 
intended to evaluate the mean time to failure of a 
distributed storage system. We tested a particular 
approach that makes use of both space and 
information redundancy. An advantage of this 
combination stands on the fact that both are 
parameterized techniques, therefore, they allow us 
to experiment with different amounts of redundant 
resources.   

     System operation can be briefly described as 
follows. A set of autonomous stations with storage 
capacities, called storage nodes, is connected 
through a fast Ethernet switch. Initially nodes are 
classified in active or spare nodes. Subsets of active 
nodes, called committees, are scheduled to work 
according to a distributed procedure called storage 
scheme. The committees that make up our proposal 
are all the subsets of active nodes having a fixed 
size.   
     When a storage request arrives at the system, a 
given committee is called according to a fixed and 
cyclic order. A file to be stored is transformed into a 
certain number of dispersals using Rabin´s IDA. 
Each member of the selected committee is in charge 
of storing one of the resulting dispersals. Recall that 
the original file, or any of its dispersals, can be 
rebuilt provided that a given amount of redundant 
information remains available. If an active node 
crashes, two actions take place. First, a distributed 
control starts the recovery procedure using the 
surviving active nodes. Then, one spare replaces 
then missing element and stores the recovered 
information.  Second, the missing element 
undergoes a repair procedure. Once it becomes 
operational again, it is regarded as a spare node. 
     We tested the effect of 4 different parameters on 
the system’s performance. These parameters are 
the number of active nodes, the number of spares, 
the individual node’s lifetime and repair time. Our 
study mainly shows that the number of active 
components defines a compromise between load 
balance and the overall failure rate. As for spares, 
they are important up to a certain operational point 
where their availability compensates the repair 
procedure. Beyond this point, an excess of spares 
does not pay back any further improvement. 
Nevertheless, the most influential parameter turned 
out to be the node’s lifetime. Also, it is worth 
mentioning that even under the worst combination of 
parameters, our design renders a mean time to 
failure longer than the summation of individual 
lifetimes.  
     We have settled the basis of a construction 
method for distributed storage emphasizing on the 
reutilization of local resources. This approach 
revaluates the infrastructure already deployed and 
allows small groups to build up their own solutions 
according to their particular needs. For future 
research, we are already studying the best approach 
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to scale up our system. Preliminary work suggests 
that we may borrow some ideas from P2P networks, 
to build a federation of local storage systems. 
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