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Abstract. In this article is presented a computerized 
segmentation method for breast nodules on ultrasonic 
images. With the goal of removing the speckle while 
preserving important information from the lesion 
boundaries, a Gabor filter followed by an anisotropic 
diffusion filtering are applied to the ultrasonic image. 
Furthermore, the marker-controlled Watershed transform 
defines potential boundaries that maximize the Average 
Radial Derivative function to get the final lesion contour. 
The segmentation procedure was applied on a database of 
50 images and the computer-delineated margins were 
compared against manual outlines drawn by two 
radiologist. This comparison was performed by two 
metrics, which measure the similarity between two 
compared images: overlap ratio (OR) and normalized 
residual value (nrv). If there is perfect agreement between 
both images OR = 1 and nrv = 0. Then, the mean values 
results, for each metric, were for the first radiologist: 
OR = 0.870.04 and nrv = 0.140.06, and for the second 
radiologist: OR = 0.860.06 and nrv = 0.150.05. 
Keywords: Breast ultrasound, Segmentation, Watershed 
transform, Average radial derivative. 
 
Resumen. En este trabajo se presenta un método 
computacional para la segmentación de nódulos 
mamarios en imágenes ultrasónicas. Con el objetivo de 
remover el ruido multiplicativo (speckle) mientras se 
preservan los detalles importantes del contorno del tumor, 
se aplica un filtro de Gabor seguido de un filtro de difusión 
anisotrópico sobre la ultrasonografía de mama. 
Posteriormente, la transformada Watershed (línea divisora 
de aguas) controlada por marcadores define bordes 
potenciales que maximizan la Media Radial Derivativa para 
encontrar el contorno final de la lesión. El procedimiento 
de segmentación se aplicó en un banco de 50 
ultrasonografías y la segmentación computarizada 
obtenida de cada imagen fue comparada contra las 
delineaciones manuales realizadas por dos radiólogos. 

Dicha comparación fue cuantificada a través de dos 
métricas, los cuales miden la similitud entre las imágenes 
comparadas: razón de superposición (OR) y valor residual 
normalizado (nrv). En el caso de coincidencia perfecta 
entre ambas imágenes OR = 1 y nrv = 0. Los valores 
promedio de cada métrica fueron para el primer radiólogo: 
OR = 0.870.04 y nrv = 0.140.06, y para el segundo 
radiólogo: OR = 0.860.06 y nrv = 0.150.05. 
Palabras clave: Ultrasonido de mama, Segmentación, 
Transformada Watershed, Media radial derivativa. 

1 Introduction 

Early diagnosis is a crucial factor in breast cancer 
treatment and medical imaging is a very powerful 
assessment tool. Nowadays, breast ultrasound (US) 
is accepted as the most important adjunct to 
mammography for patients with palpable nodules 
and normal or inconclusive mammograms. It is 
particularly useful in distinguishing cystic from non-
cystic (solid) breast lesions [Zonderland et al., 1999]. 

Malignant tumors generally infiltrate the 
surrounding tissue and they present several 
morphological features associated to malignancy 
such as: (a) spiculation, a distortion caused by the 
intrusion of the breast cancer into the surrounding 
tissue [Huang et al., 2004]; (b) angular margins, 
obtuse or acute pointed junctions between the mass 
and surrounding tissue; and (c) microlobulation, that 
is frequently associated with angular margins and is 
characterized by greater than three lobulations of 
the mass surface [Chang et al., 2005]. Therefore, 
analyzing the lesion contour morphology it is 
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possible to give a diagnostic hypothesis about the 
tumor malignancy. 

However, due to the large overlap in the 
sonographic appearance of breast nodules, it has 
been difficult to diagnose them as benign or 
malignant only by visual inspection of the specialist 
[Giger, 2000]. To improve diagnosis, several 
researchers have been developed quantitative 
methods to build computer-aided diagnosis (CAD) 
systems [Alvarenga et al., 2003; Horsch et al., 2001; 
Infantosi et al., 2008]. 

In a CAD system, the accurate segmentation of 
breast lesions in US images is a difficult task since 
presence of speckle noise and shadows, the low or 
non-uniform contrast of certain structures, and the 
variability of the echogenicity of the nodules 
[Alemán-Flores et al., 2007]. Thus, to obtain 
segmentation which can be used for diagnosis 
depends on two aspects: (1) image pre-processing 
and (2) gray-level threshold selection. 

The computerized segmentation techniques 
could be classified in two categories: edge-based 
techniques, that look for edges between regions with 
different characteristics, and region-based 
techniques, that cluster image regions that satisfy a 
given homogeneity criterion [Bankman, 2000]. Edge-
based segmentation methods depend on the image 
gradient to determine the boundary of an object.       
     These methods do not achieve a good 
performance when the US image presents weak 
defined edges or large amount of speckle that 
produces spurious edges [Huang & Chen, 2004]. On 
the other hand, region-based segmentation 
methods, such as region-growing [Drukker et al., 
2002; Horsch et al., 2001; Oshiki et al., 2004], 
snake-deformation [Alemán-Flores et al., 2007; 
Chang et al., 2005; Chen et al., 2000], split-and-
merge [Chen et al., 2005; Cheng et al., 2007], and 
morphological watershed transformation [Huang & 
Chen, 2004] have been widely explored for 
segmenting breast US images. 

In this study, we propose a region-based 
segmentation technique applied to breast 
ultrasound. This method employs a Gabor filter 
followed by an anisotropic diffusion filter to reduce 
speckle without losing important information about 
lesions boundaries and detailed structures. After 
that, a constraint Gaussian function is multiplied by 
the filtered image to attenuate objects that have the 
same gray-levels as the lesion region but do not 
belong to it. Next, a region-growing scheme, based 
on a gray-level thresholding procedure of the 

preprocessed image, defines binary partitions. With 
those binary images are created markers used as 
the set of minima to impose to the segmentation 
function (image gradient) to control the flooding of 
Watershed transformation, in order to obtain 
accurate potential lesion margins. Each potential 
contour evaluates the Average Radial Derivative 
(ARD) function, which measures the gray-level 
gradients along the margin. The argument of the 
maximum of the ARD curve defines the index of the 
final lesion contour, i.e., in that contour there is the 
maximum gray-level gradient between the lesion 
region and its background. 

2 Material and Methods 

2.1 Image Database 
 
In this study, using a 7.5MHz linear array B-mode 
40-mm ultrasound probe (SonolineSienna® 
Siemens) 50 ultrasonographies were acquired at the 
Cancer National Institute (Rio de Janeiro, Brazil), 
during routine studies. For each image, two 
experienced radiologists determined a rectangular 
Region-of-Interest (ROI) including the tumor and 
healthy tissue around it. Besides, the same two 
radiologists delineated manually all tumor contours 
using software designed for that purpose. 

2.2 Speckle Filtering 

There are several fundamental requirements for 
medical image filtering. First, it should preserve the 
important information from lesion boundaries and 
detailed structures; second, it should efficiently 
suppress the noise in homogenous regions; and 
third, it should enhance the edge information [Gerig 
et al., 1992] 

Ultrasonic images are characterized by speckle 
artifact, which degrades the image by concealing 
fine structures and reducing the signal to noise ratio 
(SNR) [Yu & Acton, 2002]. Moreover, in many 
cases, it is harder to locate the edges of different 
elements due to the low contrast between the 
structures to be segmented and the background. 
Therefore, it is necessary to remove speckle and 
enhance the edges among distinct regions before 
the segmentation procedure. 

With conventional spatial filters applied to 
remove speckle in breast US, such as median 
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[Horsch et al., 2001], truncated median [Alemán-
Flores et al., 2003], Wiener [Huang & Chen, 2004], 
the price paid for removing the noise is the blurring 
of lesion edges. Anisotropic diffusion is a non-linear 
filtering method, which tries to reduce the speckle of 
the image whereas preserving the contrast of the 
lesion edges, that means, the contour of the objects 
are slightly modified by the diffusion process 
[Alemán-Flores et al., 2007]. The anisotropic 
diffusion equation is given as follows [Perona & 
Malik, 1990]: 

It  div c I I , (1) 

where  is the gradient operator, div is the 

divergence operator, I is the initial 2D image,   

denotes the magnitude, and c() is the diffusion 
coefficient that enhances wide regions over smaller 
ones, and it is expressed as 

c I  1

1
I








2
, (2) 

where the constant  is a parameter to control the 
diffusion extension.  

Anisotropic diffusion works properly in many 
kinds of images, mainly when the objects have 
uniform intensity regions. However, in the case of 
US images, it is important to express similarity 
between different areas in terms of texture 
descriptors instead of intensities.  

The input image I(x,y) is assumed to be 
composed of disjoint regions of N > 2 different 
textures. Then, I(x,y) is filtered with a bandpass 
Gabor filter with spatial impulse response h(x,y): 

 

݄ሺݔ, ሻݕ ൌ
1

௚ߪߨ2
ଶ · exp ቆെ

ଶݔ

௚ߪߨ2
ଶቇ · ଶݔ൫݇௫ݏ݋ܿ   ൅ ݇௬ݕଶ൯,  

(3) 

 
The Gabor function h(x,y) is a sinusoid centered 

at the frequency (kx,ky) and modulated by a 
Gaussian envelope. The parameter g determines 
the scale of the envelope of h(x,y) [Weldon et al., 
1996]. The output of the Gabor filter is calculated as 
the convolution in two dimensions of the original ROI 
with the filter response defined in (3). Then, the 
resultant image is the input of the anisotropic 
diffusion filter depicted in (1) to obtain the 
despeckled image with enhanced edges, ˜ I . In 

Fig. 1(b), are illustrated the result of applying the 
speckle filtering on a breast US containing an 
irregular lesion shown in Fig. 1(a). 
 

  
(a) (b) 

 
Fig. 1. (a) Original ROI image of an irregular breast lesion with 
rounded and angular margins, diffuse edges, concavities and 
non-uniform intensity. (b) Despeckled image by applying 
Gabor filter followed by anisotropic diffusion filtering 

2.3   Constraint Gaussian Function 

The next step involves multiplying the complement 
of the filtered image, I , by a constraint Gaussian 
function, C ( ˆ P ) , positioned on the lesion center. The 
purpose is to attenuate distant pixels that have gray-
level values similar to the tumor region. Then, the 
resultant image has higher gray values in the region 
of the lesion and gray values near to zero far from 
the lesion [Horsch et al., 2001] (Fig. 2). 

The multiplication of the inverted filtered image 
by the Gaussian function is defined as [Fig. 3(a)] 

 

൫ܬ ෠ܲ൯ ൌ ൫ܥ ෠ܲ൯ · ቌ1 െ
൫ܫ̀ ෠ܲ൯

௉෠ݔܽ݉ ቀ̀ܫ൫ ෠ܲ൯ቁ
ቍ (4) 

where  ෠ܲ is the pixel location and the constraint 
Gaussian function, C ( ˆ P ) , is expressed as 
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
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2 det S

, (5) 

where ˆ  is the lesion center coordinates, and K is a 
matrix with the variances in the horizontal and 
vertical directions,  x  w / 2 and  y  h / 2 , where 

w and h are the lesion width and height, 
respectively, which are estimated manually by the 
user. 
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(a) (b) (c) 

 
Fig. 2. Effect of the constraint Gaussian function where the z-axis represents the image gray-levels. (a) Constraint Gaussian 
function. (b) Negative of the filtered image where it is observed structures that do not belong to the tumor but have similar 
gray-levels. (c) By multiplying (a) and (b) the lesion region is enhanced and those distant structures are attenuated 
 

2.4 Watershed transformation 

The Watershed transform is the first option for image 
segmentation in the field of Mathematical 
Morphology, and can be classified as a region-
based segmentation approach. Its principle can be 
understood from an intuitive idea coming from 
Geography. Let’s imagine a landscape or 
topographic relief immersed progressively in a lake, 
with holes pierced in its local minima. Basins (also 
called “catchment basins”) will fill up with water 
beginning from these local minima. Then, at points 
where water coming from different basins meets, 
dams are built. When the water level has reached 
the highest peak in the landscape, the process is 
halted. As a result, the landscape is divided into 
regions or basins separated by dams, called 
watershed lines or simply watersheds [Parvati et al., 
2008; Roerdink & Meijster, 2001; Vincent & Soille, 
1991].  In practice, a direct computation of the 
Watershed transform on the image to be segmented 
(segmentation function) produces an over-
segmentation, which is due to the presence of 
spurious minima. Therefore, the segmentation 
function must be filtered by minima imposition 
technique in order to remove all irrelevant minima. 
This technique requires the determination of a 
marker function to point the relevant structures 
within the image to control the flooding only to the 
catchment basins associated to each marker. This 
technique is known as marker-controlled watershed 
transformation (MCWT) and it is a robust and 
flexible method for segmenting objects with closed 
contours (e.g. breast lesions), where the boundaries 
are expressed as ridges [Parvati et al., 2008; Soille, 
2004]. 

2.4.1 Segmentation Function 

The determination of the segmentation function is 
based on a model for the definition of an object 

boundary. The lesion region within the image J(P̂)  
(defined in Eq. 4) presents rather constant gray level 
values.  By computing the gradient operator the 
lesion boundaries will be enhanced. Then, by using 
a set of eight Newton filters (Table 1) the 

preprocessed image J(P̂)  is filtered, which enhance 
the lesion edges according to their orientations 
[Alemán-Flores et al., 2001]. 

Table 1. Set of eight Newton filter kernels and  
their corresponding orientations 

 

F0 
1 1 2
2 2 4
1 1 2















 
F1 

1 2 4
1 2 2
2 1 1















 

F0: 0 F1: /4 

F2 
2 4 2
1 2 1
1 2 1















 
F3 

4 2 1
2 2 1
1 1 2















 

F2: /2 F3: 3/4 

F4 
2 1 1
4 2 2
2 1 1















 
F5 

1 1 2
2 2 1
4 2 1















 

F4:  F5: 5/4 

F6 
1 2 1
1 2 1
2 4 2















 
F7 

2 1 1
1 2 2
1 2 4















 

F6: 3/2 F7: 7/4 
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The segmentation function is determined by 

calculating the magnitude of the image J(P̂)  
convolving by the eight Newton filters defined as 
[Fig. 3(b)] 

 

fs  Fi  J (P̂) 2
i

 , (6) 

 
 

    
(a) (b) (c) (d) 

   
(e) (f) (g) 

 
 
Fig. 3. (a) Inverted filtered image multiplied by the constraint Gaussian function. (b) Segmentation function derived from the set on 
Newton filters. (c) Marker function computed by morphological operators defined at gray-level threshold th = 115 of (a). (d) Minima 
imposition of the marker function on the segmentation function at th = 115. (e) Potential lesion margins computed by Watershed 
transformation over the imposed image for several thresholds. (f) Average radial derivative curve. It is observed a maximum at 
th = 115, where exists the maximum gradient between the lesion and its background. (g) Segmented lesion defined by the potential 
lesion margin that maximizes de ARD at th = 115 
 
where Fi is the Newton filter with a specific 
orientation i = 0,1,…,7, as illustrated in Table 1, and 
 is the convolution operator. 
 
2.4.2 Marker Function 
 
Gray-level thresholding (th) from 0 to 255 of J(P̂)  
image defined binary partitions that are used to 
create both external and internal markers. The 
external marker is calculated by the morphological 
Beucher gradient (structuring element -SE- square 
33 pixels) of binary partition dilation (SE disk, 5 
pixels radius), whereas the internal marker is 
computed by eroding the binary partition (SE disk, 3 
pixels radius). The logical union of the internal and 
external markers determines the function marker 
[Fig. 3(c)] and is used as the set of minima to 
impose to the segmentation function. 
 
 

2.4.3 Potential lesion margins 
 

When the image J(P̂)  is thresholded to create the 
marker function, it is obtained a set of segmented 

images defining “lesion-like” shapes. However, J(P̂)  
is a distorted version of the constraint Gaussian 
function, produced by the multiplication with the 
inverted filtered image. Therefore, when the lesion 
shape is highly irregular, the binary partition will not 
track accurately the tumor contour, because it does 
not take into account the image gradient information, 
adding structures that do not belong to the lesion.  

To solve this, the minima imposition of the 
marker function over the segmentation function is 
used to guarantee that the gradient information is 
contained between the internal and external 
markers, while removing all irrelevant minima [Fig. 
3(d)]. Then, a potential lesion margin is obtained by 
computing the Watershed transformation of the 
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minima imposed image at each gray-level threshold 
[Fig. 3(e)]. 

Because the J(P̂)  is thresholded from 0 to 255 
gray-levels, it is created a set of 256 potential lesion 
margins. In order to select one of them as the final 
lesion contour, the Average Radial Derivative (ARD) 
function is evaluated by using the information of a 

potential lesion contour fWS

th , in a specific gray-level 

threshold th, and the gradient of the despeckled 

image I  [Fig. 3(f)]. The ARD gives the average 
directional derivative in the radial direction along the 
contour and is defined as [Horsch et al., 2001] 

 
ሺƒௐௌܦܴܣ

௧௛ ሻ ൌ
ଵ

ே
∑ ̀ I׏

௉ ఢ ƒೈೄ
೟೓෣ ൫ ෠ܲ൯ · ൫ݎ̂  ෠ܲ൯              (7) 

where fWS

th  is the discretized potential lesion margin 

at specific gray-level threshold th, N is the number of 

points in fWS

th , r̂(P̂ )  is the unit vector in the radial 

direction from the geometric center of the contour to 
the point ˆ P  (x,y), and  is the dot product between 

vectors. Then, the potential margin, fWS

th , that 

maximizes the ARD function defines the lesion 
boundary at the gray-level threshold th = 0, 1,…, 255 
[Fig. 3(g)]. In Fig. 4 is illustrated the pipeline of the 
proposed segmentation algorithm. 
 

 
 

Fig. 4. Pipeline of the proposed segmentation algorithm 

2.5 Performance Evaluation 

To assess the segmentation algorithm, it was used 
the database of 50 breast US images. By comparing 
the binary computer-delineated images against the 
radiologists’ manual outlines, it is possible to 
measure the agreement between contours. This 
quantification was performed by two parameters: 
overlap ratio (OR) and normalized residual value 
(nrv). Both metrics require two binary images for the 
same lesion: SC (computerized segmentation) and 
SR (radiologist’s outline). 

Then, the OR parameter is defined by [Horsch et 
al., 2001]: 

 

OR 
Area(SC  SR )

Area(SC  SR )
, (8) 

where the symbols  and  indicate the areas 
intersection and union, respectively. So, when both 
images have perfect agreement OR is equal to unity. 

The parameter nrv takes into account the relative 
positions of pixels that depict the object contour; and 
can be expressed as [Infantosi et al., 1998] 

 

nrv 
Area(SC  SR )

Area(SR )
, (9) 

where  represents an exclusive-or operation. 
Hence, if SC and SR are congruent, nrv = 0. 

2.6 Comparison with Horsch’s method 

In order to compare the performance of our 
segmentation technique, it was also implemented 
the method proposed by Horsch et al. (2001). In that 
work, the authors applied the constraint Gaussian 
function to breast US, and to select the final lesion 
contour they maximized the ARD function. As 
depicted previously, both stages are part of our 
segmentation technique. However, we tried to 
improve the segmentation method by adding other 
techniques, such as anisotropic diffusion and 
watershed transformation, to track more accurately 
the lesion contour. There were used the parameters 
OR and nrv to measure the Horsch’s method 
performance. The nomenclature to differentiate the 
results of both techniques is SMW for our 
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segmentation method and SMH for Horsch’s 
technique. 
 
3 Results 
 
In Fig. 5 are illustrated some examples of both 
methods (SMW and SMH) applied on breast US 
containing irregular lesions. As observed, both 
computerized segmentation methods delineated the 
lesions with some differences between them and in 
relation to radiologist’s outlines. SMH tends to 
smooth the lesion contour and, in some cases, adds 

to segmentation tissue that does not belong to 
lesion. This effect is due to the median filter (1010  
pixels) used by SMH,  which blurs the image and, 
consequently, loses the steep gray-level 
discontinuities.     On  the other hand, SMW depicted 
more accurately the details on the lesion 
boundaries,   because of  the  combination  of 
different  filtering  techniques,  such as Gabor  filter 
and anisotropic diffusion. This ability is important to 
extract relevant information for classification 
purposes. 
 
 

 
 

Original ROI Manual outline SMW SMH 

(a) 

    

(b) 

    

(c) 

    
 
 
Fig. 5. Examples of both manual delineation and computerized segmentations (SMW and SMH). The three lesions have 
irregular shapes that combine rounded and angular margins diffuse edges, concavities and non-uniform intensity. The 
differences presented between SMW and SMH in relation to the manual outlines is mainly due to the filtering method and the 
technique to define potential margins 
 

In the case of radiologist’s outlines, it is 
noticeable that the specialist could not follow little 
details on lesion contours. Therefore, the advantage 
in using computerized segmentation is that avoids 
human variability.  

The graphs in Fig. 6 show the results for the two 
parameters, OR and nrv, for the entire database. 
The curve notations are as follows: R1R2 is the 

comparison between both radiologists delineations 
(reference); SMWR1 and SMWR2 are the 
comparisons between SMW and manual 
delineations, and SMHR1 and SMHR2 refers to the 
Horsch’s segmentation with respect to the 
radiologists outlines. 

If it is taken any threshold value (x-axis), for both 
metrics OR and nrv, it is found the percentage of 
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images (y-axis) that reached that threshold. For 
example, in order to compare the performance 
between SMW and SMH we could define the following 
threshold values: OR = 0.8 and nrv = 0.2. Therefore, 
the method that achieves the largest percentage of 
images has the best performance (Table 2). 

 

 
 

 
 

 
Fig. 6. Percentage of images segmented at different 
thresholds using the proposed technique (SMW) and Horsch 
technique (SMH) for (a) overlap ratio and (b) normalized 
residual value, for which computerized segmentations and the 
manual delineations respectively agree 

 
Table 2. Percentage of images that reached the threshold 

values of OR = 0.8 and nrv = 0.2 for SMW and SMH. 

Test 
SMW SMH 

OR = 0.8 nrv = 0.2 OR = 0.8 nrv = 0.2 

R1 94% 84% 70% 58% 

R2 94% 86% 78% 60% 

 
The results summarized in Table 2 pointed out 

that our segmentation technique delineates the 
lesion contour accurately in relation to radiologists’ 
reference. 

In Table 3 are enlisted the mean values of the 
metrics OR and nrv applied to the entire database, 
by using as reference both radiologists’ outlines. 
These results confirm that our algorithm presented 
an improvement in relation with SMH. 

 
Table 3. Mean values for the metrics OR and nrv to quantify 

the performance of SMWand SMH 

Test 
SMW SMH 

OR nrv OR nrv 
R1 0.870.04 0.140.06 0.820.07 0.200.11 
R2 0.860.06 0.150.05 0.810.06 0.200.10 

4 Conclusions 

In this article was presented a segmentation method 
for breast lesions on US images. This technique 
preprocess the image with a Gabor filter followed by 
an anisotropic diffusion filtering, in order to preserve 
and enhance useful information in the lesion 
boundaries, unlike from other filtering techniques 
that blur the image, such as median filter used in 
Horsch’s method. 

The constraint Gaussian function plays an 
important role within the segmentation algorithm, 
because it attenuates undesired structures with 
similar gray-levels that the lesion region. This stage 
prepares the image for the region-growing 
procedure, performed by the image thresholding, 
from 0 to 255, to create “lesionlike” shapes. After 
that, each partition is used to create markers that 
are placed within the desired regions to be 
segmented. This procedure controls watershed 
transformation only to the regions associated to 
each marker. Then, potential lesion margins are 
created and the ARD function is maximized to get 
the final lesion contour. The combination of these 
techniques provides quite satisfactory results in the 
segmentation of complex images such as 
ultrasonographies. 

Marker-controlled watershed transformation is 
defined as a robust and flexible method for 
segmenting objects with closed contours, such as 
breast nodules. Besides, its functioning is improved 
when is combined with the region-growing 
procedure, derived from the thresholding of the 
filtered image multiplied by constraint Gaussian 
function to find potential lesion margins. One 
advantage of our method is its simplicity to be 
implemented, because it does not require large 

(a) 

(b) 
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computational cost to solve complex mathematical 
models, such as snake-deformation.  

Encouraged by these results, our current efforts 
are to include this technique as part of the 
development of a CAD system to give support to the 
detection and diagnose of breast lesions on US 
images. 
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