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Abstract. This paper describes a factorial statistical study 
that compares the quality of solutions produced by two 
heuristics: Simulated Annealing (SA) and Variable 
Neighborhood Search (VNS). These methods are used to 
solve the Geographic Clustering Problem (GCP), and the 
quality of the solutions produced for specific times has 
been compared. With the goal of comparing the quality of 
the solutions, where both heuristics participate in an 
impartial evaluation, time has been the only common 
element considered for VNS and SA. At this point, two 
factorial experiments were designed and the 
corresponding parameters for each heuristic were carefully 
modeled leaving time as the cost function.  In instances of 
24 objects, the experiments involved the execution of two 
sets of tests recording the results of the different response 
times and the associated values of the objective function 
for each heuristic and instance conditions.  The solution to 
this problem requires a partitioning process where each 
group is composed of objects that fulfill better the 
objective: the minimum accumulated distance from the 
objects to the centroid of each group. The GCP is a 
combinatorial NP-hard problem (Bação, Lobo and Painho, 
2004). 
Keywords: Algorithms, Design, Experimentation, 
Geographic Clustering Problem, Heuristics. 
 
Resumen. Este artículo describe un estudio estadístico 
factorial para comparar  la calidad de las soluciones de dos 
heurísticas: Recocido Simulado (RS) y Búsqueda en Entorno 
Variable (BEV). Estos métodos son usados para resolver el 

problema de agregación geográfica, y se han comparado 
de acuerdo a la calidad de las soluciones obtenidas en 
tiempos específicos estimados. Con el objetivo de 
comparar la calidad de las soluciones, donde las dos 
heurísticas participen en una evaluación equitativa, se ha 
considerado el tiempo como el único elemento común 
para BEV y RS. En este punto, se diseñaron dos 
experimentos factoriales donde se modelaron 
cuidadosamente los parámetros correspondientes para 
cada heurística dejando como función de costo al tiempo. 
Estos experimentos implicaron la ejecución de dos 
conjuntos de pruebas para instancias de 24 objetos 
registrándose los resultados de los diferentes tiempos de 
respuesta y los valores  asociados de la función objetivo 
para cada heurística. La solución a este problema requiere 
un proceso de particionamiento donde cada grupo está 
formado de objetos que cumplen mejor con el objetivo: la 
distancia mínima acumulada de los objetos al centroide en 
cada grupo. El problema de agregación geográfica es 
combinatorio NP-duro (Bação, Lobo and Painho, 2004). 
Palabras clave: Algoritmos, Diseño, Experimentación, 
Problema de Agrupamiento Geográfico, Heurísticas. 

1 Introduction 

The GCP consists in the classification of objects in 
geographic units that meet certain objectives, mainly 
the geometric compactness (Bação, Lobo and 
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Painho, 2004). The geographic units that have been 
considered correspond to AGEBs (Basic Geo-
Statistical Areas) from the metropolitan zone of the 
Toluca Valley (MZTV) (INEGI, 2000).   

The GCP problem belongs to the Territorial 
Design (TD) category and it is understood as the 
problem of grouping small geographic areas (basic 
areas) in larger geographical clusters called 
territories, in such a way that the acceptable 
grouping is one that meets certain predetermined 
criteria (Zoltners and Sinha, 1983). The criteria or 
properties to meet in GCP problems depend on the 
constraint space and the geometric compactness 
(Murtagh, 1991). The NP-hard condition of the GCP 
implies having to solve a large number of 
geographic tasks that emphasizes the classification 
process directed towards meeting an objective. 

Therefore, this problem is usually explained with 
a description in terms of an optimization objective 
modeled mathematically as a cost function 
complemented by the characteristics of the problem 
expressed as constraints. The NP-hard nature of 
this problem justifies the use of heuristics to obtain 
good solutions in a reasonable amount of time. The 
GCP is a special case of the classic clustering 
problem, but with the requirement of compactness, 
connectedness and/or homogeneity in some cases 
(Murtagh, 1991; Zoltners and Sinha, 1983). 

To solve the GCP, we developed our own 
partitioning algorithm that minimizes the distances 
between the objects, in order to obtain compactness 
between the AGEBs (Bernábe, 2009 and 2009a). 
However, the primary goal of this research goes 
beyond presenting the solutions generated by VNS 
(Hansen and Mladenovic, 1996 and 2003) and SA 
(Kirkpatrick, Gelatt and Vecchi, 1983).  

Our main contribution is centered exactly in this 
point: we used the optimal solutions obtained with 
SA (Bernábe, 2009) and compared them with the 
solutions generated with VNS for the GCP (Bernábe, 
2009a) using a Box Behnken experimental design 
(Montgomery, 1991) with different selected times, to 
evaluate the quality of the solutions. 

This paper is organized as follows. In section 2 
we present the mathematical model for the GCP. 
Section 3 describes the solution to the GCP with SA 
and with VNS. Section 4 describes the results 
obtained for the Box Behnken design with VNS and 
section 5 presents the Box Behnken design with SA. 
Finally some conclusions are presented in section 6. 

2.Mathematical model for the Geographic 
Clustering Problem (GCP) 

Many approaches have been used to solve the 
GCP. The method utilized in this research to solve 
the AGEBs conglomerate design is similar to the 
method presented in (Bação, Lobo and Painho, 
2004), where the authors implemented a genetic 
algorithm for a similar zone design problem.   
 In the GCP solved here, the AGEBs are 
geographical units where each AGEB is separated 
by different distances of non uniform geometric 
structure, because the AGEBs are spatial data and 
its geographical localization is given by latitude and 
longitude, it was easier to calculate the distances 
between them (Zamora, 2006). The AGEBs are 
clustered in territories (groups) that are very close 
geographically, in order to minimize the distances 
between them. 
 Basically, the strategy is to randomly choose 
AGEBs as centroids to identify the territory (group). 
Those AGEBs that are not centroids and have the 
shortest distance to a specific centroid-AGEB are 
members of the same territory or cluster. This 
informal idea is the definition of geometrical 
compactness.   
The definition of compactness for geographic units is 
included in Definition 1: 
 
Definition 1. Let  n,..,,Z 21 be the set of n objects 

to cluster; the objective is to divide Z in k groups 
ZG..,GG k,, 21 with nk  , such that: 

 ZGk
1i i   
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 The neighborhood criterion between objects, 
needed to achieve the compactness, is given by the 
pairs of distances described in (1). Using this 
definition of compactness we will proceed to 
describe the model for the GCP. 
 Effectively, it is possible to rewrite definition 1 
and extend it to a general optimization model for 
geographical partitioning, in this way the data, 
restrictions and objective function are identified. So it 
is understood that the GCP model may have 
different algorithmic translation (pseudo code) 
and/or implementations when a heuristic method is 
introduced (Bernábe, 2009 and 2009a). 
 In this work the model had two extensions with 
variants in the implementation owing to, among 
other things, the difference in obtaining neighboring 
solutions for each heuristic: a) Model for GCP with 
SA and b) Model for GCP with VNS. A model with 
different capacity can be built with the inclusion of 
another heuristic method, and hybrid between RS 
and VNS for example; this is a work in progress. 
 There is a detailed explanation with pseudo code 
in section 3 about how SA and VNS obtain their 
respective neighboring solutions for this problem. 

2.1 Model GCP 

 The following describes the model for GCP. 
 
Data 

gU total of AGEBs 
Let  the initial set of n geographical units be  

 n,...,,g xxxU 21 where  

ix is the th
i geographical unit ( gUi  index)  

 k is the number of the zone (group). 
The following variables are defined to refer to the 
different groups: 

iZ is the set of geographical units that belong to the 

th
i zone  
n is the number of geographical units  

tC is the centroid  

j)d(i, is the Euclidean distance from node i to node j 

(from one AGEB to another) 
 
Constraints 

iZ  for ki ,..,1  (nonempty groups) 

ji ZZ   for ji 
 
(the same AGEBs cannot be 

in different groups) 

gk
i i UZ  1 (The union of all the groups are all 

the AGEBs). 
 
Objective Function 
Once the number of centroids (k) is decided ( tC with 

ki ,..,1 ), the centroids will be randomly selected 
and the AGEBs will be assigned to the nearest 
centroids. Then, for each AGEBi, the objective 
function is defined as the minimum of the sum of the 
distances between the centroids (for each k), and 
the AGEBs assigned to them (each AGEB is 
assigned to the closest centroid). 
For every k (where n,..,k 1 ) the sum of the 
distances from every AGEBs assigned to each 
centroid is calculated, and the minimum is selected. 
Therefore the objective function can be written as:   
    

 
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k

t i 
t

n,...,k tit c
 )ci,  (dMin

11
}{  (2) 

   
where nit is the number of iterations. 

3.Variable Neighborhood Search (VNS) 
and Simulated Annealing (SA) in the 
Geographical Clustering Problem 

In this section the VNS and SA are introduced, as they 
are commonly discussed in the literature, and also the 
algorithmic adaptation of each heuristic to the 
geographical clustering model. 

3.1 The Variable Neighborhood Search (VNS) 

 The VNS metaheuristic, proposed by Hansen and 
Mladenovic (1996 and 2003) is based on the 
observation that local minima tend to cluster in one or 
more areas of the searching space. Therefore when a 
local optimum is found, one can get advantage of the 
information it contains. For example, the value of 
several variables may be equal or close to their values 
at the global optimum. Looking for better solutions, 
VNS starts exploring, first the nearby neighborhoods of 
its current solution, and gradually the more distant 
ones. There is a current solution Sa and a 
neighborhood of order k associated to each iteration of 
VNS. Two steps are executed in every iteration: first, 
the generation of a neighbor solution of Sa, named Sp  
Nk(Sa), and second, the application of a local search 



298 Beatriz Bernábe Loranca,  José E. Espinosa Rosales,  Javier Ramírez Rodríguez  and María A. Osorio Lama 
 

Computación y Sistemas Vol. 14 No. 3, 2011 pp 295-308 
ISSN 1405-5546 

procedure on Sp, that leads to a new solution Sol. If Sol 
improves the current solution Sa, then the searching 
procedure will restart now from sol using k = 1. 
Otherwise, k is incremented and the procedure is 
repeated from Sa. The algorithm stops after a certain 
number of times that the complete exploration 
sequence N1;N2; … ;Nkmax is performed. 
 
 The following algorithm shows how the solutions are 
obtained (Pelta, 2000). 
 
Procedure Variable Neighborhood Search  
BEGIN 
/* Nk: k=1,…,kmax, neighborhood structures */  
/* Sa: current solution */  
/* Sp: neighbor solution of Sa */  
/* Sol: local optima solution */ 
 
REPEAT UNTIL (END) DO 
    k  1 
  REPEAT UNTIL (kkmax) DO  
/* Generate neighbor Sp of the kth neighborhood 
of Sa(SpNk(Sa))*/ 
     Sp  GetNeighbor (Sa, Nk); 
     Sol  LocalSearch (Sp); 
       IF (Sol is better than Sa) THEN Sa  Sol; 
       ELSE k  k + 1 
  END DO  
END DO 
END 
 
 With the inclusion of the model for GCP and the 
general procedure for VNS, a custom algorithm was 
obtained for Geographical Clustering with VNS. 

3.1.1   Algorithm for solving GCP with VNS 

INPUT: Number of groups of objects corresponding 
to the K centroids, parameter values for VNS and 
the distances matrix. 
OUTPUT: Three files. File 1 has the AGEBs 
belonging to each group, the parameters values, 
the initial and final execution time and number 
of iterations. File 2 has the iteration number 
associated with the best value of the objective 
function. File 3 has graphical values to 
integrate the results with a Geographical 
Information System.  
 
Let n be the number of objects to classify 
Ug(i,j) denotes that the object i is assigned to 
the centroid j for i=1,...,n; j=1,…,k 
Let M={M1,M2,…,Mk} be a solution of K centroids 
MaxVNS /* maximum number of iterations to go 
over all the neighborhood search */ 
MaxLS /* number of iterations of Local Search 
(LS) for each neighborhood */ 

 
 

1. Generate initial random centroids:  
M = {M1, M2,…, Mk}  
BEGIN 
Current _cost  Cost (M)  
 WHILE cont < MaxVNS DO 
  BEGIN 
  k-neighborhood  1 

      WHILE kneighborhood <> n DO 
    BEGIN 

C  Generates a random solution with      
a k-neighborhood 

 Sol_neighborhood LocalSearch (C);  
  IF 

(Cost(Sol_neighborhood)<current_cost)     
THEN 

    M  Sol_neighborhood; 
   ELSE  
            k-neighborhood  k-neighborhood +1; 
           ENDIF 
         END WHILE 

     END 
 END WHILE 
Cont  cont+1 
END 
 
2. Cost Function (Sol)  
/* Determine the quality of the solution 
Sol, how much the objective is minimized */ 
BEGIN 
i  1 /* Initialize the first object */ 
cost  0 
 WHILE (i  n) DO 
  BEGIN 
/* For each object in Ug do */ 
   IF (Ugi is not a centroid) THEN 
    BEGIN 
    dmin  dist(Sol1 , Ugi )  
/* Represents the distance between the 
object and the Sol1 (first centroid where 
Sol represents the set of centroids). The 
distance between each object and its 
nearest centroid is calculated */ 
    j  2  
/* Go to the second centroid  */ 
 WHILE (j  k) THEN 
     BEGIN  
  IF (dist (Solj , Ugi) < dmin) THEN 
/*Calculate the distance between the object 
i and the  Solj (another centroid) */ 
  dmin  dist (Solj , Ugi) 
  END IF 
  j  j + 1 
/* Go to the next centroid  */ 
 END WHILE 
 cost  cost + dmin 
   END IF 
   i i + 1 
 END WHILE 
 Cost(Sol)  cost 
END 



A Statistical comparative analysis of Simulated Annealing and Variable Neighborhood Search … 299 

 
Computación y Sistemas Vol. 14 No. 3, 2011 pp 295-308 

ISSN 1405-5546 

Remarks about VNS in GCP 
The former pseudo code describes how neighbor 
solutions are obtained, moreover, it is observed that 
an initial solution is of the form (c1, c2, ..., ck) where 
K specifies the number of territories (groups) and the 
centroids are chosen at random.  

If a neighbor solution in geographical clustering 
means to change a centroid ci for another ci’ then it 
is necessary to determine which centroids are 
changed and which remain fixed to ensure the 
creation of a neighbor solution.  For example, when  
c1, the first element of the solution, is kept fixed, a 
neighborhood is created by varying the last 
component ck  with ck’.  Evidently, if the initial 
solution is (c1, c2, ..., ck) then (c1, c2, ..., ck’) can be 
considered a neighbor solution.  The criterion to 
establish the method for changing the centroid that 
is not fixed consists in randomly choosing another 
centroid ci’ to replace centroid ci  using a distance 
threshold between ci and ci’ within a given interval. 

However, changing the centroid of one territory 
will necessarily generate a change in at least one of 
the other territories since a rearrangement of its 
members is invariably generated. 

The objective function is calculated between the 
centroids and the objects of its respective clusters, if 
there is an improvement in the solution, it is taken 
into account, otherwise another centroid is chosen 
until the stopping criterion is met (like the VNS 
criteria). 

When a solution is generated within a 
neighborhood, it is supplied to the local search 
procedure in order to find a local optimum (that 
improves the solution) or until the maximum number 
of iterations is reached. When the solution of the 
local search procedure is returned (either improved 
or not), it is evaluated in order to decide whether a 
solution of the same neighborhood is generated (if 
there is an improvement) or a new neighborhood is 
selected (if there is no improvement over the current 
solution). Clarifying, the expression “centroid” in the 
algorithms described here does not mean the object 
at the center of the groups, in this case it could be at 
any coordinate within the group (territory). 

The general VNS procedure does not state that 
the number of neighborhoods must be equal to the 
number of objects, but this rule was adopted during 
the algorithmic and implementation phases due to its 
usefulness for the problem being solved. 

Finally, the Local Search (LS) algorithm improves 
the search of the current solution in its 
neighborhood. It can end up finding a better solution 

or reaching the maximum number of iterations. The 
maximum number of iterations avoids the algorithm 
cycling in the case that a better solution cannot be 
found. 

3.2 The Simulated Annealing (SA)  

The SA algorithm is a neighborhood-based 
search method characterized by an acceptance 
criterion for neighboring solutions that adapts itself 
at run time.  It uses a parameter called temperature 
(T), that according to its value determines the 
degree in which worse neighboring solutions can be 
accepted. The temperature variable is initialized with 
a high value, called initial temperature T0 and is 
reduced with each iteration through a cooling 
temperature mechanism (cooling factor α) until a 
final temperature (Tf) is reached.  During each 
iteration a concrete number of neighbors L(T) is 
generated, which may be fixed for all the execution 
time or may change for each iteration.  Each time a 
neighbor is generated, an acceptance criterion is 
applied to determine if it will substitute the current 
solution (Kirkpatrick, Gelatt and Vecchi, 1983). 

If the neighbor solution is better than the current 
one, it is automatically accepted, as a classic local 
search would do (LS). On the contrary, if it is worse, 
there still exists the possibility for the neighbor to 
substitute the current solution. This allows the 
algorithm to escape from local optima, where LS 
would get trapped. The higher the temperature, the 
more likely it is to accept worse solutions. In this 
way, the algorithm accepts solutions much worse 
than the current one at the beginning of the 
execution (exploring) but not at the end (exploiting). 

At the stage of transition between solutions a 
new neighbor solution (candidate) is generated by 
randomly disturbing any centroid (replacing it with 
another object), and the cost difference between the 
current solution and the neighbor is calculated. A 
smaller cost difference increases the probability of 
accepting worse solutions. Every time a neighbor is 
generated the acceptance criterion is applied to 
determine whether it replaces the current solution. 

The cost difference in this problem depends on 
the objective function, which is formulated to 
minimize distances from the objects to the centroids.  
Furthermore, L(T) must be “big enough”, in this case 
of geographical clustering it is fixed in such a way as 
to reaching a stationary state for that temperature. 
  
The general procedure for simulated annealing is  
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presented as follows (Dowsland, 2003): 
 
Procedure Simulated Annealing (SA) 
INPUT (To, α, L(t), Tf) 
T To  
/* Initial value for the control parameter* / 
Scur  Generate initial solution  
WHILE T  Tf DO  
/* Stopping condition */  
   BEGIN    
     FOR cont  1 TO L(T) DO  
/* Cooling speed(T) */ 
       BEGIN  
        Scand  Select solution N(Scur)  
/* Creation of a new solution  */ 
          cost(Scand) - cost(Scur)     
 /* Computation of cost difference */ 
      IF (U(0,1) < e(-/T) OR <0)  
    THEN Scur Scand  
/* Acceptance criterion*/  
  END 
        Tα*T     
/* Cooling mechanism */ 
   END 
{/* WRITE as solution the best of the  
  visited Scur*/} 
 

By incorporating this procedure (Dowsland, 
2003) to the geographical clustering model, an 
appropriate algorithm for geographical clustering 
with simulated annealing is obtained. 

3.2.1   Algorithm for solving GCP with VNS 

Simulated annealing and partitioning algorithm for the 
geographical clustering problem. 

      INPUT: Number of groups of objects corresponding 
to the K centroids, Parameter values for SA and 
the distances matrix. 

      OUTPUT: Three files. File 1 has the AGEBs 
belonging to each group, the parameters values, 
the initial and final execution time and number 
of iterations. File 2 has the iteration number 
associated with the best value of the objective 
function. File 3 has graphical values to 
integrate the results with a Geographical 
Information System.  

 
Let n be the number of objects to classify 
Ug(i,j) denotes object i is assigned to centroid 
j for i = 1, …, n and  j = 1, …, k 
Let M={M1, M2, …, Mk} be a solution with k 
centroids 
Let T0 be the initial temperature 
Let Tf be the final temperature 
Let L(t) be the number of iterations to be 
performed with temperature t 

 
 
 

1..Randomly generate the initial solution M = 
{M1, M2, …, Mk} 
/* Obtain the initial solution. Any AGEB can 
be a randomly chosen centroid */ 
BEGIN 
Current_cost <- Cost(M)@ 
/* This assignment already represents an 
initial solution or it is a proposed solution    
generated by the previous iteration.  The 
following steps generate another solution    
(neighbor solution) to determine how good it 
is compared to the current one and decide   
whether it is replaced or not */ 
 WHILE T>=Tf 
/* While the system has not cooled down */ 
    FOR count=1 to L(t) DO 
/* Number of iterations to perform with the 
same temperature (Parameter of SA) */ 
       C <- Random solution  
/* A solution to be compared to @ is 
generated */ 
        Cost_cand <- Cost(C) 
/* The cost of the candidate solution just 
generated is obtained */ 
         <- Cost_cand – Current_cost /* Cost 
difference to obtain the probability of 
accepting the candidate solution */ 
        IF U(0,1) < e-/T or <0 THEN 
/* If the acceptance probability is still 
high */ 
         M <-C  
/* The candidate solution is accepted */ 
         Current_cost <- Cost_cand 
        END IF 
    END FOR 
    t <- *t /* The system is cooling down */ 
END WHILE 
END 
 
2. Function Cost(Sol) 
/* Determines how good the solution Sol */ 
i <- 1 /* Initializes the first object */ 
Cost <- 0 
WHILE i<= n /* for each object in Ug do */ 
 IF Ugi is not a centroid THEN  
 dmin <- dist(Sol1, Ugi) 
/*represents the distance from the object Ugi to 
Sol1 (first centroid, where Sol represents the 
set of all centroids). The distance from each 
object to the nearest centroid is calculated 
(distance from the object Ugi, which is not 
centroid to Sol1, which is centroid*/ 
 j <- 2 /* proceeds to the second centroid */ 
  WHILE j<= k THEN 
   IF dist(Soli, Ugi) < dmin  
/* The distance from the object Ugi to Solj 
(another centroid) is calculated */ 
   dmin <- dist(Solj, Ugi) 
   END IF 
   i <- i+1 
  END WHILE 
Cost(Sol) <- cost 
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4 Statistical Analysis 

With the purpose of developing systematic 
experiments to evaluate the locality of the solutions 
from the heuristics discussed here, several 
experimental schemes can be proposed, such as 
factorial designs, fractional factorial designs, Box 
Behnken designs or central composite designs 
(Montgomery, 1991). A matrix D(n×k) represents 
some of these schemes, where n is the number of 
combinations (treatments) for the values of the k 
factors (input variables for the process, parameters 
in this case) and there are r possible answers for 
each of the n combinations; with the information 
produced by the experiment, it is possible to 
individually model each of the r answers. As a 
general rule this models are linear or quadratic and 
are a function of the k factors. 
 To develop a comparative statistical analysis 
about the quality of the solutions as a function of 
time between VNS and SA, the Box Behnken 
factorial was employed. 
 The characteristics of this type of design make it 
easy to carry out experiments, defining adapted 
levels of the design parameters. Furthermore, it is a 
rotary design that uses equal variance for all the 
experimentation   points that have the same 
distance to the center of the design, and it is 
possible to make sequential experiments in the 
pruned regions, in order to study the individual 
effects of the control parameters and its combined 
effects (Montgomery, 1991). 
 The experimental process in this work was 
performed in stages. The first allowed determining 
the values of the parameters that improved the 
quality of the solutions independently of time.  The 
second stage takes the levels that influence the 
experiment in the first stage; the most important 
values were analyzed in parallel and thus it was 
possible to perform new random tests around these 
parameters; lastly, an experimental design area was 
detected. These results contributed to modeling an 
experiment where the heuristics parameters were 
calibrated so that they executed in a specific time. 
     For the comparative study, the determination of 
the parameter levels used for both heuristics when 
modeling the experiment has been supported in 
previous works (Bernábe, 2009 and 2009a). 
Before introducing the development of the 
experiment, it is convenient to mention that 171 
census variables were considered, which describe 
the 473 geo-statistical areas (AGEBs) for the 

Metropolitan Zone of the Toluca Valley. The AGEB 
information has been taken from the latest 
household and population census (INEGI, 2000). 

4.1 The Experimental Box Benhken design for 
VNS 

 In order to approach the comparative analysis, 
the VNS experiment reported previously has been 
revisited   (Bernábe, 2009a). 
The parameter controls for VNS are: neighborhood 
structures (NS), local search iterations (LS) and the 
number of groups (G).   
The parameter levels used in the experiment can be 
seen in Table 1. 
 

        Table 1. Experimentation Level for VNS 
 

Parameter High  Center Low 
LS 848 530 212 
NS 640 400 160 
G 24 18 12 

 
In Table 2 we show results for 15 configurations 

with VNS.  The nomenclature used is: NS, LS, G 
(Groups that mean territory), and OBJ (Objective 
Value).  

Table 2. Configuration for VNS 
 

Test G LS NS OBJ 
1 12 212 400 15.4535 
2 24 212 400 10.9011 
3 12 848 400 15.1598 
4 24 848 400 10.8866 
5 12 530 160 15.3206 
6 24 530 160 11.0177 
7 12 530 640 15.3221 
8 24 530 640 10.8371 
9 18 212 160 12.8541 
10 18 848 160 12.4411 
11 18 212 640 12.6957 
12 18 848 640 12.4726 
13 18 530 400 12.5597 
14 18 530 400 12.5667 
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 In instance number 8, with 24 groups and 
parameters LS = 530 and NS = 640, the cost function 
was 10.8371. This is the closest value to the optimal 
objective. The objective value obtained with PAM 
(Partitioning Around Medoids) (Rousseeuw, Hubert and 
Struyf, 1997) is 9.279. In contrast, PAM managed to 
get the same solution in 27 hours, while the VNS 
algorithm got it in 13 minutes, with 616529 iterations 
and 16 accepted solutions. The evolution of the 
iterations and the objective value can be seen in Fig. 1. 
This instance has been chosen as a representative 
example of the experiment designed, because it was 
found that 24 groups is a turning point for our 
multivariate statistical study.  
 

 
 

Fig. 1. OBJ vs. Number of iterations for VNS: (Run=8, 
G=24, LS=530, NS=640, OBJ=10.8371) 

4.2 Experimental Box Benhken design for SA  

The SA experiment that is discussed next (Bernábe, 
2009) and the VNS previously described were 
considered for the comparative statistical analysis 
presented in section 4.4. 

To obtain the instances evaluated with the SA 
heuristic, we developed a Box-Behnken design. The 
three levels determined for the experiment, are shown 
in Table 3.   

 
             Table 3.  Simulated Annealing Levels 
 

Parameter High  Central  Low  

T0 5500 5250 5000

Tf 0.1 0.055 0.01

Α 0.99 0.985 0.98

L(t) 5 4 3 

Groups 24 18 12 

    
  

These levels originated 46 trials that are shown in 
Table 4. The nomenclature used in the Table 3 and 
Table 4 is: T0 (Initial Temperature), Tf (Final 
Temperature), α (cooling factor), Lt (L(t)), G (Groups), 
OBJ (Objective Function)  

 
Table 4.  Configuration for Simulated Annealing 

 

Test T0 Tf α L(t) G OBJ 
1 5000 0.01 0.985 4 18 13.5279 
2 5500 0.01 0.985 4 18 13.5878 
3 5000 0.1 0.985 4 18 14.0342 
4 5500 0.1 0.985 4 18 14.1222 
5 5250 0.055 0.98 3 18 13.9166 
6 5250 0.055 0.99 3 18 14.1286 
7 5250 0.055 0.98 5 18 13.2346 
8 5250 0.055 0.99 5 18 13.8935 
9 5250 0.01 0.985 4 12 16.2161 
10 5250 0.1 0.985 4 12 16.553 
11 5250 0.01 0.985 4 24 11.5392 
12 5250 0.1 0.985 4 24 12.0292 
13 5000 0.055 0.98 4 18 16.3016 
14 5500 0.055 0.98 4 18 14.095 
15 5000 0.055 0.99 4 18 13.9159 
16 5500 0.055 0.99 4 18 13.9545 
17 5250 0.055 0.985 3 12 15.6353 
18 5250 0.055 0.985 5 12 16.0845 
19 5250 0.055 0.985 3 24 12.3314 
20 5250 0.055 0.985 5 24 11.6377 
21 5250 0.01 0.98 4 18 13.5198 
22 5250 0.1 0.98 4 18 14.304 
23 5250 0.01 0.99 4 18 13.3445 
24 5250 0.1 0.99 4 18 13.7725 
25 5000 0.055 0.985 3 18 13.6595 
26 5500 0.055 0.985 3 18 13.5348 
27 5000 0.055 0.985 5 18 14.0258 
28 5500 0.055 0.985 5 18 13.0667 
29 5250 0.055 0.98 4 12 16.8496 
30 5250 0.055 0.99 4 12 17.1076 
31 5250 0.055 0.98 4 24 12.2146 
32 5250 0.055 0.99 4 24 11.7276 
33 5000 0.055 0.985 4 12 16.6959 
34 5500 0.055 0.985 4 12 16.7826 
35 5000 0.055 0.985 4 24 11.8841 
36 5500 0.055 0.985 4 24 11.2403 
37 5250 0.01 0.985 3 18 13.5575 
38 5250 0.1 0.985 3 18 13.2107 
39 5250 0.01 0.985 5 18 13.6996 
40 5250 0.1 0.985 5 18 14.7604 
41 5250 0.055 0.985 4 18 13.9274 
42 5250 0.055 0.985 4 18 13.8217 
43 5250 0.055 0.985 4 18 13.5833 
44 5250 0.055 0.985 4 18 13.9886 
45 5250 0.055 0.985 4 18 13.6392 
46 5250 0.055 0.985 4 18 12.9008 
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In test 36 there are 24 groups with the parameters: 
T0=5500, Tf=0.055, α=0.985, L(t)=4, and an objective 
function of 11.2403. This is the best result, the 
closest to the optimum obtained with PAM that was 
of 9.279. In contrast the time required by PAM to 
generate the exact solution, was 27 hours, while the 
SA, with 3,049 iterations and 2,183 accepted 
solutions, reduced the computational time to a range 
of 2 to 10 seconds. The behavior of the objective 
function with the number of iterations can be seen in 
Figure 2. 
 

 
Fig. 2. SA: test 36, 24 groups, T0=5500, Tf=.055, α=.985, 

L(t)=4, OBJ=11.2403 
 

 It is necessary to clarify that the reduction in run 
time from 2 to 10 seconds that SA achieves is due to 
the instance cited is small with “low” parameters, 
particularly in L(t) and α.  In general, reviewing the 
regression model for this experiment (Bernábe, 
2009), it is assumed that L(t) and α are determining 
parameters for a higher computational cost.  There 
is work in progress to model the dependency of 
these two parameters as a function of time. 

4.3 Heuristics evaluation 

From the results obtained in the last sections, we 
obtain the parameters used for solving the GCP that 
accompanied the best objective function value.  
In the case of VNS: 
• A value of NS close to 640 units, independently of 
the group size, will yield better values in the 
objective function. 
• The best objective values were found for LS values 
between 848 and 530.  
 In the case of SA:  

• An initial temperature close to 5000 units, gave a 
better convergence to the optimum regardless of the 
number of groups. 
• A final temperature of 0.01 with α= 0.98 gave the 
best minimum value for the objective function. 
• It is obvious that for both VNS and SA the number 
of groups is directly proportional to the quality of the 
solutions. 
 The experiment for both heuristics used the 
results obtained with the empirical combinations, 
where 24 proved to be a good number of groups. 
For this reason, Tables 1 and 3 used 24 groups. 
We performed a two tails T-Student hypothesis test 
on the solutions produced by both heuristics.  We 
used results from instances number 8 and 36 of 
Tables 2 and 4 and repeated them, 10 times for 
VNS and RS, respectively. We used 13 degrees of 
freedom, and a marginal error of media μ and 
variance σ2. The statistical value obtained with the 
test, of 37.7 showed that the null hypothesis 
establishing that the quality of the solutions obtained 
with RS and VNS is the same, should be rejected.  
With the null hypothesis rejected, a new right-tailed 
T test where performed to test if the quality of the 
solutions with the two methodologies showed a 
statistical difference. Results verified the right-tailed 
alternative hypothesis about the difference in the 
quality of the solutions obtained with VNS and with 
RS. The statistical evidence allowed us to conclude 
that under the conditions of the experiment 
proposed in this paper the quality of solutions 
generated with VNS is better than the solutions 
obtained with SA (Bernábe, 2009b). 

4.4 Modeling response times for the heuristics 

So far we have described experiments to evaluate 
VNS and SA, however the aim of this study is to 
compare the quality of the cost functions of both. To 
develop this comparison we have conducted two 
experiments that allow us to make a modeling of 
time to calculate each of the heuristics. Once we 
have identified the adequate times, we make several 
preliminary tests to find the best levels of the 
parameters for both. 

The following tables show the levels used for 
each design heuristics and design for the respective 
tests. 
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4.4.1 Modeling response times for VNS 

Taking the results from section 4.1, a new set of 35 
random duplicates (instances) to build a central 
composite design since only two parameters are 
calibrated as a cost function (Montgomery, 1991). 
Table 5 shows the composed design levels for VNS 
and Table 6, the experiments performed with VNS.  
The factorial experiments require the test to be 
performed to be random, “Standard Order”, tables 6 
and 8 show the order in which the test were 
performed. 

 
Table 5. Composite design levels for VNS 

 
Parameter High Low 

LS 916 158 

NS 1092 190 

 
      Table 6. Configuration for VNS according to              

the experimental design 
 

Test Standard Order NS LS T 
1 13 641 537 314 
2 12 641 537 314 
3 4 1092 916 509 
4 9 641 537 312 
5 8 641 1073 313 
6 6 1279 537 624 
7 7 641 101 130 
8 10 641 537 318 
9 3 190 916 90 

10 11 641 537 287 
11 1 190 158 90 
12 2 1092 158 1050 
13 5 3.19 537 3 

 
 According to the central composed design levels 
presented in Table 5 and the instances of  Table 6 to 
obtain the second order regression model for VNS. 
The values of the parameter of the respective model 
are: 
 
Model for VNS 
Term  Coefficient 
Constant 309 
NS  282.153 
LS  -35.275 
NS*NS  44.063 
LS*LS  -1.938 
NS*LS  -135.250 

 Fig. 3 shows that applying the coefficient values  
in the model for VNS, the parameters to be used by 
VNS, with 24 groups, and in a 100 seconds test, in 
order to get the corresponding objective function 
value, can be obtained. The figure shows that to 
obtain a cost function in 100 seconds the 
parameters in VNS must be NS=265 and LS=539 
(the values are approximated to the nearest integer).  
 

 
 

Fig. 3. VNS Parameters for t=100 
 
 The contour graph of Fig. 4 shows the areas of 
experimentation for the times of 200, 400, 600 and 
800 seconds. If we set NS = 1159.3 and LS= 
1051.71, VNS got a solution in 400.187 seconds. 
 

 
 

Fig. 4. Example of a Contour Plot for VNS 
 

4.4.2 Modeling response times for RS 

In view of the results from subsection 4.2, an 
additional set of 35 random runs was performed 
which contributed to define the BB for time modeling 
in SA. 
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Tables 7 and 8 show a series of tests that respond 
to the design and the experiments performed with 
SA.  
 

Table 7. Box Benhken levels for SA 
 

Parameter High  Low 

T0 50000 500 

Tf 0.1 0.01 

α 0.99 0.98 

L(t) 1000 5 

 
Table 8. Configuration for Simulated Annealing according 

to the experimental design 
 

 
Test 

Std. 
Order T0 Tf α Lt t 

1 5 25250 0.055 0.98 5 2 
2 2 50000 0.01 0.985 502.5 174 
3 10 50000 0.055 0.98 502.5 119 
4 14 25250 0.1 0.985 5 3 
5 13 25250 0.01 0.985 5 1 
6 16 25250 0.1 0.985 1000 285 
7 17 500 0.055 0.985 5 2 
8 27 25250 0.055 0.985 502.5 154 
9 22 25250 0.1 0.98 502.5 129 

10 6 25250 0.055 0.99 5 2 
11 7 25250 0.055 0.98 1000 219 
12 4 50000 0.1 0.985 502.5 150 
13 12 50000 0.055 0.99 502.5 239 
14 19 500 0.055 0.985 1000 209 
15 23 25250 0.01 0.99 502.5 262 
16 15 25250 0.01 0.985 1000 354 
17 21 25250 0.01 0.98 502.5 126 
18 3 500 0.1 0.985 502.5 96 
19 25 25250 0.055 0.985 502.5 156 
20 8 25250 0.055 0.99 1000 444 
21 1 500 0.01 0.985 502.5 125 
22 11 500 0.055 0.99 502.5 158 
23 18 50000 0.055 0.985 5 2 
24 24 25250 0.1 0.99 502.5 217 
25 20 50000 0.055 0.985 1000 313 
26 9 500 0.055 0.98 502.5 76 
27 26 25250 0.055 0.985 502.5 152 

 

 These experiments were used to develop the 
models used to estimate the calculation times for our 
tests with both heuristics. 
 The regression model that yields a good 
adjustment for SA has the following values for the 
heuristic parameters: 
 
Model for SA 
 
Term                Coefficient 
Constant 154 
T0  27.583 
Tf  -13.5 
α  54.25 
L  151 
T0*T0  -23.583 
Tf*Tf  8.792 
α * α  17.667 
L*L  -1.958 
T0*Tf  1.25 
T0* α  9.5 
T0*L  26 
Tf* α  -12 
Tf*L  -17.75 
α*L  56.250 
 
 Fig. 5 shows an example of the model described. 
SA parameter values for 24 groups were used to get 
a solution (objective function value) in 100 seconds 
(T0=14600, Tf=.0735, α =.9832 y L(t)=420). In the SA 
model and figure 5 it is understood that L is the 
same as L(t). 
 
 
 

 
 

Fig. 5 Example of parameters for SA, with a time of 100 
seconds 
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Moreover, the contour graph shown in Fig. 6, 
indicates the experimentation zones t = 120, 140, 
160, and 180 seconds. For example, when α 
(cooling factor) is maintained in .985 and L(t) at 
502.5, SA needs 160.044 seconds, we must have 
T0=39377.3, and Tf =0.06309. 
 

 
 

Fig. 6 Contour graph for SA (t vs. Tf, T0) 
 

 With models for SA and VNS and results taken 
from figures similar to 3, 4, 5 and 6, several tests 
were developed using times of  100, 150, 200, 250, 
300, 350 and 400 seconds in both heuristics 
calculation; calculating the appropriate parameter 
levels that allow us to conduct this test. Table 9 
summarizes the results of the objective functions for 
each of the computing times indicated. 
 

Table 9. Time VS Objective Value for SA and VNS 
 

Test Time  T (sec.) Objetive VNS Objetive SA 

1 100 11.14000 11.46780 
2 150 10.78029 11.48480 
3 200 10.55189 11.04380 
4 250 10.59820 11.18271 
5 300 10.89140 11.14000 
6 350 10.59820 11.01810 

  
Figures 7 and 8 show the evolution of the best 
results obtained for VNS and SA, according to Table 
9. 
 

 
 
Fig. 7. SA with objective value=10.92021, T=400 seconds 

and T0=50000, Tf=.01, α=.9854, L(t)=978 
 

 
 

Fig. 8. VNS with OBJ=10.55, T=200 seconds, NS=447, 
LS=314 

 From Table 9, it can be concluded that the cost 
function for the VNS heuristic is of better quality than 
SA because the vast majority of cases have a better 
objective function value.   

5 Conclusions 

Throughout this work we have found that VNS 
performed better than SA in the GCP with small 
problems of 24 groups or territories. The 
methodology used in this article allowed us to verify 
the initial assumption about the quality of the 
objective value when separate experiments were 
performed for VNS and SA, observing that VNS 
performed better than SA. Using this information, we 
tested statistically the hypotheses and finally 
developed a statistical model to estimate the 
calculation time needed to perform the tests for VNS 
and SA; using these times and recording the best 



A Statistical comparative analysis of Simulated Annealing and Variable Neighborhood Search … 307 

 
Computación y Sistemas Vol. 14 No. 3, 2011 pp 295-308 

ISSN 1405-5546 

value obtained for the objective function, to evaluate 
the quality of the solutions for both heuristics with 
the same calculation time, as can be seen in Table 
9. 
 Higher parameter values imply longer computing 
time but not necessarily better quality of the 
solutions, for this a parameter adjustment must be 
found that allows to obtain a near-optimum value for 
short computing times, which is just what was done 
in this paper.   
 As a future work, a new experiment for different 
group size and experimentation region can be 
designed. Furthermore, an experiment for GCP with 
two objectives: compactness and homogeneity can 
be performed. 
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