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Abstract. A comparison between the Dynamic Principal 
Component Analysis (DPCA) method and a set of 
Diagnostic Observers (DO) under the same experimental 
data from a shell and tube industrial heat exchanger is 
presented. The comparative analysis shows the detection 
properties of both methods when sensors and/or 
actuators fail online, including scenarios with multiple 
faults. Similar metrics are defined for both methods: 
robustness, quick detection, isolability capacity, 
explanation facility, false alarm rates and multiple faults 
identifiability. Experimental results show the principal 
advantages and disadvantages of both methods. DO 
showed quicker detection for sensor and actuator faults 
with lower false alarm rate. Also, DO can isolate multiple 
faults. DPCA required a minor training effort; however, it 
can not identify two or more sequential faults. 
Keywords: Fault Detection and Diagnosis, Model 
Classification, Computer Application, Dynamic Principal 
Component Analysis, Diagnostic Observers. 
 
Resumen. El artículo presenta una comparación entre dos 
métodos de detección de fallas, Análisis de Componentes 
Principales Dinámico (DPCA por sus siglas en inglés) y 
Observadores de Diagnóstico (DO por sus siglas en inglés), 
bajo los mismos datos experimentales extraídos de un 
intercambiador de calor industrial de tubo y coraza. El 
análisis comparativo muestra las propiedades de detección 
de ambos métodos cuando sensores y/o actuadores fallan 
en línea, incluyendo fallas múltiples. Para ambos métodos 
se definen métricas similares: robustez, tiempo de 
detección, capacidad de aislamiento y explicación de 
propagación de fallas, tasa de falsas alarmas y capacidad 
de identificar fallas múltiples. Los resultados experimentales 
muestran las ventajas y desventajas de ambos métodos. 
DO detecta más rápido las fallas de sensores y actuadores, 
presenta menor tasa de falsas alarmas y puede aislar fallas 
múltiples. DPCA requiere menor esfuerzo de 

entrenamiento; sin embargo, no puede identificar 2 o más 
fallas secuenciales.  
Palabras clave: Detección y Diagnóstico de Fallas, 
Clasificación de modelos, Aplicación Computacional, 
Análisis de Componentes Principales Dinámico, 
Observadores de Diagnóstico. 
 

1 Introduction 
 

Early detection and diagnosis of abnormal events in 
industrial processes can represent economic, social 
and environmental profits. Moreover, when the 
process has a great quantity of sensors or actuators, 
the Fault Detection and Isolation (FDI) task is very 
difficult. Advanced FDI methods can be classified 
into two major groups [Venkatasubramanian, et al., 
2003], those which do not assume any form of 
model information (process history-based methods) 
and those which use accurate dynamic process 
models (model-based methods). 

Most of the existing FDI approaches tested on 
Heat Exchangers (HE) are based on quantitative 
model-based methods. In [Habbi, et al., 2008], fuzzy 
models based on clustering techniques are used to 
generate residuals; the symptom generation can 
detect leaks in a complex HE. Similarly, a residual 
generator is proposed to create fault signatures in 
[Krishnan and Pappa, 2005]. An adaptive observer 
is used to estimate the overall heat transfer 
coefficient and detect a performance degradation of 
the HE in [Astorga, et al., 2008]. In [Sun, et al., 
2009], the particle swarm optimization algorithm is 
applied to estimate the parameters of a Support 
Vector Machine (SVM) which is used to predict 
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faults in a HE. An algorithm for predicting the 
probability distribution of different faults is proposed 
in [Morales-Menendez, et al., 2003], the results are 
used to adjust a process control system. 

A comparative analysis between two FDI 
systems is proposed in this paper. One of them is 
based on the Dynamic Principal Component 
Analysis (DPCA) and one on a set of Diagnostic 
Observers (DO). In order to detect faults, DPCA only 
requires process data under normal operating 
conditions; whereas, another approaches based on 
historical data (e.g. Artificial Neural Networks, Expert 
Systems, etc.) require a priori knowledge under 
normal and faulty process conditions. On the other 
hand, the FDI system based on DO only needs to 
verify the model observability; while others model-
based methods like parity equations must ensure 
nullity of matrices, rank of matrices, etc.; and 
Kalman filters are frequently used when the fault 
estimation is desired. Both methods, DPCA and DO 
were designed to online detect and isolate faults 
related to sensor or actuators malfunctions in an 
industrial HE. 

Recently, DPCA and Correspondence Analysis 
(CA) have been compared in the FDI task [Detroja, 
et al., 2005]. CA shows a better efficiency of fault 
detection; however, this method needs greater 
computational effort. An adaptive standardization of 
the DPCA has been proposed in [Mina and Verde, 
2007]; the approach allows detecting faults and 
avoiding normal variations. In [Perera, et al., 2006], 
a recursive DPCA algorithm is used to adapt the 
model after detecting leakage conditions in a 
chemical-sensing application. Fisher discriminant 
analysis is adopted to improve the fault detection 
performance of kernel PCA in [Cui, et al., 2008]. In 
[Rea, et al., 2008], different types of sensor faults 
are detected in an industrial HE using DPCA via 
statistical thresholds. 

On the other hand, many other approaches 
based on DO propose alternatives for detecting and 
isolating faults in nonlinear systems. Novel robust 
approaches look for insensitivity to uncertainties and 
at the same time are sensitive to faults using some 
decoupling method [Chen and Patton, 1999]. A 
robust fault detection observer is proposed in [Dai, 
et al., 2008], the design of the observer is based on 
performance indices and it is optimized with genetic 
algorithms. In [Puig, et al., 2008], a passive robust 
FDI system is proposed; it includes modeling 
uncertainties using an interval model observer. An 
observer-based fault detection filter is used as 

residual generator in [Wu and Ho, 2009]; the fault 
detection filters are based on fuzzy-rules. An 
adaptive observer for fault diagnosis of nonlinear 
discrete-time systems is proposed in [Caccavale and 
Villani, 2004]. Using linear models, a dynamic 
observer is designed to detect malfunctions caused 
by measurement and modeling errors [Simmani and 
Patton, 2008]. In order to detect multiple faults, a set 
of unknown input-observers are used in [Verde, 
2001], each one of them is sensitive to a fault while 
insensitive to the remaining faults. 

The aforementioned works are tested under 
different faults and non-uniform process conditions. 
This paper shows a comparison between DPCA and 
a set of DO under the same experimental data 
provided from an industrial HE. The comparative 
analysis is made in parallel when sensors and/or 
actuators fail (soft faults), including scenarios with 
multiple faults. 

This paper is organized as follows: Section 2 
presents the DPCA formulation, and section 3 the 
designing steps of a set of DO. Section 4 presents 
the experimentation. Section 5 and 6 present the 
results of both methods. Section 7 outlines the 
comparison analysis. Conclusions are presented in 
section 8. 

 
2 DPCA Formulation 
 
Let X be a matrix of m observations and n variables 
recorded from a real process. This data set 
represents the normal operating conditions. Xഥ 
denotes the scaled data matrix and xത is a vector 
containing the mean (µ) of each variable. Such that, 

xതሾ୬ൈଵሿ ൌ ቀ
ଵ

୫
ቁ XT1  and Xഥሾ୫ൈ୬ሿ ൌ ሺX െ 1xതTሻDିଵ, where 

D is a diagonal matrix containing the standard 
deviation (σ) of each variable and 1 is a vector of 
elements equal to 1. 

When the system has a dynamic behavior, the 
data present serial or cross-correlation among the 
variables. This violates the assumption of normality 
and statistical independence of the samples. To 
overcome these limitations, the  column space of the 
matrix X must be augmented for generating a static 
context of dynamic relations. There is not a 
systematic method for determining how many delays 
must be included; however, the number of delays 
depends on the sample time (Ts). If DPCA cannot 
explain data variance, Ts can be modified in order to 
retain the same number of past observations into 
matrix X, [Tudón, et al, 2008]. 
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ሻݐሺࡰࢄ ൌ ሾ ଵܺሺݐሻ, ଵܺሺݐ െ 1ሻ, … , ଵܺሺݐ െ ,ሻݓ … , ܺ௡ሺݐሻ, ܺ௡ሺݐ

െ 1ሻ, … , ܺ௡ሺݐ െ                     ሻሿݓ
(1) 

 
By performing PCA on the augmented data 

matrix, a multivariate AutoRegressive (AR) model is 
extracted directly from data [Ku, et al., 1995]. In 
equation (1), w represents the delays quantity to 
include in the AR model. For a multivariate system, 
the process variables can have different ranges of 
values, ergo the data matrix XD must be 
standardized. With the scaled data matrix, a set of a 
smaller number (r ൏  ݊) of variables is searched 
through decomposing the data variance, r must 
preserve most of the information given in these 
variances and covariances. The dimensionality 
reduction is obtained by a set of orthogonal vectors, 
called loading vectors (p), which are obtained by 
solving an optimization problem involving 
maximization of the explained variance in the data 
matrix by each direction (j); with t୨ ൌ Xഥp୨, the 
maximal variance of data t୨ must be computed by: 

max൫ݐ௝
௝൯ݐ் ൌ max൫݌௝

௝൯݌ഥࢄഥ்ࢄ் ൌ max൫݌௝
 ௝൯ (2)݌࡭்

Such that p୨
Tp୨  ൌ  1. Solving the optimization 

problem through the Singular Value Decomposition 
(SVD), the eigenvalues λ୨ of A can be computed 
from, 

൫࡭ െ ௝݌൯ࡵ௝ߣ ൌ 0          for ݆ ൌ 1, … , ݊ (3) 

where A represents the correlation matrix of the data 
matrix Xഥ, and I is a n ൈ n identity matrix. Using the 
new orthogonal coordinate system, the data matrix Xഥ 
can be transformed into a new and smaller data 
matrix T, called scores matrix, 

ሿ࢘ൈ࢓ሾࢀ ൌ  ሿ (4)࢘ൈ࢔ሾࡼሿ࢔ൈ࢓ഥሾࢄ

where P represents the obtained loading vectors of 
the SVD with the largest eigenvalues λ୨. Eqn (5) 
computes the back-transformed data matrix Xכ from 
the original data coordination system [Tudón, et al., 
2009]. 

כࢄ
ሾ௠ൈ௡ሿ ൌ ்ࡼሾ௠ൈ௥ሿࢀ

ሾ௥ൈ௡ሿ (5) 

 

 

 

  2.1 Fault detection using DPCA 

The normal operating conditions can be 
characterized by Tଶ statistic [Hotelling, 1993]. Eqn 
(6) generates online the Tଶ statistic based on the 
first r  loading vectors. There is no general fixed 
criterion proposed to determine how many Principal 
Components (PC) should be retained. The SCREE 
plot is a good choice for showing the quantity of 
explained variance based on the number of retained 
PC. The number of retained PC will be determined, 
when the addition of another one PC does not 
improve the quality of data representation 
significantly. 

ܶଶ ൌ ்ݔ
ሾଵൈ௡ሿࡼሾ௡ൈ௥ሿ઩ିଵ

ሾ௥ൈ௥ሿ்ࡼ
ሾ௥ൈ௡ሿݔሾ௡ൈଵሿ (6) 

where x is the new measurement vector taken online 
and Λ is a diagonal matrix which contains first r 
eigenvalues of A. If the value of Tଶ statistic stays 
within its control limit, then the status of the process 
is considered normal [Ku, et al., 1995]. Thus, a fault 
occurs, when a value of Tଶ statistic is greater than 
its control limit (T஑

ଶ). 

ఈܶ
ଶ ൌ

ሺ݉ െ 1ሻݎ
ሺ݉ െ ሻݎ

,ݎఈሺܨ ݉ െ  ሻݎ
(7) 

where F஑ሺr, m െ rሻ is the F-distribution with r and 
m െ r degrees of freedom with 100α% of confidence. 

Due Tଶ statistic only detects variation in the 
direction of the first r PC, [Jackson et al. 1979] 
propose to monitor the variation in the residual 
space (the components associated with the smallest 
singular values) using Q statistic for helping to fault 
detection. 

Both statistics must detect a process fault; 
however they have not the same resolution in the 
deviation when the fault occurs. Similarly to Tଶ 
statistic, when a value of Q statistic is greater than 
its threshold (Q஑) a fault has occurred. The values of 
Q statistic and its control limit can be calculated by, 

 

ܳ ൌ ሾሺࡵ െ ࡵሿ்ሾሺݔሻ்ࡼࡼ െ  ሿ (8)ݔሻ்ࡼࡼ

ܳఈ ൌ ଵߠ ቈ
݄଴ܿఈඥ2ߠଶ

ଵߠ
൅ 1 ൅

ଶ݄଴ሺ݄଴ߠ െ 1ሻ

ଵߠ
ଶ ቉

ଵ
௛బ

 (9) 
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where θ୧ ൌ ∑ ൫λ୨൯
ଶ୧୬

୨ୀ୰ାଵ , h଴ ൌ 1 െ
ଶ஘భ஘య

ଷ஘మ
మ  and c஑ is the 

normal deviate corresponding to (1 െ α) percentile. 
Once a fault is detected, contribution plots are 

used to isolate the most probable cause of fault 
[Miller, et al., 1998]. Contribution plots quantify the 
error of each process variable when the process is 
on abnormal status. Process variables with higher 
error contribution are hypothetically more associated 
to the fault. Therefore, these variables are used like 
operator guides for looking to the physical causes 
which are related with these variable deviations. 
Contribution of each variable to residual vector 
(Con୧), can be defined as: 

௜݊݋ܥ ൌ
ܴ௜

ଶ

∑ ௝ܴ
ଶ௥

௝ୀଵ
 (10) 

where R represents the residue in the residual 
space. Residue R can be computed by subtracting 
the back-transformation data (Xכ) to scaled data 
matrix (Xഥ), 

ሾ௠ൈ௡ሿࡾ ൌ ഥሾ௠ൈ௡ሿࢄ െ כࢄ
ሾ௠ൈ௡ሿ  (11) 

where P contains the loading vectors from the 
smallest eigenvalues, Figure 1. 

 

2.2 Algorithm 

Figure 2 shows the block diagram for getting the 
characterization of the normal operating point using 
DPCA. The first step is to standardize the data set. 
Then, from the correlation matrix of the scaled data 
Xഥ, the eigenvalues and eigenvectors are computed 
through the SVD method. The SCREE plot is used 
to select the number of PC. Finally, the matrix T is 
back-transformed into the original data coordination 
system including only the PC variances. 
Left plot in Figure 3 displays the block diagram for 
applying DPCA in the online fault detection task. The 
new measurements are projected onto the loading 
vectors, i.e. in the PC space (Hotelling’s statistic) 
and residual space (Q statistic). The control limits 
are computed from the characterization of the 
normal operating point. A fault is correctly detected 
when both statistics overshoot their respective 
thresholds. Once the fault is detected by both 
statistics, contribution plots are used to isolate the 
most relevant cause of fault. Right plot in Figure 3 
shows a block diagram for achieving the fault 
isolation .Q space is employed to generate the 
residue which is used to compute the error 
contributions, because is more sensible to the faults 
than the PC space [Isermann, 2006]. 

 
 
 

Fig. 1. FDI system using DPCA 
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Fig. 2. DPCA algorithm 

 
 

Fig. 3. Fault detection algorithm using DPCA (left), fault isolation using contribution plots (right) 

 
3 Design of a Set of DO 
 

As the state observer computes the error 
between the process states and adjustable model 
states, it can be used as a further alternative for 
model-based fault detection. The discrete state 
space model is defined as, 

௣ሺ݇ݔ ൅ 1ሻ ൌ ௣ሺ݇ሻݔࡳ ൅ ሺ݇ሻݑࡴ ൅  ሺ݇ሻ (12)ݒࢂ

ሺ݇ሻݕ ൌ ௣ሺ݇ሻݔ࡯ ൅  ሺ݇ሻ (13)ݖࢆ

where vሺkሻ and zሺkሻ represent the inherent noise in 
the process states and output, respectively. In this 
case V and Z are considered zero. A state observer 
for unmeasurable state variables can be 
represented as, 

 
x෤୭ሺk ൅ 1ሻ ൌ Gx෤୭ሺkሻ ൅ Huሺkሻ

൅ Kୣሾyሺkሻ െ yොሺkሻሿ 
(14) 

  

yොሺkሻ ൌ Cx෤୭ሺkሻ (15) 
 

where Kୣ is the observer feedback matrix, which is 
used to reduce the differences between the dynamic 
model and the process. Furthermore, Kୣ must be 
designed to ensure the observer stability, i.e. Kୣ is 
chosen such that the eigenvalues of G െ KୣC be the 
poles of the desired closed loop system, in this 
manner the eigenvalues of G െ KୣC, called observer 
poles, can be controlled by the states feedback. Kୣ 
matrix in each observer is designed via pole 
placement with observer poles close to origin in the 
discrete space. The pole placement method is used 
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to find Kୣ which guarantees the convergence speed 
and observer stability. 
 
3.1 FDD using a Set of DO 
 
The error of the observer can be computed as, 

x୮ሺk ൅ 1ሻ െ x෤୭ሺk ൅ 1ሻ ൌ ሺG െ KୣCሻൣx୮ െ x෤୭൧ (16) 

Defining eሺkሻ ൌ  x୮ሺkሻ െ x෤୭ሺkሻ as the error vector, 
the predicted error can be calculated as, 

eሺk ൅ 1ሻ ൌ  ሺG െ KୣCሻeሺkሻ (17) 

The dynamic behavior of the error signal eሺkሻ is 
determined by the eigenvalues of G െ KୣC. If the 
matrix G െ KୣC is a stable matrix, the error vector will 
converge to zero for any initial error eሺ0ሻ. In order to 
ensure the stability of the matrix G െ KୣC, the 
observer feedback matrix Kୣ must be computed 
properly to achieve pole placement. The design of a 
set of DO can be reviewed in detail in [Tudón, 2008]. 

When an unknown fault changes the process, 
the error signal called residual, should be different to 
zero. Therefore, if the residual is close to zero (i.e. 
noise with µ ൌ  0 and σ ൌ  1), the process variable 
is into its normal operating condition, called nominal 
behavior. If the process is affected by several faults, 
it is possible to use a set of DO for identification of 
different faults. All DO are designed from different 
fault models and they are sensitive to any fault 
except the used fault for their design. Therefore, the 
residual which does not change its past behavior will 
be isolated and associated as the most relevant to 
the occurred fault. 
 
 
 
 
 
 
 
 

3.2 Algorithm 
 

Left plot in Figure 4 exhibits the block diagram for 
designing a state observer. From each faulty 
condition, a state observer is obtained. On the other 
hand, right plot in Figure 4 shows the FDI algorithm 
using a set of DO. At each sample time, a new 
measurement vector is projected onto all observers; 
since all DO are sensitive to any fault except the 
considered fault for their design, the FDI task is 
achieved. 

 
4 Experimentation 
 
Experimental Set Up. HE are widely used in industry 
both for cooling and heating large scale industrial 
processes. An industrial shell and tube HE was the 
test bed for designing and testing both FDI systems. 
The non-linearity of the process and its slow 
transient response are the most relevant features of 
the system. In this case, the experimental set up has 
all desirable characteristics for testing a fault 
detection scheme due to its components are really 
of industrial type with its implications: waste, lost of 
calibration, non-linearity, mechanical failures, etc. At 
the left side of Figure 5, a photo of the system is 
showed; while right side displays a conceptual 
diagram of the main instrumentation: 2 temperature 
sensor/transmitters.ሺTTଵ, TTଶሻ,.2.flow.sensor/ 
transmitters ሺFTଵ, FTଶሻ and their control valves 
ሺFVଵ, FVଶሻ. The instrumentation is connected to a 
data acquisition (NI USB-6215) system that is 
communicated with a computer, in bidirectional form. 
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Fig. 4. Design algorithm of a state observer (left figure). FDI algorithm of a set of DO (right figure)

 
 

Fig. 5. Experimental System 
 

 

Design of Experiments. Four types of additive soft 
faults were implemented into the industrial HE: 
abrupt and gradual faults in sensors, abrupt faults in 
actuators and multiple faults in sensors. A sensor 
fault simulates a transmitter bias. The conditions of 
the implemented sensor faults are described in the 
Table 1. 
 

Table 1. Types of faults in sensors/transmitters 
 

Tag name Abrupt fault Gradual fault (slope) 
FTଵ 6% (5σ) 0.1%/sec 
FTଶ 8% (5σ) 0.1%/sec 
TTଵ 2ºC (8σ) 0.1ºC/sec 
TTଶ 2ºC (8σ) 0.1ºC/sec 

On the other hand, the actuator faults are 
considered like low or high pressure in the 
pneumatic valves (±10%). Four different cases of 
actuator faults have been designed. The case 0 is 

considered as the normal operating point: steam 
valve in 70% and water valve in 38%. The rest of the 
cases can be reviewed in the Table 2. Finally, the 
FDI systems were tested with multiple sensor faults 
introduced in sequence. 

 
Table 2. Faults implemented in actuators 

 
Case Status of the 

steam valve  
Status of the 
water valve 

0 normal normal 
1 low pressure normal 
2 high pressure normal 
3 normal low pressure 
4 normal high pressure 
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For comparison, same metrics have been monitored 
in both approaches: quick detection, isolability 
capacity, explanation facility, false alarm rates, 
robustness for detecting different faults and multiple 
faults identifiability. 

 
5 Results for DPCA 
 

Training Stage. DPCA uses 1 second of sample 
time for this step; and 1900 measurement data of 
each sensor were taken. Thus, the data vector is 
defined by, 

ሻݐሺݔ  ൌ  ሾܨ ଶܶሺݐሻ  ܨ ଵܶሺݐሻ  ܶ ଵܶሺݐሻ  ܶ ଶܶሺݐሻሿ (18) 

By taking 1 past observation of each 
measurement, it is possible to explain a high 
quantity of variance including the possible auto and 
cross correlations. Table 3 shows the 
characterization of the normal operating point using 
DPCA; with 5 PC, it can be explained the 99.94% of 
total variance and 1 more PC does not improve the 
quality of data representation.  

 
 

 
Table 3. Process characterization 

 
PC Eigenvalue Explained 

variance (%) 
Cumulative 
Explained 

Variance (%) 
1 3.1361 39.20 39.20 
2 2.0643 25.80 65.00 
3 1.3861 17.32 82.33 
4 0.9925 12.40 94.73 
5 0.4167 5.20 99.94 
6 0.0013 0.01 99.96 
7 0.0003 0.00 99.96 
8 0.0002 0.00 99.96 

Testing Stage. When an abrupt fault is 
implemented in the TTଶ sensor at time 105, Q and Tଶ 
statistics clearly overshoot their control limits. Right 
plot in Figure 6.a demonstrates how the contribution 
plot helps correctly to isolate the fault. The 78% of 
total error corresponds to outlet temperature signal. 
Commonly, the sensors are exposed to calibration 
errors or degradation by wear. This measurement 
deviation can be emulated as a soft and gradual 
fault. Figure 6.b (left plot) shows the gradual fault 

 
                                             a)                                                               b) 

Fig. 6. FDI analysis for an abrupt fault (left plot) and gradual fault (right plot) in the TTଶ sensor using DPCA 
 

detection in the TTଶ sensor, when Q and Tଶ statistics 
overshoot their thresholds after 14 and 10 seconds 
respectively. As it is evident, the behavior of both 
statistics corresponds to the fault behavior which 
was activated. Figure 6.b (right plot) exhibits that 
64% of total error corresponds to outlet temperature 
signal. 

A similar result to Figure 6 is obtained for 
actuator faults. No matter if the bias is positive or 
negative, both statistics overshoot their control limits 
when a fault is detected. For the cases 1 and 2, the 

steam flow signal has the greatest error contribution 
because these faults are associated to changes in 
the pressure of the steam valve. Similarly, the water 
flow has the greatest error contribution when the 
water valve fails (cases 3 -4). Details can be 
reviewed in [Tudón, et al., 2009]. 

Under sequential and multiple faults, left plot in 
Figure 7 demonstrates that both statistics overshoot 
and move more away from their thresholds when the 
faults are introduced. None of the statistics comes 
back to its normal status since none of the faults is 
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deactivated. After the fault 1, contribution plots can 
not associate the error to a specific fault. 
 

6  Results for DO 
 
Training Stage. 5 seconds of sample time are used 
to obtain the state space model for each fault 
condition. The process identification is based on the 
Recursive Least Squares (RLS) method using a 
random binary signal (RBS) above the actuators. 
For each faulty model, the system has 4 state 
variables (x א Թସ). Each state variable is associated 
with a fault signal in the steam flow, water flow, 
outlet temperature or inlet temperature. The residue 

is defined as the square of the error signal eሺkሻ. The 
steam and water control valve, their respective flows 
and the inlet temperature are the inputs (u א Թହ); 
whereas, the outlet temperature is the process 
output. 
Table 4 shows the numerical discrete state space 
models obtained from the process identification. The 
normal and faulty models of the HE are in 
companion form. It is important to consider that the 
order of the model is defined according to the 
minimal expression required for a correct 
representation. The non-fault state space model, 
considered in the normal operating

 
Fig. 7. FDI analysis for multiple faults using DPCA 

 
Table 4. Decoupled faulty discrete state-space models 

 
Model ࢋࡷ ࡯ ࡴ ࡳ 

 
Non Fault ቎

0.96 1 0
0 0 1
0 0 0

   0    0 0

   
0
0
1

   0

቏ ቎

െ0.01 0.03 0.01
0 0.01 0
0 0 0.02

 0 0 0. 03

െ0.01 0.02
െ0.01 0

0 0.01
0 0.01

቏ 
 
ሾ1 0 0 0ሿ ቎

0.56
0.06

െ0.004
     0.0001

቏ 

 
Fault 1 ቎

0.97 1 0
െ0.01 0 1

0 0 0
   0      0 0

   
0
0
1

   0

቏ ቎

െ0.01 0.03 0.02
0 0.01 0.04
0 0 0.02

 0 0 0. 03

െ0.01 0.02
െ0.01 0

0 0.01
0 0.01

቏ 
 
ሾ1 0 0 0ሿ ቎

0.57
0.05

െ0.004
     0.0001

቏ 

… … … … …
 

Fault 6 ቎

   1.02 1 0
െ0.01 0 1
െ0.01 0 0
െ0.05 0 0

   
0
0
1

   0

቏ ൦

െ0.01 0.05 0.03
 0 0.03 0
 0 െ0.01 0.02

    0 0 0. 03

െ0.01 0.04
െ0.01 െ0.03

0 0.06
0 0.01

൪ 

 
ሾ1 0 0 0ሿ ቎

 0.62
 0.05

 െ0.014
 െ0.049

቏ 

conditions, is obtained when the steam and water 
control valves have 70% and 38% of opening 
respectively; the inlet temperature is 23ºC 
approximately and the outlet temperature is around 
of 36ºC, the steam flow oscillates in 58% and the 
water flow in 30%. Fault 1 is considered when the 
sensor signal of the inlet temperature, changes. 

Faults 2 and 3 are obtained from the measurement 
deviation in the water and steam flow sensor 
respectively. Fault 4 is related to a change in the 
outlet temperature sensor. Finally, the faults 5 and 6 
correspond to malfunctions in the water and steam 
control valves respectively. 
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Figure 8 presents the model reliability at normal 
operating conditions; the process model follows 
correctly to real process value (outlet temperature).  

 
Fig. 8. Model reliability 

 
In order to design the set of DO, multiple models 

of the process are obtained, one state-space model 
for each fault condition. Once all faulty models are 
known, a state-observer is designed for each fault 
condition. An individual observer will be sensible to 
all faults except to the fault which was used to 
design the observer. A schematic block diagram 
representation of the design of an individual 
observer from the set of DO is shown in Figure 9. 

 

 
 

Fig. 9. Design of an individual DO 
 

In this manner, the set of DO is designed to 
distinguish different fault conditions. The observer 
feedback matrix in each observer is designed via 
pole placement with poles of the stability matrix 
ሺG െ KୣCሻ close to origin in the discrete space (z = 
0.1). The pole placement method is used to find Kୣ 
which guarantees the convergence  speed and 
observer stability.  Table 4 shows the observer gains 
obtained for each faulty model.  For the system in 
normal operating conditions, the observer feedback 
matrix  Kୣ is computed as: 
 

det|zI െ ሺG െ KୣCሻ| ൌ ሺz െ 0.1ሻସ (19) 

Kୣ ൌ ሾ0.56 0.06 െ 0.004   0.0001ሿT (20) 

Testing Stage. When an abrupt fault is implemented 
in the TTଶ sensor, the outlet temperature residue is 
the unique signal which does not change its nominal 
behavior whereas the remainder residues are 
negatively deviated 1.5 units at time 10 (fault time), 
see the top plot in Figure 10. Thus, it is possible to 
associate this fault to the TTଶ sensor. A similar result 
occurs when a gradual fault is implemented. Bottom 
plot in Figure 10 shows the fault detection after 5 
seconds once the fault has occurred. Similarly, when 
a control valve has a pressure failure (low or high 
pressure), the flow residue associated to this valve 
does not change its behavior from its nominal value; 
whereas, the remainder residues are deviated. 

 
Fig. 10. FDI analysis for an abrupt fault (top plot) and 
gradual fault (bottom plot) in the TTଶ sensor using DO 

 
Using the sequence of multiple faults, Figure 11 

shows that only one signal is not deviated from its 
behavior when is introduced any abrupt sensor fault. 
In this case, the residual which does not change its 
behavior is associated to the occurred fault. 
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Fig. 11. FDI analysis using DO for multiple faults 
 

7 Comparison of the methods 
 
It is important to specify that in all cases, the 
implemented faults in both methods have the same 
conditions. Therefore, the comparison between 
DPCA and DO can be specified under same metrics. 
According to Table 5, DO expose a quicker 
detection than DPCA when a gradual fault is 
implemented in a sensor signal. In all fault cases, it 
is easy to explain the fault propagation using both 
methods, i.e. the explanation facility metric is 
achieved. 

The false alarm rate is the index of false events 
which occurs when: (1) the FDI system does not 
detect an occurred fault or (2) the FDI system 
detects a fault which did not happen. In actuator 
faults, DO present a lower false alarm rate than 
DPCA. 

The sample time must be selected according to 
the FDI requirements. DPCA does not require a 
greater sample time because with 1 past 
observation, taking 1 second as sample time, it is 
possible to detect any abnormal event. On the other 
hand, in the design of DO, the sample time can not 
be greater than the dead time of the process (15 
seconds). 

In fault isolation, contribution plots indicate which 
variables are hypothetically more associated to the 

fault since it is possible that more fault cases are 
involved; while, a set of DO can correctly isolate a 
fault if all fault models and the model of the normal 
operating condition, are known with high reliability. 

For faults in actuators, the normal operating 
conditions change in more of two sensors and the 
diagnosis task can be complicated. When this kind 
of actuator faults are implemented, the detection 
time is not instantaneous even when these faults are 
abrupt. DO demonstrated a faster detection time (i.e. 
almost the half of detection time) than the DPCA 
method when faults in both actuators are 
implemented. 

Both methods can detect multiple sensor faults; 
however, DPCA cannot isolate correctly when two or 
more faults have been implemented. According to 
computational efforts, the training stage of DO is 
more complicated than the DPCA training; because 
it requires a reliable ARX model which must be 
translated to a discrete state space model. 
Furthermore, each fault case must be modeled in a 
particular state space model. Once the fault model is 
known with high reliability, a state observer is 
designed; particularly in this work all models (normal 
and faulty) are obtained in parallel. On the other 
hand, DPCA training is executed faster once historic 
data of the normal operating point are known. 

When new and unknown soft faults are 
presented, the performance of DO can be 
deteriorated; while DPCA does not suffer this 
limitation. The FDI system based on DO needs to 
model the new faults, thus, the set of DO will 
increase. On the other hand, DPCA does not require 
more training effort because only deviations from 
normal operating point are considered. Therefore, 
DPCA is easier to implement under several faults 
because the characterization under normal 
conditions does not change. Both methods are 
deteriorated when the process is time-variant; 
however, DPCA can be easily retrained in any time 
window. 
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Table 5. Comparison of DPCA and DO approaches 

 

 
 
In case of DO, the maintenance of the model is 
more complicated because all faulty models must be 
computed again 

8   Conclusions 

A comparison between the Dynamic Principal 
Component Analysis (DPCA) and a set of Diagnostic 
Observers (DO) under the same experimental data 
provided from a heat exchanger HE is presented. 
DPCA, which performs very well on fast detection of  
abnormal situations, is easier to implement in 
industrial applications. It results very attractive to 
use DPCA in industrial applications when practically 
the 100% of the system operation is around a 
specific operating point. In this case, only data of the 
normal operating conditions are required, while DO 
must include information about faulty process 
behavior. 
When an accurate process model is complicated to 
obtain due to nonlinearity, process disturbances, 
model uncertainties, etc., the use of Fault Detection 
and Isolation (FDI) approaches based on DPCA can 
be implemented. However, FDI approaches based 
on modeling demonstrate better performance. 
Detection results shows that DPCA had 42% more 
of false alarms than DO under actuator faults. DO 
present a faster detection time than the DPCA 
method in every test ([4 െ 10] seconds lower). 
Finally, DPCA can not identify multiple faults 
whereas quantitative model- based methods, as DO, 
have the multiple-fault identifiability property. 

Under new and unknown faults, the maintenance 
of the FDI system is more complicated in DO 
because new faulty models must be computed; 

while, DPCA does not need more training effort 
because only deviations from the normal operating 
point are considered. 
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